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Preface

Prof. Joseph W. Kloepper
Department of Entomology and Plant Pathology
Auburn University, Auburn, AL, USA

The Second Asian PGPR Conference continues and expands upon an important
series of international scientific meetings. Beginning in the 1980s, the International
PGPR Workshop has been held every three years.

The original reason for convening the PGPR Workshop was to create a single
forum to bring together people engaged in research and development of beneficial
plant-associated bacteria. These bacteria, called plant growth-promoting rhizobacteria
(PGPR) and also PBPB (plant growth-promoting bacteria) are typically studied in
widely diverse disciplines within universities, including departments of faculties of
agronomy, forestry, horticulture, microbiology, plant pathology, environmental
microbiology, crop science, soil science, and agricultural ecology. Hence, there was
not a specific national or international organization for PGPR/PGPB.

Over the years, these international workshops have been held in North America,
Europe, Australia, South America, and Asia. The 8" International PGPR Workshop
was held in 2009 in Portland, Washington, USA and the 9" International will be held
in Medellm, Colombia in 2012. In addition to providing a forum for scientific
exchange focused on PGPR, the International Workshops typically spawned interest
in the field of beneficial bacteria and microbial inoculants for plants in countries that
hosted the workshops. This was particularly true in Asia. Following the 6th
International PGPR Workshop in Kerala, India, there was an increasing national
commitment to funding R & D of bacterial inoculants, which resulted in a marked
increase in the numbers of researchers and graduate students engaged in studies of
PGPR.

Asia is now the continent with the largest number of researchers engaged in R & D
related to PGPR. To me, this is a logical development, given the importance of
agriculture to the peoples and economies of the Asian nations. While it is certainly
true that more human beings on the planet need more food, the growth in agriculture
in Asia during the 21% century is about much more than simply maintain the caloric
intake of citizens. The rapidly growing middle class in India and China are now
demanding more food choices. Fresh fruits and vegetables are equally important to
middle class consumers world-wide as are the traditional “staple” crops of the country,
such as wheat, rice, corn, and soybeans. At the same time, increases in meat
consumption by the middle class result in increased demand for field crops used in
animal feed. China alone produces nearly 450 million pigs each year, compared with
65 million in the U.S.

In recognition of the many researchers in Asia working on PGPR, the International
PGPR Workshop agreed to encourage development of “Regional PGPR Workshops.”
The First Asian PGPR Congress was held in Hyderabad, Andhra Pradesh, India in



2009. Given the success of that meeting in bringing together PGPR workers from all
parts of India and many other Asian countries, the decision was made to convene an
Asian PGPR Conference every two years within Asian countries. Our Asian PGPR
colleagues should be very proud of the leadership they have shown the world
community on forming regional PGPR meetings as a way to synergize national and
regional R & D. Researchers in Latin America hope to replicate the success of the
Asian PGPR group by holding the First Latin American PGPR Workshop in
conjunction with the 9™ International Workshop in 2012.

Finally, it has been said that this century will be the century where India and China
become world leaders in many economic sectors. | am very pleased to see that both
countries have already assumed leadership in the area of PGPR for sustainable
agriculture. | offer my sincere thanks to the hundreds of people who made the Second
Asian PGPR conference a great success. | especially thank my colleague and friend,
Prof. M.S. Reddy, Department of Entomology and Plant Pathology, Auburn
University, USA whose vision and tenacity led to the Asian PGPR Conference series.
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Abstract

Research collaborators throughout Asia have conducted work on various crops that
include: legumes, row crops, vegetables, rice, ornamentals, forestry, spices etc. The
rationale for our research is that there is a great need for environmentally-friendly
microbial technologies (PGPR) in Asian agriculture. Asian agriculture is plagued by
two main constraints. The first is the depletion of nutrient supply in the agricultural
soils, and consequently, the sizable gap between achievable and actual yields in
various crops. The second main constraint is crop protection. Devastating pathogens
lead to 15%~30% average crop losses annually. Despite the constraints, the Asian



continent has made great strides in agricultural production. Sustainable approaches
are those that are not aimed solely at maximizing short-term production but rather
those that consider long-term production gains, the ecology of agricultural systems,
and profitability of farmers. Further, sustainable solutions result in empowerment of
women, farm laborers, and rural communities. Our research deals with restructuring
the crop rhizospheres for improving and sustaining the nutrient supply in the soils and
enhancing the health and yield of crops through sustainable practices based on
microbial technologies. By microbial technologies, we mean the principles of
microbial ecology, which encompass inoculation of crops with beneficial
microorganisms and the use of cultural practices that enrich indigenous beneficial
microorganisms in individual agricultural fields. There are two main outcomes or
effects from beneficial microorganisms: enhanced plant growth and crop protection,
both of which represent the two main constraints to Asian agriculture. Our network
partnership in Asia has correctly identified the use of microbial inoculants to provide
holistic health and sustainable crop yields. Each partner in the Asian network has
made substantial contributions to Asian agriculture in research with plant-associated
rhizobacteria. These research leaders bring their expertise together in building a US-
Asia Partnership in Higher Education. Several large development projects in
agriculture failed after initiation because of new pest and soil health problems. There
is an urgent need to promote integrated pest/disease management at a faster rate and it
is driven by emphasizing organically-produced food, conservation of biodiversity,
unpolluted environment, and sustainable agriculture. However, the adoption of
biopesticides by farmers in Asia is still in its infancy. While already threatened by the
unforeseen drought spells, crops suffer the frequent outbreaks of pests that lead to
total crop failure. Because of such crop failures, the resource poor farmers cannot
afford expensive crop protection technologies, and remain poor. Development and
propagation of low-cost technologies would certainly help in the improvement of
these farmers’ economic situations and thereby eliminate the cycle of poverty through
collaborative efforts within the scope of Asian PGPR Society.
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Abstract

Environmental problems have raised great interest in environmental friendly
sustainable agricultural practices. The use of growth promoting rhizobacteria (PGPR)
is a promising solution for sustainable, environmentally friendly agriculture. The
research on PGPR started in China in 1970’s, when much work on biological control
of soil-borne plant pathogens had been done. In 1980s, much research has been done
on Bacillus. “YIB” (Yield Increasing Bacterial) was a successful example of PGPR
which was used on a large scale in China. Since then, the research on Bacillus PGPR
increased sharply as it could form endospore and has high resistance to adverse
conditions.

The research on Bacillus PGPR in China included isolating and screening
antagonists targeted different diseases, evaluating their effectiveness in greenhouse
and field, dissecting their mechanisms, improving the fermentation art, and expanding
their application. Research on improvement of Bacillus by genetic engineering is also
conducted in order to increase effectiveness. Some of them showed stable and
devastating activity and were widely used in field in a quite large area. So far, seven
species of Bacillus have been registered as biopesticides in China. Some strains were
registered as biofertilizers.

Plant microecology is a complex system with all members interrelated. It is a good
source to obtain Bacillus PGPR strains and develop biopesticides and/or biofertilizers
because their intimate relationship with plants. High throughput screening system and
large Bacillus PGPR library has been built in China.

Bacillus PGPR control the damage to plants from phytopathogens and promote the
plant growth by a number of different mechanisms. Successful colonization
on/around the host plant is the precondition for their effective functions. Biological
assays showed that attenuation of the chemotaxis-encoding gene cheA or the
flagellin-encoding gene flaA reduced bacterial populations in the rhizosphere.
Attenuation of SOD gene(s) resulted in reduced populations of B. cereus 905 in the
wheat rhizosphere. Antagonists can reduce plant diseases by various mechanisms.
Nutrient and space competition, production of enzymes that inhibit the phytopathogen,
stimulation of the systemic resistance of the plant, and growth substrate production
also play important role in teh activity of Bacillus PGPR. Microecology regulation is
another angle to disclose their action mode.
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Abstract

Induced systemic resistance (ISR) has been described for several strains of
fluorescent pseudomonads in a variety of crop plants and is effective against a wide
range of pathogens. Using the model plant Arabidopsis thaliana, progress has been
made in understanding signal transduction pathways involved in induced resistance.
Perception of ethylene and jasmonic acid is important for ISR. The traits of
Pseudomonas spp. that can trigger ISR appear to be diverse, and include iron
regulated metabolites, antibiotics, and lipopolysaccharides. Since pathogen growth is
restricted on plants that are in the state of ISR, we hypothesized that the indigenous
microflora could also be affected by ISR. Using cultivation dependent and
independent techniques, effects of plant defense signaling on the total bacterial and
the Pseudomonas spp. microflora of Arabidopsis were studied and related to
susceptibility of Arabidopsis genotypes to bacterial speck caused by Pseudomonas
syringae pv. tomato.

Key words: fluorescent Pseudomonas spp.; induced systemic resistance; phyllosphere;
root colonization

Introduction

Induced systemic resistance (ISR) triggered by selected plant growth-promoting
Pseudomonas bacteria is effective against a wide range of plant pathogens (Bakker et
al., 2007). Activation of ISR in plants leads to an enhanced defensive capacity
enabling plants to respond faster and/or more effectively to microbial attackers (Van
Loon et al., 1998; Conrath et al., 2002; Verhagen et al., 2004). ISR requires an intact
response to jasmonic acid (JA) and ethylene (ET), although it is not associated with
increased production of these hormones, and neither with increased expression of
known defense-related genes (Van Wees et al., 1999; Pieterse et al., 2000; Verhagen
et al., 2004). Arabidopsis mutants defective in expression of ISR and/or altered in
salicylic acid (SA) signaling, and exogenous application of methyl-JA and SA were
used to study the possible impact of defense signaling on the rhizosphere microflora.
Denaturing gradient gel electrophoresis (DGGE) revealed that mutants of Arabidopsis
thaliana affected in the JA and/or SA responsive signal transduction pathway
developed a bacterial rhizosphere microflora that differed from the one on the wild-
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type control, however, application of JA or SA did not affect the bacterial community
structure (Doornbos et al., 2011). In the present study possible effects of selected
Arabidopsis mutants that differ in their susceptibility to Pseudomonas syringae pv.
tomato DC300 (Pst) on rhizosphere and phyllosphere bacterial and Pseudomonas spp.
populations were evaluated.

Material and Methods
Cultivation of plants

Arabidopsis genotypes used are listed in table 1. Seeds were sown in autoclaved
sand in shallow plastic containers. The containers were covered and kept at 4 C in
the dark for 2 days, after which the seeds were allowed to germinate in a greenhouse
conditioned as described below, at 100% relative humidity. Routinely, 2—week-old
seedlings were transferred individually to 60 ml pots containing a potting-soil/sand
mixture (12:5 v/v) that had been autoclaved twice for 20 min with a 24 h interval.
However, plants used for analysis of abundance and diversity of indigenous
Pseudomonas populations in the rhizosphere were transplanted into non-autoclaved
potting soil-sand mixture. After transplanting, plants were grown in the greenhouse
with an 8 h-day (200 pE m™ sec™) at 24 ‘C and 16 h night cycle at 20°C and 70%
relative humidity, and watered with half-strength Hoagland nutrient solution once a
week and with tap water as required.

Disease induction and assessment

Five-week-old plants were inoculated with Pst as described by Pieterse et al.
(1996). Briefly, plants were placed at 100 % relative humidity one day before
inoculation. Pst was cultured overnight in liquid KB medium (King et al. 1954) at 28
while shaken at 180 rpm. Bacterial cells were washed by centrifugation for 5 min at
1.200 X g and resuspended in 10 mM MgSQO,. Leaves were dipped in a bacterial
suspension of 2.5X 10" cfu/ml Pst supplemented with 0.015% (v/v) Silwet L-77 (Van
Meeuwen Chemicals BV, Weesp, The Netherlands), and kept at 100% relative
humidity. Four days after inoculation, disease severity was quantified by determining
the fraction of leaves per plant showing necrotic lesions and/or chlorosis. From ten
plants of each genotype, leaves of five replicates consisting of two pooled plants were
ground in a mortar and pestle in 10 mM sterile MgSQO,. Population densities of Pst
were quantified by plating appropriate dilutions on KB agar (King et al. 1954)
supplemented with 100 pg/ml natamycin and 50 pg/ml rifampicine. Numbers of
colony forming units (cfu) were determined after incubation for 48 h at 28 C
(Pieterse et al., 1996).
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Table 1 Listing and relevant characteristics of Arabidopsis lines used

Genotype Relevant characteristics
Col-0 Wild-type accession Colombia-0
cpri-1 constitutive expressor of PR genes 1, SA overproducer
etrl-1 ethylene response 1, ET insensitive
jarl-1 jasmonate resistance 1, JA insensitive
NahG Transformant expressing bacterial SA hydroxylase, does not accumulate SA
nprl-1 non-expressor of PR-genes, impaired in SA and JA/ET-dependent defense
responses

Quantification of bacterial populations in the rhizosphere

Roots with tightly adhering soil were harvested and shaken three times in 10 mM
MgSQO, with glass beads (0.6~0.8 mm) on a vortex at maximum speed for 1 min.
Population densities of aerobic heterotrophic bacteria were determined by plating
serial dilutions on 1/10 strength TSA™ [3 g/L tryptic soy broth (Difco Laboratories,
Detroit, Mi, USA), 13 g/L agar technical (Oxoid Ltd, Basingstoke, UK) and 100
po/ml natamycin  (Delvocid, DSM, Delft, NL)] and counting colony forming units
(cfu) after 7 days incubation at 20 ‘C. Quantification of Pseudomonas spp. was
performed by plating appropriate dilutions on KB* agar [KB agar (King et al. 1954),
supplemented with 13 pg/ml chloramphenicol, 40 pg/ml ampicillin and 100 pg/mi
natamycin (Delvocid, DSM, Delft, NL) and counting cfu after incubation for 48 h at
28 C.

Analysis of bacterial phyllosphere communities

From ten 5-week-old plants, three leaves were removed with sterile scissors and
placed in an Eppendorf vial. Weighed samples were ground in 10 mM sterile MgSO,
with a sterile Eppendorf pestle (Eppendorf, Hamburg, Germany). Population densities
of aerobic heterotrophic bacteria were assessed by plating serial dilutions on 1/10
strength TSA™ [3 g/L tryptic soy broth (Difco Laboratories, Detroit, Mi, USA), 13 g/L
agar technical (Oxoid Ltd, Basingstoke, UK) and 100 pg/ml natamycin (Delvocid,
DSM, Delft, NL)]. Numbers of cfu per gram of leaf were determined after incubation
for 7 days at 20 °C . Quantification of predominantly Pseudomonas spp. was
performed by plating appropriate dilutions on KB* agar [KB agar (King et al., 1954),
supplemented with 13 pg/ml chloramphenicol, 40 pg/ml ampicillin and 100 pg/mi
natamycin (Delvocid, DSM, Delft, NL). Numbers of cfu were determined after
incubation for 48 h at 28 C.
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Results and Discussion

Disease severity and Pst population densities in Arabidopsis mutants affected in
defense signaling

A significantly higher percentage of diseased leaves was observed in the mutants
etrl and nprl, and in the NahG transformant as compared to the wild type. Population
densities of Pst were determined by selective plating and varied between 10* and 10°
cfu per gram of leaf. Although no significant differences in Pst populations were
observed, their numbers were approximately 10-fold lower in the cprl mutant, which
constitutively expresses SA-dependent defenses. In line with this observation, the
genotypes unable to express SA-dependent defense responses, nprl and NahG,
displayed 8- and 6-fold higher population densities of the pathogen, respectively.
However, a significant correlation between disease severity and population densities
of the pathogen was not apparent for the different genotypes.

Populations of culturable bacteria and Pseudomonas spp. in the phyllosphere and
rhizosphere of Arabidopsis genotypes differing in Pst susceptibility

To assess the effect of altered defense signaling on the indigenous bacterial
microflora in the phyllosphere, the same genotypes were assayed for their bacterial
microflora in the absence of Pst. Population densities of aerobic bacteria and
Pseudomonas spp. were quantified by selective plating. Compared to Col-0, higher
population densities of culturable bacteria were found in the phyllospheres of etrl,
nprl, and NahG. For the Pseudomonas spp. it was observed that not only etrl, nprl,
NahG, but also jarl harbored significantly higher population densities. Apparently,
increased susceptibility of a genotype to Pst is correlated with higher population
densities of indigenous bacteria in the phyllosphere.

Population densities of total culturable bacteria in the rhizospheres of the different
Arabidopsis genotypes ranged from 2X 10’ to 1X10° cfu per gram of rhizosphere
soil. The JA-response mutant jarl, the ET-response mutant ein2 and the constitutive
SA-producing cprl showed significantly lower numbers of culturable bacteria
compared to the Col-0 wild type. Numbers of cfu of Pseudomonas spp. in the
rhizosphere were between 52X 10° and 5 X 10’ per gram root and demonstrated
tendencies similar to total bacteria, except for ein2. However, Pseudomonas
populations seemed more sensitive to SA-dependent defenses, indicated by a
decreased abundance in cprl and a tendency of increased bacterial numbers in the
NahG rhizospheres.
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Do cropping practices and systems influence fluctuations in PGPR
populations or vice versa? Is it a chicken or egg situation?
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Abstract

Rhizosphere and soil bacteria are important drivers in nearly all biochemical cycles
in terrestrial ecosystems and participate in maintaining health and productivity of soil
in agriculturally managed systems. However, the effect of agricultural management
systems on bacterial communities is still poorly understood. 454- Pyrosequencing
based analysis of the V1-V3 16S rRNA gene region was used to identify shifts in soil
and rhizoshpere bacterial diversity and community composition under different
cropping systems in Manitoba, Canada. This included monoculture vs. rotation, zero
tillage vs. conventional tillage, organic farming vs. conventional farming. The
generated dataset composed of 215,000 high quality sequences, which were affiliated
to bacterial taxonomy by comparing sequences to the 16S rRNA database. In order to
assess the effects of agriculture management on bacterial communities, the data were
further analyzed using generalized linear mixed-model methodology (GLIMMIX) of
SAS by fitting normal, Poisson and negative binomial distributions. Results showed
that different cropping systems did not influence the diversity of bacterial
communities. However, a significant variation in relative abundances of bacterial
communities at both phylum and genus level was observed among different cropping
systems. Compared to conventional farming systems, organic farming system had
higher percentage of phylum Proteobacteria (many PGPR) and lower percentage of
phylum Actinobacteria. When canola monoculture was compared to wheat-oat-
canola-pea rotation, significantly higher percentage of Proteobacteria and lower
percentage of Actinobacteria were found in rotation system. Wheat monoculture
shared similar bacterial communities with wheat-oat-canola-pea rotation. Zero tillage
did not change bacterial communities profile except for an increase in Firmicutes
(many PGPR) compared to conventional tillage. At the genus level, significant
differences were found for the dominant genera Pseudomonas, Rhizobium,
Stenotrophomonas, Brevundimonas, Burkholderia, Marmoricola, Microlunatus, and
Solirubrobacter. The bacterial distribution correlated with soil pH and Carbonate C
(lime) content. This comprehensive study provided fundamental information about
how different cropping systems affect soil and rhizosphere bacterial communities,
which can be used to guide Manitoba farmers to choose proper farming systems to
maintain soil health and increase PGPR populations in soil.
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Introduction

Over the last decades, world agriculture experienced high increase in crop yield.
This was achieved through high input of inorganic fertilizers and pesticides, and
mechanization driven by fossil fuel. Over the years this led to serious environmental
problems such as depletion of soil quality and health, ocean and ground water
pollution, and emergence of resistant pathogens. It is a big challenge to feed the
increasing world population on decreasing farmland areas without damaging
environment. It is well known that rhizosphere and soil microorganisms (PGPR) play
an important role in maintaining crop and soil health through versatile mechanisms:
nutrient cycling and uptake, suppression of plant pathogens, induction of resistance
in plant host, direct stimulation of plant growth (Kloepper et al., 2004; Haas and
Déago 2005). Maintaining biodiversity of PGPR in soil could be an important
component of environment-friendly sustainable agriculture strategies. Some studies
have demonstrated that agricultural practices affecte the diversity and function of
rhizosphere and soil microorganisms (Mader et al., 2002; Esperschutz et al., 2007;
Sugiyama et al., 2010). Organic farming differs from conventional agriculture in the
production process and it relies on techniques such as crop rotation, green manure,
and biological pest control to maintain the soil productivity instead of chemical
fertilizer and pesticides (Zhengfei, 2005). Tillage is a common practice in modern
agriculture that involves mechanical manipulation of soil to enhance decomposition
of crop residues to prepare seedbeds for planting. It also serves as a method of post-
emergence weed control and a management strategy to reduce the incidence of
diseases and pests. However, extensive tillage leads to soil erosion and environemtal
pollution. There are two types of tillage systems: conventional tillage and
conservation tillage [CT] (at least 30% residue left on the soil surfaces). It was found
that CT can reduce soil erosion and increase soil organic matter and microbial
biomass compared to conventional tillage (Drijber et al., 2000; Kabir, 2005). One
drawback of CT is that some soilborne plant diseases can reach to damaging levels as
pathogens survive on crop residues left on the soil surface (Guo et al., 2005). An
approprate agricultural strategy such as crop rotation can prevent this problem by
excluding pathogen hosts.

The objective of this study is to explore bacterial structure including PGPR
consortium changes under different cropping practices and systems, and get better
understanding how to build soil holistic ecology to maintain the health and
productivity of plants.

The methods used to investigate microbial structure and composition include
culture-dependent and molecular methods. Culture-dependent method only can
assess less than 1% microorganisms dwelling in soil. Moelecular methods are
powerful tools to explore microbial structure and composition. Pyrosequencing is a
high-throughput DNA-sequencing technique based on sequencing-by-synthesis and
has the potential to detect, cost effectively, low abundant unculturable microbial
species (Roesch et al., 2007).
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Materials and Methods

Experimental design and soil samples collection: The experiments were conducted
at lan Morrison Research Station located in Carman and Glenlea Research Station in
Glenlea, Manitoba, Canada. Canola monoculture trial, wheat monoculture trial,
wheat-canola-oat-pea rotation trial as well as zero tillage and conventional tillage
trials were set at lan Morrison Research Station. A randomized complete block design
with three replicates was used for the monoculture and rotation trials. Conventional
and zero tillage practices were conducted on the canola monoculture trial. At Glenlea
Research Station, conventional and organic farming systems trials were investigated.
The experiment design was randomized completed block design in a split-plot
arrangement with three replicates. Two crop rotations including flax-oat-faba bean-
wheat (grain only rotation) and wheat-alfalfa-alfalfa-flax (grain-forage rotation) were
main plots, and certificated organic and conventional methods served as subplots. In
2006, bulk soil and rhizosphere soil were randomly collected at lan Morrison
Research Station. In 2008, bulk soil and rhizosphere soil were sampled throughout
wheat plots at Glenlea Resereach Station. Each sample was mixed well in plastic bags
and kept at -20 ‘C until DNA extraction.

DNA extraction from soil: The total soil DNA was extracted from pre-washed soil
samples (He et al., 2005) using the Powersoil DNA isolate kit according to the
manufacturer’s specifications (Mobio Labs, Solana Beach, CA). The bulk soil and
rhizoshpere soil DNA under the same treatment were pooled before pyrosequencing.

Pyrosequencing: DNA samples were pyrosequenced using bacterial tag-encoded GS
FLX-Titanium amplicons as described by Dowd et al., 2008. A mixture of Hot Start,
HotStar high fidelity taq polymerases and Titanium reagents were used to perform a
one-step PCR (35 cycles) with primer 27F, which covered the variable regions V1 to
V3 of the bacterial 16S rRNA genes. Mothur software package (Schloss et al., 2009)
was utilized to perform sequence quality control. All sequences shorter than 200 bp,
having an ambiguous base, or containing a homopolymer length equal or greater than
8 bp were removed from the dataset. Sequences were then aligned against a database
of high quality 16S bacterial sequences derived from Silva database. The furthest
neighbor algorithm with a cutoff of 95% similarity was used to assign sequences to
operational taxonomic units (OTU). Chaol richness indices, Shannon diversity
estimators and Good’s non-parametric coverage index were calculated based on the
OTU data. Representative sequences from each OTU were taxonomically classified
with a confidence level of 60% using RDP Baysian approach (Wang et al., 2007).

Statistical analysis: Percentage data approach was used to evaluate statistical
differences among treatments at phylum and genus taxonomical level. In this
approach, the raw data for each taxon was first transformed to the percentage of that
taxon in an individual sample. Normal distribution of percentage data of each phylum
and genus was tested using UNIVARIATE procedure of SAS (2004). For data that
were not normally distributed, Poission and negative binomial distribution model in
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GLIMMIX procedure of SAS (ver9.2; 2004) were then used to assess the effect of
treatments. The differences between treatments were considered significant at P<0.05.
To identify treatment effect (JMP ver8; SAS Institute Inc., Cary, NC), Principal
component analysis (PCA) of genus data was performed on the genus taxon level
(percentage >0.5). To test the effect of soil edaphic properties on core bacterial
phylum, canonical community ordination (CANOCO) was used (Plant Research
International BV, Wageningen, the Netherlands).

Results and Discussion

Generally, pyrosequencing data revealed that different cropping practices and
systems did not influence the diversity of bacteria in our tested trials (Tablel, Table
2). However, they altered the relative abundance of bacterial communities at phylum
(Fig.1) and genus levels (Table3, Table4). Compared to conventional farming
systems, organic farming systems have similar OTU, richness and diversity except
for Good’s coverage estimator, which only reached 76% (average of grain only
organic and forage-grain organic) meaning 76% of total species presented in samples
(Tablel). Wheat monoculture had significant highest OTU and Chaol richness
estimator, with 2755 and 4870.79, respectively, when compared with wheat rotation,
canola monoculture and canola rotation. Compared to conventional tillage, Zero
tillage had relatively higher OTU and Chaol, though statistically non-significant
(Table2). It was argued that diversity parameters only based on OTU without
taxonomic identity of different bacteria were not sensitive enough to investigate the
effect of treatment on the bacterial structure because changes in some bacterial
groups could be compensated by changes of other groups (Hartmann and Widmer,
2006).

When sequences were affiliated to different taxonomic phylum and genus level,
significant variation of bacterial structure was observed (Fig. 1, Table 3, Table 4). At
lan N. Morrison Research Station, Canola rotation had higher percentage of
Proteobacteria (49.17%) while canola monoculture, wheat monoculture and wheat
rotation had an average of 31% Proteobacteria. However, a relatively higher
percentage of Actinobacteria was found under canola and wheat monoculture (43.8%)
compared to canola and wheat rotation (33.37 %) (Fig.1A). Within phylum
Proteobacteria, the percentages of genera Rhizobium, Variovaorax, and
Pseudomonas were higher in canola rotation compared to canola monoculture (Table
3). Canola releases compounds such as glucosinilate, which are inhibitory to some
microorganisms (Garyston and Germida, 1990). When canola is rotated with other
crops the concentration of these inhibitors in the soil could be diluted. Principal
component analysis revealed wheat and canola supported different bacterial genus
(Fig.2A). These crops produce different exudates, which attract different bacterial
populations. Compared to conventional tillage, zero tillage shared similar bacterial
phyla profile, except for an increase in percentage of Firmicutes (5.16%) (Fig.1B).
At genus level, PCA analysis also gave the similar pattern of bacterial composition
under conventional and zero tillage farming practices (Fig.2B). From this point, we
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assumed that zero tillage would not change PGPR consortium dwelling in soil, which
was important for controlling soil born pathogens.

At Glenlea Research Station, it was found that percentage of phyla Proteobacteria
was significantly high under organic farming system (44.45%) while it was only
27.25% under the conventional farming system. Interestingly, the percentage of
Actinobacteria showed the opposite pattern, which reached 43.12% under
conventional farming systems and 32.48% under organic system (Fig.1C). When
genus level of bacteria was analyzed, the relative abundances of different genera
belonging to phyla of Proteobacteria (many PGPR) and Actinobacteria varied among
the samples. The genera belonging to phylum Proteobacteria, such as Pseudomonas,
Stenotrophomonas, Brevundimonas, and Burkholderia were more frequently found in
organic farming systems (Table4). Many PGPR isolates belong to genus
Pseudomonas, Stenotrophomonas, and Burkholderia (Haas and Défago, 2005; Ryan
et al., 2009). It was found that conventional farming systems associated with higher
percentage of Actinobacteria. Some studies have showed that actionbacterial fraction
in bacterial community become greater in cultivated soil compared to pasture and
forest soils (Lauber et al., 2008). Actinobacteria is able to degrade a variety of
organic compounds including some herbicides and pesticides. The presence of
pesticides and fertilizers might stimulate Actinobacteria population. It was reported
that human activities including cultivation and urbanization encouraged the
actinobacterial communities (Hill et al., 2010). Our results are consistent with these
previous findings. Principal component analysis of pyrosequencing patterns for
bacterial genus taxon variability revealed that samples from organic farming system
scattered along the PCA1, while samples from the conventional farming system
clustered along PCA2 (Fig.2C). Canonical correspondence analysis tested the effect
of soil edaphic properties on samples by using an unconstrained analysis (RDA) (Fig.
3). pH accounted for 24% variance (P = 0.06), and CaCO3C for 19% variance (P =
0.02). The C: N ratio only explained less than 5% variance (P = 0.52). Compared to
conventional farming systems, organic farming systems lead to neutral soil pH (data
not shown). It was reported that soil pH is main factor to influence bacterial
communities (Lauber et al., 2009). Neutral soil pH could create friendly environment
for survival and reproduction of beneficial bacterial consortia.
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Table 1 Summary of pyrosequenced 16S rRNA sequences from the Glenlea samples

Number Mean (SEM) results for indicated varible
Rotation Management of
g trimmed  OTU' (95%  Coverage
. Chaol NpShannon
sequences  distance) (%)
Organic 30,482 1917 (236.5) 78.77 ab3659.96 7.21(0.22)
(2.72) (512.14)
Grain only
Conventional 20,473 1628 (236.5) 84.53 & 2889.74 6.83 (0.22)
(2.72) (512.14)
Organic 23,923 2118 (236.5) 73.22 b 4308.71 7.60 (0.22)
(2.72) (512.14)
Forage-grain
Conventional 31,552 1860 (236.5) 80.34 @b 3494.36 7.21(0.22)
(2.72) (512.14)
R(P-Value) 0.35 0.11 0.20 0.2
M(P-Value) 0.30 0.04 0.13 0.2
RxM(P- 0.95 0.83 0.96 0.97
Value)

a,b - Means with different letters are significantly different (for management at P<0.05). Standard error of means is displayed in parentheses.;10TU=operational

taxonomic units; R — Rotation; M - Management.

Table 2 Summary of pyrosequenced 16S rRNA sequences from the lan Morrison samples

Treatment Number of trimmed Mean (SEM) results from indicated variable
sequences oTuU (95%  Coverage
distance) (%) Chaol NpShannon
Canola 15,116 1581.67 ® 832(0.84) 292875 ® 6.78 (0.28)
monoculture (249.97) (379.36)
Canolarotation 14,604 1540.67 " 824(084) 3047.44 ® 6.75(0.28)
(249.97) (379.36)
Wheat 13,254 2755.00 a 4870.79 2 7.78(0.28)
monoculture (249.97) 81.1(0.84) (379.36)
Wheat rotation 16,025 1702.00 ® g27(0.84) 308189 ® 6.82(0.28)
(249.97) (379.36)
Conventional 15,116 1581.67 b 2928.75 b 6.78(0.34)
' 83.2 (0.01
tillage (271.77) (0.01) (469.13)
Zero tillage 23,208 2141.67 ab 3947.21 ab 6,99 (0.34)
(71.77) 851(001)  (469.13)

a,b,c - Means with different letters are significantly different for treatment at P< 0.05.

This research is one of the first to exam how different cropping practices and
systems influence PGPR and bacterial consortia. Organic farming systems, zero
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tillage and crop rotation are beneficial for some PGPR consortia. Further studies are
needed to find out other factors, such as bacteria: fungi ratio and soil borne pathogen
survey, which affect PGPR fluctuation. This will be essential in developing more
sustainable and eco-friendly farming systems.
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Figurel Phylogenetic composition of bacterial phyla from pyrosequenced 16S rRNA
sequences under different cropping systems

20



Table 3  Phylogenetic composition (percentage) of bacteria fluctuation at genus level under monoculture and rotation

farming practices at lan Morrison Station

. . Canola Canola Wheat Wheat
Phylum; Family; Genus Rotation Monoculture Monoculture Rotation SEM P-Value

Proteobacteria;Rhizobiaceae; Rhizobium 3.48° 0.26" 0.25" 0.29° 05 0.04

Proteobacteria;Comamonadaceae; Variovorax 153 0.44° 0.33° 0.48° 0.18 0.006
Proteobacteria;Pseudomonadaceae;

Pseudomonas 1.52 0.48 0.39 2.39 0.75 0.32

Actinobacteria;Geodermatophilaceae; 0.44° 0.70° 1.95% 1.68% 0.25 0.007

Blastococcus
Actlnobacterla;Pseudonqcardlaceae; 0.69° 0.65° 1.36% 1.60° 0.15 0.004
Pseudonocardia
Actinobacteria;Solirubrobacteriaceae; 0.49b 0.69° 19° 1.97%b 0.24 001

Solirubrobacter
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Table 4 Phylogenetic composition (Percentage) of bacteria at genus level under organic

and conventional farming practices in Glenlea Research Station

Phylum; Family; Genus Organic  Conventional SEM P-value
Actinobacteria; Kineosporiaceae;Quadrisphaera 0.2 0.41 0.05 0.007
Actinobacteria; Intrasporangiaceae;Lapillicoccus 0.25 0.46 0.06 0.008
Actinobacteria; Nocardioidaceae; Aeromicrobium 0.26 0.41 0.06 0.08
Actinobacteria; Nocardioidaceae;Marmoricola 0.71 1.06 0.14 0.08
Actinobacteria; Propionibacteriaceae;Microlunatus 1.13 2.03 0.21 0.008
Actinobacteria; Pseudonocardiaceae;Pseudonocardia 1.33 2.1 0.19 0.009
Actinobacteria; Rubrobacteriaceae;Rubrobacter 0.53 1.21 0.18 0.01
Actinobacteria; Solirubrobacteriaceae;Solirubrobacter 0.83 1.62 0.16  0.002
Bacteroidetes; Sphingobacteriaceae;Pedobacter 0.61 0.16 056 0.13
Chloroflexi; Chloroflexaceae;Roseiflexus 0.92 1.88 0.22 0.007
Proteobacteria; Caulobacteraceae;Brevundimonas 6.01 0.1 0.58 0.0004
Proteobacteria; Caulobacteraceae;Phenylobacterium 0.51 0.31 0.08 0.11
Proteobacteria; Methylobacteriaceae;Microvirga 0.21 0.42 0.06 0.02
Proteobacteria; Burkholderiaceae;Burkholderia 34 0.07 11 0.02
Proteobacteria; Comamonadaceae;Variovorax 1.02 0.39 0.38 0.11
Proteobacteria; Pseudomonadaceae;Pseudomonas 2.58 0.97 0.79 0.18
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Antibiotic production and quorum sensing regulation involved in
biocontrol capacity in Pseudomonas fluorescens 2P24

Ligun Zhang
Department of Plant Pathology, China Agricultural University, Beijing, 100193, China

Abstract

Pseudomonas fluorescens 2P24 is a biocontrol agent isolated from the wheat take-
all decline soil in China. This strain produces several antifungal compounds, such as
2,4-diacetylphloroglucinol (2,4-DAPG), hydrogen cyanide and siderophore(s). 2,4-
DAPG is the major determinant in antibiosis and biocontrol activity. Genetic mutant
of strain 2P24 defective in 2,4-DAPG production could not protect plants against
soilborn plant diseases. The production of 2,4-DAPG is regulated by a series of
transcriptional and translational factors in strain 2P24, including the pathway-specific
repressor PhIF, the transcriptional regulator PsrA, the two-component system
GacS/GacA, regulatory RNAs RsmX/Y/Z and their binding proteins RSmA/E, RNA
chaperone Hfg, H-NS family regulators MvaT and MvaV, sigma factor RpoS, and a
multidrug efflux pump EmhABC. These elements constitute a complicated and
delicate regulatory network controlling the environmental adaption and biocontrol
capacity in P. fluorescens 2P24. Another functional character involved in biocontrol
of strain 2P24 is a LuxR/Luxl family quorum-sensing (QS) system, PcoR/Pcol.
Mutation on signal biosynthase gene pcol did not detectably affect the production of
2,4-DAPG, but significantly influenced biofilm formation, colonization on wheat-
tomato rhizospere and biocontrol ability against wheat take-all and tomato bacterial
wilt. We further investigated the upstream regulators that influenced the transcription
of the pcol gene using a chromosomal pcol::lacZ fusion reporter strain. The two-
component system GacS/GacA, sigma factor RpoS and RNA chaperone Hfq, which
have been known to be involved in antibiotic regulatory pathway, were identified to
affect QS regulon. In addition, a special two-component system PhoP/PhoQ, which
responds to environmental Mg®* starvation, was also identified as a negative regulator
of QS system. Our results revealed that antibiotic 2,4-DAPG and QS in biocontrol
strain 2P24 shared some common upstream regulatory factors, but involved in
biocontrol via different action models.
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Molecular signalling of bacteria based on the quorum sensing
compounds N-acylhomoserine lactones and its PGPR
effects on different plants

Anton Hartmann

Helmholtz Zentrum Munich, German Research Center for Environmental Health, Department
Microbe-Plant Interactions, Neuherberg Munich, Germany

Abstract

Roots are colonized by a high density of micro-organisms which are attracted and
well nourished by plant borne organic nutrients. On the other hand, this microhabitat
is characterized also by high competition and stress. Autoinducer signalling (e.g. N-
acylhomoserine lactone, AHL) compounds have high importance for optimizing
physiological efficiency as well as communication amongst bacterial populations in
the rhizosphere and on the root surface. In addition, cross-kingdom interactions of
bacteria with eucaryotes (fungi and plants) based on AHL-type molecules do occur
which trigger different plant responses. In some plants (e.g. Arabidopsis or barley),
these compounds can be taken up by roots and are distributed even to the shoot, while
in other plants (like most legumes) plant derived lactonases degrade them efficiently.
Examples for altered hormonal regulation or systemic resistance acquirement in
different plants which are induced by AHL-compounds will be presented. Thus,
the plant microbiome has very important consequences for the overall performance
of the plant in the hologenome sense.
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Use of Bacillus amyloliquefaciens subsp. plantarum for biocontrol

and plant growth promotion

Rainer Borriss*?
'ABITEP GmbH Berlin, Germany and “Humboldt University Berlin, Germany

Abstract

The whole genome sequenced rhizobacterium FZB42 (Chen et al., 2007) and other
plant associated Bacillus strains either designated as Bacillus amyloliquefaciens or
Bacillus subtilis are used commercially to promote growth and health of crop plants.
Previous investigations revealed that the strains represent an ecotype related to B.
amyloliquefaciens, however its exact taxonomic position remained elusive (Reva et
al., 2004). Here we have demonstrated ability to colonize Arabidopsis roots for a
group of Bacillus strains, closely related to FZB42. According to their phenotypic
traits the strains were similar to Bacillus amyloliquefaciens DSM7T, but differed
considerably in DNA sequences of the genes encoding 16S rRNA, gyrase subunit A
(gyrA) and histidine kinase CheA (cheA) from the type strain. Phylogenetic analysis
performed with partial gyrA and cheA sequences revealed that plant-associated
Bacillus strains including FZB42 are forming a lineage which can be discriminated
from the cluster of strains closely related to Bacillus amyloliquefaciens DSM7T.
DNA-DNA hybridization (DDH) performed with genomic DNAs from DSM7T and
FZB42 vyielded 63.7% to 71.2% homology. As complementary approach, we used
several genomic methods, as direct whole genome comparison, digital DDH, and
microarray-based comparative genomic hybridization (M-CGH). Plant-associated
strains were discriminated from DSM7T and B. subtilis type strain by their different
potential to synthesize nonribosomally antimicrobial lipopeptides and polyketides.
According differences found in marker gene sequences and in whole genomes, we
propose the two B. amyloliquefaciens subspecies a€ceplantaruma€ for plant-
associated, and amyloliquefaciens , for their non-plant-associated representatives.
This is in line with results of DDH, MCGH, and the MALDI TOF mass spectrometry
of cellular components justifying that both ecovars represent two different subspecies.
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Plant social networking system: Leaf insect feeding recruits
beneficial root-associated bacteria and fungi in pepper

Hwe-Su Yi'?, Jung Wook Yang®, Sa-Youl Ghim? and Choong-Min Ryu"®"

'L aboratory of Microbial Genomics, Industrial Biotechnology and Bioenergy Research Center,
KRIBB, 111 Gwahangno, Daejeon 305-806, S. Korea.; “School of Life Science, Kyungpook
National University, Daegu 702-701, S. Korea.; ®Field of Functional Genomics, School of Science,
University of Science and Technology, Daejeon 305-333, S. Korea

Abstract

Plants have evolved general and specific defense mechanisms to protect themselves
from diverse enemies, including herbivores and pathogens. To maintain fitness in the
presence of enemies, plant defense mechanisms are aimed at inducing systemic
resistance: in response to the attack of pathogens or herbivores, plants initiate
extensive changes in gene expression to activate “systemic acquired resistance”
against pathogens and “indirect defense” against herbivores. Recent work revealed
that leaf infestation by whiteflies, stimulated systemic defenses against both an
airborne pathogen and a soil-borne pathogen, which was confirmed by the detection
of the systemic expression of pathogenesis-related genes in response to salicylic acid
and jasmonic acid-signaling pathway activation. Further investigation revealed that
plants use self-protection mechanisms against subsequent herbivore attacks by
recruiting  beneficial ~ microorganisms  called  plant  growth-promoting
rhizobacteria/fungi, which are capable of reducing whitefly populations. Our results
provide new evidence that plant-mediated aboveground to belowground
communication and vice versa are more common than expected.

Introduction

Rhizoctonia solani, the causal As sessile organisms, plants are unable to actively
avoid the attack of predators. To overcome this, plants have evolved a multilayer
immune system against herbivores and pathogens (Jones and Dangl, 2006). Plants,
unlike animals, lack adaptive immunity. Instead, plants are dependent on a heritable,
innate immunity based on the recognition by receptors of the presence of microbial
triggers (cues) including effector proteins and microbe-associated molecular patterns
(Jones and Dangl, 2006). The perception of microbial cues leads to the induction of a
broad spectrum of plant defenses called systemic acquired resistance (SAR) (Bostock,
2005). Until recently, SAR was thought to be limited to the induction of plant
defenses against foliar microbial pathogens. However, recent results suggested that
plants can activate signal exchanges between aboveground (AG) and belowground
(BG) responses (Bezemer and van Dam, 2005). Three phenomena indicate that plants
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can make use of cues that are systemically indicative of future enemy attack: (i)
induced resistance against AG pathogens by BG microbes and vice versa, (ii) indirect
defenses against AG insects by AG herbivore infestation, and (iii) BG pathogen
infection leading to root exudate-mediated recruitment of BG bacteria. First, many
strains of rhizosphere microbes referred to as plant growth-promoting
rhizobacteria/fungi (PGPR/PGPF) have beneficial effects by positively affecting plant
growth and resistance against foliar plant pathogens — a process known as induced
systemic resistance (ISR) (Kloepper and Ryu, 2006). Inducible defense responses
triggered by the foliar pathogen Pseudomonas syringae pv. tomato DC3000 included
the induction of root secretions such as L-malic acid that effectively recruited a PGPR
strain, Bacillus subtilis FB17, in Arabidopsis roots (Rudrappa et al., 2008). Second,
herbivore attacks on plants trigger the induction of distinct resistance responses
referred to as “indirect defenses” (Baldwin et al., 2006). In addition to the “direct
defense” reaction mediated by the de novo production of toxic secondary compounds
against enemies, plants also defend themselves by releasing volatile organic
compounds (VOCs) or extrafloral nectar (EFN) to attract natural enemies (carnivores)
of the herbivores AG (Heil and Ton, 2008). Third, as plant root exudates function as
BG signaling molecules that affect the composition of rhizosphere microbial
populations,(Badri and Vivanco, 2009) certain rhizobacteria express antifungal-
associated genes such as the 2,4-diacetylphloroglucinol biosynthesis gene phlA. The
expression of these genes is in turn influenced by root exudates, which are modulated
by soil-borne fungal infections (Jousset et al., 2011).

In prior studies, only one-way signal transduction was considered, such as AG to
BG, AG to AG, or BG to BG (Baldwin et al., 2002; Bezemer et al., 2004; Heil, 2008;
Yi et al., 2009). The above three examples provide evidence of induced resistance
against the same or a similar group of organisms, such as resistance against insects by
insects, or against microbes by microbes. However, there are few studies addressing
insect-microbe combinations during the elicitation of induced resistance. More
specifically, indirect defenses by symbiotic root interactions AG were found, such as
the volatile blends released by plants with arbuscular mycorrhizal fungi, which were
more attractive to aphid parasitoids than the blends from plants without mycorrhiza
(Guerrieri et al., 2004). The BG to AG defense responses of plants are not limited to
arbuscular mycorrhizal fungi against herbivores. In addition to mycorrhiza-altered
insect feeding preferences, a combination of Pseudomonas spp. strains affected the
development of leaffolder pest and actively enhanced resistance against leaffolder
attack by triggering the synthesis of systemic defense enzymes such as chitinase and
proteinase inhibitors in rice plants (Saravanakumar et al., 2007). Bacillus sp. PGPR
strain treatment of tomato triggered ISR to Tomato mottle virus under natural
conditions by reducing the population of the silverleaf whitefly vector (Murphy et al.,
2000).
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Figure 1 . A model of plant-mediated aboveground to belowground communication and
vice versa during the induction of systemic resistance via tritrophic (insect-plant-
rhizobacteria) interactions.

Whitefly infestation elicits plant systemic defenses against leaf and root pathogens. Chemical cues
from root exudates secreted from AG whitefly infestation trigger the recruitment of beneficial
microbes including saprophytic fungi, Gram-positive bacteria, and actinomycetes. The induction
of systemic resistance by colonization by beneficial microbes confers plant self-protection against
subsequent herbivore attacks.

Recently, we found another type of induced resistance response: bidirectional
signal exchanges between AG and BG (Yang et al., 2011). Our study demonstrated
that the phloem feeding whiteflies can induce systemic resistance against both a leaf
bacterial pathogen and a soil-borne bacterial pathogen. A similar study using the
whitefly as an AG feeding insect to test the induction of plant defenses only observed
its effects against conspecific insect herbivore competitors AG.(Mayer et al., 2002)
However, in our study, foliar attack by the whitefly not only elicited AG resistance
against a leaf pathogenic bacterium, Xanthomonas axonopodis pv. vesicatoria, but
also enhanced resistance against the soil-borne pathogenic bacterium, Ralstonia
solanacearum. The induction of systemic resistance was confirmed by significant up-
regulation of the SA and JA defense signaling pathway marker genes, Capsicum
annuum pathogenesis-related protein (CaPR)1, CaPR4, CaPR10 and Ca protease
inhibitor (CaPIN) in both leaves (AG) and roots (BG) after whitefly feeding.
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Interestingly, AG whitefly feeding significantly increased the population density of
beneficial BG microflora including Gram-positive bacteria, actinomycetes and
saprophytic fungi that may induce systemic resistance.(Kloepper and Ryu, 2006)
Among BG microbial groups, several Gram-positive Bacillus sp. strains significantly
elicited plant systemic defenses against the whitefly population in the tomato
field.(Murphy et al., 2000) Our studies provide a new understanding of tritrophic
(insect-plant-PGPR) interactions and their role in the induction of defense
mechanisms. In the near future, it will be important to define plant defense signaling
molecules from AG to BG and to dissect the signaling transduction pathways using
“omics” technology to reveal the mechanisms by which plants protect themselves
against enemy attacks.
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Cyclic lipopeptides of Pseudomonas sp. CMR12a are involved in
biocontrol, swarming motility and biofilm formation
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Abstract

The fluorescent biocontrol strain Pseudomonas sp. CMR12a was isolated from
cocoyam roots in Cameroon and shows an unique adaptation to humid tropical soils
such as the ability to switch to methylotrophic and anaerobic growth. The strain has
two quorum sensing systems and produces several interesting metabolites, including
phenazine-type antibiotics and two different types of cyclic lipopeptides (CLPs).
CLPs are composed of a partially cyclised peptide, linked to a fatty acid of variable
length, and can exhibit powerful toxicity towards a wide range of organisms. Their
synthesis is governed by non-ribosomal peptide synthetases, which are encoded on
large gene clusters. So far, simultaneous production of two CLPs by one strain has
only been demonstrated for plant pathogenic pseudomonads. The structure of both
cyclic lipopeptides was elucidated by combining two approaches. Firstly, the
biosynthesis gene clusters for the CLPs were identified and analyzed, which provided
an in silico structure prediction. Secondly, chemical structure identification was
performed, involving purification of the compounds by liquid chromatography
followed by mass spectrometry, and amino acid hydrolysis and analysis by HPLC. It
appeared that CMR12a produces two distinct CLPs, which were designated sessilin
and motilin, respectively. Sessilin is structurally related to the toxin tolaasin,
produced by the bacterial mushroom pathogen Pseudomonas tolaasii. The structure
of motilin on the other hand is very similar to that of orfamide, which was recently
described in biocontrol strain Pseudomonas fluorescens Pf-5. Sessilin is important for
biofilm formation and is, together with the phenazine antibiotics, essential for the
biocontrol capacity of CMR12a towards Rhizoctonia solani root rot on bean
(Phaseolus vulgaris) and Chinese cabbage, while motilin is indispensable for
swarming motility of CMR12a.
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Bioactive metabolites involved in the microbiological control
of tomato foot and root rot

Ben Lugtenberg
'Leiden University, Institute of Biology, Sylvius Laboratory, Leiden, The Netherlands

Abstract

The disease tomato foot and root rot (TFRR) is caused by the pathogenic fungus
Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Application of some microbes,
such as Pseudomonas fluorescens or Serratia plymuthica, can efficiently reduce the
disease. The microbes can be applied by coating on the seeds or by drenching. Using
studies with auto fluorescent proteins, we observed that the pathogen and the
biocontrol bacteria occupy the same niches on the root surface. It was also observed
that the Pseudomonas biocontrol strain, applied on the seed, reaches these niches
earlier than the pathogen.

In this paper, the roles of many molecular signals which play a role in the
microbiological control of TFRR will be discussed.

The major mechanisms used by microbes for the control of root diseases are the
following. (i) Antibiosis, (ii) Predation and Parasitism (P&P), (iii) Competition for
Nutrients and Niches (CNN), (iv) Induced Systemic Resistance (ISR), and (v)
Inhibition of fungal spore germination, and (vi) Combinations of the above.

Root colonization by the beneficial microbe is a process which is required for all
mechanisms of biocontrol. Roots secrete up to 20% of the bound carbon as root
exudate. Microbes are attracted chemotactically by certain components secreted by
the root.

Weapons used by beneficial microbes to attack the pathogen include lytic enzymes
such as chitinase, and antibiotics such as phenazines, 2,4-diacetylphloroglucinol,
pyoluteorin, pyrrolnitrin, hydrogen cyanide, cyclic lipopeptides, 2-hexyl-5-propyl
resorcinol and D-gluconic acid. Antibiotic production occurs at the end of the
exponentia