BaTiO₃-TiO₂ nanotubesproduced by classical hydrothermal methodand their photoelectrochemical properties

<u>N.</u> Sobti¹, S.Kendouli¹, M.Baghriche¹ and S. Achour²

¹Ceramic Laboratory, Faculty of exact science, University Constantine1, Algeria ²Ecole Nationale Polytechnique de Constantine,Constantine, Algeria <u>sobtinadjeh@yahoo.fr</u>

Abstract

Nanotubes are of great interest due to their high surface-to-volume ratios and sizedependent properties. Titanium dioxide nanotube array is a well-known nanostructured semiconductor oxide with improved functional photocatalytic and sensing properties. Considering these properties, TiO₂ NTs arrays attract wide scientific interest in view of their applications in self-cleaned gas sensors, photo catalytic materials, dye sensitized solar cells, and water photo electrolysis. In this work, TiO₂ nanotubes were prepared by anodization of pure titanium sheets and subsequently covered with BaTiO₃ using classical hydrothermal method(200 °C during 2 hours). TheTiO₂ nanotubes were prepared using 2wt. %NH₄F in ethylene glycol and water under constant voltage 40 V for 4 hours. Thereafter, the prepared samples were hydrothermally processed in a solution of 0.004, 0.006,0.008M Ba(HO)₂respectively, and preheated distilled water in classical oven. Different techniques of analysis such as X-ray Diffraction (XRD), Raman Spectroscopyand Scanning Electron Microscopy (SEM) were used to characterize the obtained layers. The formation of BaTiO₃ was confirmed by Raman analysis. SEM image of these layers showed the coverage of TiO₂ nanotubes by BaTiO₃nano-particles.

Key words: TiO₂ nanotubes, anatase, rutile,BaTiO₃-TiO₂anodization,Hydrothermal method.