FIABILITE MAINTENABILITE DISPONIBILITE

 β < 1 β = 1 β > 1

Jeunesse Vie opérationnelle Vieillissement

Temps

FMD

Faculté
des Sciences de la Technologie
Département Génie des
Transports

Pr. Ahmed BELLAOUAR
M.A. Salima BELEULMI
UNIVERSITE Constantine 1

Année Académique 2013-2014

PRÉFACE

Ce polycopié de fiabilité, maintenabilité et disponibilité (FMD) s'adresse surtout aux étudiants qui destinent aux sciences de l'ingénierie. Il se situe entre un texte de fiabilité, maintenabilité et disponibilité purement théorique et un texte de fiabilité appliquée. Pour toutes les parties principales de FMD, nous avons fait une revue rapide de FMD de niveau universitaire. Cette revue est faite à l'aide d'exemples dans le texte. Le manuscrit est organisé en trois parties principales A, B et C dans lesquelles sont structurés les chapitres.

On sait que l'analyse de la fiabilité constitue une phase indispensable dans toute étude de sûreté de fonctionnement. A l'origine, la fiabilité concernait les systèmes à haute technologie (centrales nucléaires, aérospatial). Aujourd'hui, la fiabilité est devenue un paramètre clé de la qualité et d'aide à la décision, dans l'étude de la plupart des composants, produits et processus "grand public": Transport, énergie, bâtiments, composants électroniques, composants mécaniques....

De nombreux industriels travaillent à l'évaluation et l'amélioration de la fiabilité de leurs produits au cours de leur cycle de développement, de la conception à la mise en service (conception, fabrication et exploitation) afin de développer leurs connaissances sur le rapport Coût/Fiabilité et maîtriser les sources de défaillance.

L'analyse de la fiabilité dans le domaine de la mécanique est un outil très important pour caractériser le comportement du produit dans les différentes phases de vie, mesurer l'impact des modifications de conception sur l'intégrité du produit, qualifier un nouveau produit et améliorer ses performances tout au long de sa mission. La maintenabilité par analogie à la fiabilité, exprime un intérêt considérable au maintien des équipements en état de service et par conséquence assuré leur disponibilité.

Prof. Ahmed BELLAOUAR

Département de Génie des transports Faculté des sciences de la technologie Université Constantine -1-

MAA. Salima BELEULMI

Département de Génie des transports Faculté des sciences de la technologie Université Constantine -1-

Décembre 2013

TABLE DES MATIERES

	Préface				
	Introduction Générale	5			
	A. Première partie: LA FIABILITE				
Chapitre I:	Concepts Généraux de la Fiabilité	7			
I.1	Définition	7			
I.2	7				
I.3	I.3 Indicateurs de Fiabilité				
I.4	les différentes phases du cycle de vie en mécanique	11			
I.5	Objectifs et intérêts de la fiabilité en mécanique	14			
I.6	Evolution des coûts en fonction de la fiabilité	14			
I.7	Fiabilité d'un système	15			
I.8	La relation entre la fiabilité et la maintenance	23			
Chapitre II:	Lois de fiabilité	29			
II.1	Introduction	29			
II.2	Les lois de probabilité utilisées en fiabilité	29			
II.2.1	Les lois discrètes	29			
II.2.2	Les lois continues	33			
II.3	42				
II.3.1	Les lois discrètes	42			
II.3.2	Les lois continues	45			
Chapitre III:	Lois de Weibull	54			
III.1	Introduction	54			
III.2	La lois de Weibull	54			
III.3	Fonction de fiabilité R(t)	54			
III.4	Domaine d'application	56			
III.4.1	Papier de Weibull	56			
III.5	Exemple d'application	62			
III.5.1	Cas d'un réducteur de vitesse	62			
III.5.2	Cas d'une vis sans fin	68			
III.5.3	Application pneus	72			
	B. Deuxième partie: LA MAINTENABILITE				
Chapitre I:	Maintenabilité	76			
I	I Définition				

I.1	Commentaire	77			
I.2	Maintenabilité et maintenance	78			
I.3	Maintenabilité et Disponibilité	78			
I.4	Construction de la maintenabilité intrinsèque	78			
II	II Analyse de la maintenabilité opérationnelle				
III	III Approche mathématique de la maintenabilité				
IV	IV Exemples d'application				
	C. Troisième partie: LA DISPONIBILITE				
Chapitre I:	Concept de la disponibilité	90			
I	Introduction	90			
II	Quantification de la disponibilité	91			
II.1	91				
II.2	91				
II.3	Disponibilité opérationnelle	92			
III	III Exemples d'application				
Chapitre II:	la disponibilité des systèmes réparable	95			
I	Définition des différentes formes	95			
I.1	Définition	95			
I.2	Explication sur les différentes Disponibilité	96			
I.3	98				
II	99				
II.1	Modèles d'évaluation de Dop	99			
II.2	Modes de saisie de Dop	99			
II.3	Modélisation de la disponibilité instantanée	100			
II.4	Composition des disponibilités asymptotiques	101			
II.5	Composition des disponibilités opérationnelles	101			
	Références bibliographique	105			

Introduction Générale

L'exécution de la maintenance dans une entreprise industrielle est d'une importance capitale pour maintenir les équipements en état de bon fonctionnement. La maintenance, dans sa plus large définition, est l'ensemble de toutes les opérations de gestion, de programmation et d'exécution. Le calcul de la fiabilité d'un équipement constitue un outil incontournable pour évaluer l'efficacité de n'importe quelle entité. Les concepteurs et les utilisateurs sont souvent confrontés à des contraintes par pauvreté ou par manque de modèles permettant de faire des études prévisionnelles correctes. Le taux de défaillance est souvent considéré comme constant ce qui est manifestement faux en mécanique d'où l'intérêt d'outils, de modèles ou de méthodes plus adaptées. Le calcul de la fiabilité des systèmes mécaniques est influencé par les caractéristiques suivantes:

- 1. La notion du taux de défaillance n'existe pas
- 2. Le recueil des informations sur la fiabilité est plus difficile
- 3. Les défaillances ont des origines variées (la durée de vie des composants est principalement conditionnée par les problèmes de fatigue avec une forte influence des différentes contraintes.
- 4. Le système mécanique est de plus en plus performant et compliqué

Ainsi, le choix d'une loi de comportement du matériel (calcul de la fiabilité) devient une tache très compliquée. Le présent polycopié s'adresse aux étudiants master de l'option maitrise des risques industriels, poursuivant leur formation à la faculté des sciences de l'ingénieur. La conduite du calcul est conditionnée par le choix convenable d'une loi de fiabilité décrivant le comportement des différents composants constituants une entité.

Le but de la maintenance c'est de mettre en œuvre les objectifs (coûts, délai, qualité, etc.) fixés par la direction de production en tenant compte des événements (perturbations, aléas, etc.) de l'environnement.

La stratégie de la maintenance est l'ensemble des décisions qui conduisent :

- à définir le portefeuille d'activités de la production de maintenance, c'est-à-dire, à décider des politiques de maintenance des matériels (méthodes correctives, préventives, amélioratives à appliquer à chaque matériel)
- et, conjointement, à organiser structurellement le système de conduite et les ressources productives pour y parvenir dans le cadre de la mission impartie (objectifs techniques, économiques et humains).

A-FIABILITE

Chapitre I : Concepts généraux de la Fiabilité

Chapitre II : Lois de Fiabilité Chapitre III : Loi de Weibull

Chapitre I : Concepts Généraux de la Fiabilité

I.1 Définition

La fiabilité caractérise l'aptitude d'un système ou d'un matériel à accomplir une fonction requise dans des conditions données pendant un intervalle de temps donné.

I.2 Fiabilité et problématique

La fiabilité a sans doute pris son développement depuis la dernière guerre mondiale. Elle est vite devenue une science à part entière dans les applications appartenant à de nombreux domaines. Elle a pour fondements mathématiques la statistique et le calcul des probabilités qui sont nécessaires à la compréhension et à l'analyse des données de fiabilité.

La défaillance (la non fiabilité) augmente les coûts d'après-vente (application des garanties, frais judiciaires,...etc.).

Construire plus fiable augmente les coûts de conception et de production, en pratique, le coût total d'un produit prend en compte ces deux tendances.

I.2.1. Fonction de fiabilité R(t) – Fonction de défaillance F(t)

Considérons un matériel dont on étudie la fiabilité. Soit Z la variable aléatoire qui à chaque matériel associe son temps de bon fonctionnement. On choisi un de ces matériels au hasard. Soit les événements A: « Le matériel est en état de bon fonctionnement à l'instant t » et B: « Le matériel est défaillant à l'instant $t + \Delta t$ » On a alors :

$$p(A) = p(T > t) \text{ et } p(B) = p(T \le t + \Delta t)$$
Donc
$$p(A \cap B) = p(t < T < t + \Delta t)$$

$$= F(t + \Delta t) - F(t)$$

$$= (1 - R(t + \Delta t)) - (1 - R(t))$$

$$= R(t) - R(t + \Delta t)$$
(I.1)

On en déduit que
$$p(B/A) = \frac{p(A \cap B)}{p(A)} = \frac{R(t) - R(t + \Delta t)}{R(t)}$$
 (I.2)

On appelle fonction de défaillance la fonction F définie pour tout $t \ge 0$

$$F(t)=P(T \le t)$$

Le nombre F(t) représente la probabilité qu'un dispositif choisi au hasard ait une défaillance avant l'instant t. La figure I.1 donne l'allure de cette fonction.

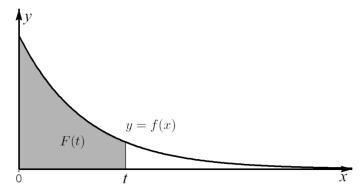


Figure I.1. Fonction de défaillance

Cette fonction nous amène naturellement une fonction associée : la fonction de fiabilité R définie pour tout $t \ge 0$ par : R(t) = 1-F(t). Le nombre R(t) représente la probabilité qu'un dispositif choisi au hasard dans la population n'ait pas de défaillance avant l'instant t. La figure I.2 montre les deux fonctions associées.

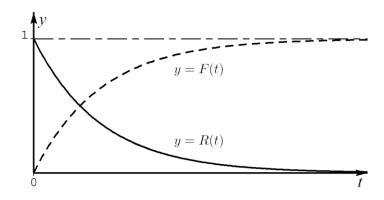


Figure I.2. Fonction associée

Le taux d'avarie moyen dans l'intervalle de temps [t, $t+\Delta t$] est alors :

$$\frac{R(t) - R(t + \Delta t)}{R(t)} \times \frac{1}{\Delta t}$$
 (I.3)

I.2.1.1. Taux de défaillance instantané

C'est la probabilité $(0 \le R \le 1)$; un produit doit accomplir de manière satisfaisante une fonction requise, sous des conditions données et pendant une période de temps donné.

L'écriture mathématique du taux de défaillance à l'instant t, noté $\lambda(t)$, défini sur $\mathbb R$ est la suivante :

$$\lambda(t) = \lim_{\Delta t \to 0} \left(\frac{1}{\Delta t} \cdot \frac{R(t) - R(t + \Delta t)}{R(t)} \right) \tag{I.4}$$

Physiquement le terme $\lambda(t)$. Δt , mesure la probabilité qu'une défaillance d'un dispositif se produise dans l'intervalle de temps $[t, t+\Delta t]$ sachant que ce dispositif a bien fonctionné jusqu'à l'instant t

$$\lambda(t) = -\frac{dR(t)}{d(t)} \cdot \frac{1}{R(t)}$$

$$= \frac{dF(t)}{dt} \cdot \frac{1}{R(t)}$$

$$= \frac{f(t)}{R(t)} = \frac{f(t)}{1 - R(t)}$$
(I.5)

où R est la fonction de fiabilité de ce matériel.

On est alors amené à résoudre une équation différentielle du 1^{er} ordre. En effet si λ est connu, la résolution de l'équation différentielle linéaire du 1^{er} ordre :

$$R'(t) + \lambda(t)R(t) = 0 \tag{I.6}$$

Donne la fonction de fiabilité R du matériel. On déduit alors la fonction de défaillance F qui est la fonction de répartition de la variable Z puis la densité de probabilité f de Z qui est la dérivée de F.

On alors:

$$R(t) = e^{-\int_0^t \lambda(x)dx}$$
 et $F(t) = 1 - e^{-\int_0^t \lambda(x)dx}$ (I.7)

I.3 Indicateurs de fiabilité (λ) et (MTBF) :

Précédemment le taux de défaillance λ a été défini par des expressions mathématiques a travers un calcul de probabilité. On peut également l'exprimé par une expression physique. Il caractérise la vitesse de variation de la fiabilité au cours du temps. La durée de bon fonctionnement est égale à la durée totale en service moins la durée des défaillances.

$$\lambda = \frac{\text{nombre total de defaillanc es pendant le service}}{\text{duree total de bon fonctionne ment}}$$
 (I.8)

I.3.1 Temps moyen de bon fonctionnement :

Le MTBF (Mean Time Between Failure) est souvent traduit comme étant la moyenne des temps de bon fonctionnement mais représente la moyenne des temps entre deux défaillances. En d'autres termes, Il correspond à l'espérance de la durée de vie t.

$$MTBF = \int_0^\infty R(t) \tag{I.9}$$

Physiquement le MTBF peut être exprimé par le rapport des temps

$$MTBF = \frac{\text{somme des temps de fonctionne ment entre les (n) defaillanc es}}{\text{nombre d'interventi on de maintenanc e avec immobilisation}}$$
 (I.10)

Si
$$\lambda$$
 est constant : $MTBF = \frac{1}{\lambda}$ (I.11)

Par définition le MTBF est la durée de vie moyenne du système.

Exemple : un compresseur industriel a fonctionné pendant 8000 heures en service continu avec 5 pannes dont les durées respectives sont : 7 ; 22 ; 8,5 ; 3,5 et 9 heures. Déterminer son MTBF.

$$MTBF = \frac{8000 - (7 + 22 + 8,5 + 3,5 + 9)}{5} = 1590 \text{ heures}$$

Et si λ est supposé constant $\lambda = \frac{1}{MTBF} = 6.289.\,10^{-4}\,défaillances/heures$

La courbe ci-dessous montre l'évolution du taux des défaillances pour les différentes entités.

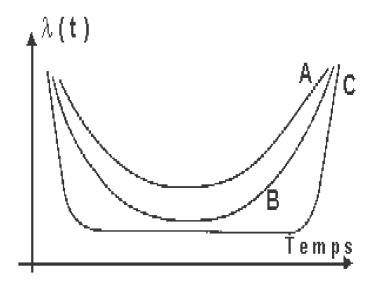


Figure I.3. Courbes caractéristiques du taux de défaillance

Les courbes du taux de défaillance, figure I.3 ont une même forme générale dite en baignoire, mais présentent néanmoins des différences suivant la technologie principale du système étudié:

- A. en mécanique.
- B. en électromécanique.
- C. en électronique.

I.4 Les différentes phases du cycle de vie d'un produit :

L'évolution du taux de défaillance d'un produit pendant toute sa durée de vie est caractérisée par ce qu'on appelle en analyse de fiabilité la courbe en baignoire Figure I.4.

Le taux de défaillance est élevé au début de la vie du dispositif.

Ensuite, il diminue assez rapidement avec le temps (taux de défaillance décroissant), cette phase de vie est appelée période de jeunesse.

Après, il se stabilise à une valeur qu'on souhaite aussi basse que possible pendant une période appelée période de vie utile (taux de défaillance constant).

A la fin, il remonte lorsque l'usure et le vieillissement font sentir leurs effets, c'est la période de Vieillissement (taux de défaillance croissant):

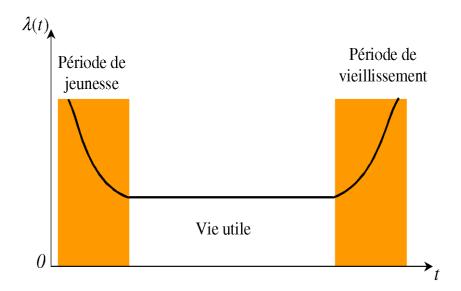


Figure 1.4. La courbe en baignoire.

De nombreux éléments, tels que les composants électroniques, ont un taux de défaillance qui évolue de cette manière là.

Pour souligner la particularité des composants mécaniques dans l'analyse de la fiabilité par rapport aux composants mécaniques, nous allons comparer l'évolution du taux de défaillance dans les deux cas.

I.4.1 Taux de défaillance pour des composants électroniques

L'expérience a montré que pour des composants électroniques la courbe, représentant le taux de défaillance en fonction du temps t, a la même allure que la courbe en baignoire figure I.3. Elle est donc composée de trois phases :

(1) Phase 1

La première phase définit la période de jeunesse, caractérisée par une décroissance rapide du taux de défaillance. Pour un composant électronique cette décroissance s'explique par l'élimination progressive de défauts dus aux processus de conception ou de fabrication mal maîtrisé ou à un lot de composants mauvais. Cette période peut être minimisée pour les

composants vendus aujourd'hui. En effet, les fabricants de composants électroniques se sont engagés à vérifier la qualité de leurs produits en sortie de fabrication.

(2) Phase 2

La deuxième phase définit la période de vie utile généralement très longue. Le taux de défaillance est approximativement constant. Le choix de la loi exponentielle, dont la propriété principale est d'être sans mémoire, est tout à fait satisfaisant. Les pannes sont dites aléatoires, Leur apparition n'est pas liée à l'âge du composant mais à d'autres mécanismes d'endommagement. Les calculs prévisionnels de fiabilité se font presque souvent dans cette Période de vie utile.

(3) Phase 3

La dernière phase est la période de vieillissement, elle est caractérisée par une augmentation progressive du taux de défaillance avec l'âge du dispositif. Ceci est expliqué par des phénomènes de vieillissement tels que l'usure, l'érosion, etc. Cette période est très nettement au-delà de la durée de vie réelle d'un composant électronique. Parfois, on réalise des tests de vieillissement accélérés pour révéler les différents modes de défaillance des composants.

I.4.2 Taux de défaillance pour des composants mécaniques

Les composants mécaniques sont soumis, dès le début de leur vie, au phénomène d'usure ou de vieillissement. Si on trace la courbe du taux de défaillance, en fonction du temps, on obtient une courbe qui ne présente pas le plateau de la figure I.4 la période de vie utile (taux de défaillance constant) n'existe pas ou elle est réduite. Le taux de défaillance du dispositif est une fonction non linéaire du temps et ceci dans chaque phase de sa vie (voir figure I.5):

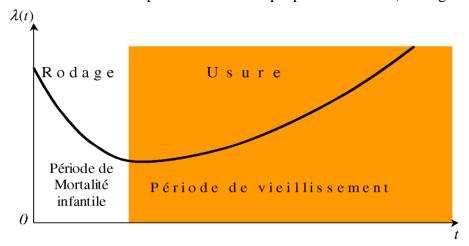


Figure I.5. Courbe du taux de défaillance en mécanique.

(1) phase 1:

La première phase définit la période de mortalité infantile. C'est une durée de vie en principe très courte Elle décrite par une décroissance progressive du taux de défaillance avec le temps dû à une amélioration des caractéristiques internes (caractéristiques de défauts) et des interfaces, par un rodage préalable des pièces. Par conséquent il n'est pas souhaitable de tester les composants mécaniques dans cette période de leur vie.

(2) phase 2:

La dernière phase définit la période de vieillissement qui comporte la majorité de la vie du dispositif. Elle est caractérisée par une augmentation progressive du taux de défaillance.

Les pièces mécaniques sont soumises à des phénomènes de vieillissement multiples qui peuvent agir en combinaison: corrosion, usure, déformation, fatigue, et finalement perte de résilience ou fragilisation.

Contrairement aux composants électroniques les calculs de la fiabilité pour des composants mécaniques se font essentiellement dans la période de vieillissement, en utilisant des lois de Probabilité dont le taux de défaillance est fonction du temps telles que la loi Log-normale, Weibull, ... etc.

1.4.2.1 Application

On étudie une génératrice suite à son déclassement après 16500 heures. Pendant cette période, la génératrice a cumulée 218 arrêts. Les données sont résumées dans le tableau ci-dessous. On veut savoir quelle est l'évolution de la fiabilité de la génératrice et sa phase d'usure en fonction des intervalles d'arrêts.

heures	MTBF	Taux de défaillance		
1000	66.7	0.015		
2000	100	0.01		
3000	250	0.004		
4000	500	0.002		
5000	400	0.0025		
6000	555.6	0.0018		
7000	416.7	0.0024		
8000	526.32	0.0019		
9000	500	0.002		
10000	476.2	0.0021		
11000	555.6	0.0018		
12000	512	0,001953125		
13000	200	0.005		
14000	111.1	0.009		
15000	100	0.01		

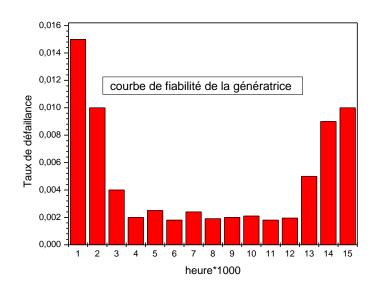
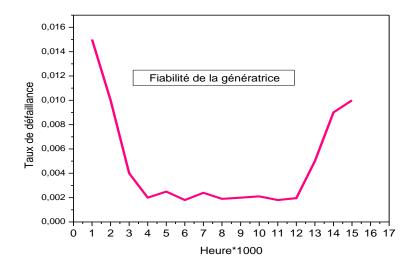


Figure 1.6 : Fiabilité de la génératrice et courbe en baignoire



On constate que la génératrice commence à se dégrader à partir de 12000 heures de fonctionnement. Le comportement en baignoire du taux de défaillance est signe d'un fonctionnement plus au moins normal.

I.5 Objectifs et intérêts de la fiabilité en mécanique

L'analyse de la fiabilité constitue une phase indispensable dans toute étude de sûreté de fonctionnement. A l'origine, la fiabilité concernait les systèmes à haute technologie (centrales nucléaires, aérospatial). Aujourd'hui, la fiabilité est devenue un paramètre clé de la qualité et d'aide à la décision, dans l'étude de la plupart des composants, produits et processus "grand public": Transport, énergie, bâtiments, composants électroniques, composants mécaniques.... De nombreux industriels travaillent à l'évaluation et l'amélioration de la fiabilité de leurs produits au cours de leur cycle de développement, de la conception à la mise en service (conception, fabrication et exploitation) afin de développer leurs connaissances sur le rapport Coût/Fiabilité et maîtriser les sources de défaillance.

L'analyse de la fiabilité dans le domaine de la mécanique est un outil très important pour caractériser le comportement du produit dans les différentes phases de vie, mesurer l'impact des modifications de conception sur l'intégrité du produit, qualifier un nouveau produit et améliorer ses performances tout au long de sa mission.

I.6 Evolution des coûts en fonction de la fiabilité

Le non fiabilité augmente les coûts d'après vente (garanties, frais judiciaires). Construire plus fiable, augmente les coûts de conception et de production. Le coût total prend en compte ces deux contraintes.

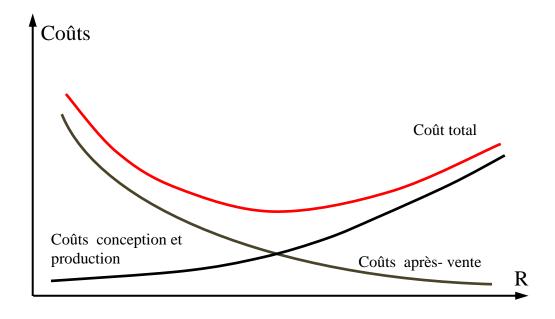


Figure I.5. Courbes d'évolution des coûts en fonction de la fiabilité

La fiabilité d'une machine à tendance à diminuer avec le nombre de ses composants ou de leurs complexités. La maîtrise de la fiabilité devient donc plus délicate.

Une très haute qualité pour chaque composant, n'entraîne pas nécessairement une grande fiabilité. Après assemblage, les interactions entre les composants diminuent la capacité de l'ensemble

Une grande fiabilité sous certaines conditions, n'implique pas une grande fiabilité sous d'autres conditions (exemple: une huile moteur de synthèse prévue pour des moteurs moderne (multisoupapes et turbo) ne convient pas forcément pour un moteur de conception plus rudimentaire (tondeuse, moteur usé, voiture ancienne).

I.7 Fiabilité d'un système

La détermination de la fiabilité d'un système électronique, mécanique ou autre nécessite tout d'abord de connaître la loi de la fiabilité (ou la loi de défaillance) de chacun des composants intervenant dans le système.

Ceci est simple pour certains types de systèmes tels que les systèmes électroniques, or ce n'est pas le cas pour des systèmes mécaniques à cause de la complexité de la structure du système étudié. Les systèmes mécaniques sont des ensembles d'éléments technologiques liés par des relations statiques et dynamiques assez complexes.

Pour un système électronique chaque composant à un poids important dans la fiabilité du système, la fiabilité du système est donc calculé en fonction de la fiabilité de tous ses composants. Les calculs sont effectués sous l'hypothèse que les taux de défaillance sont constants dans le temps, une hypothèse acceptable pour la plupart des composants, ce qui rend les calculs beaucoup plus simple. La détermination des taux de défaillance des composants est effectuée soit à partir des modèles développés dans des bases de données disponibles, soit à partir d'essais effectués sur les composants ou bien à partir des résultats d'exploitation des produits.

La fiabilité d'un système mécanique, contrairement à l'électronique, repose sur la fiabilité de quelques composants élémentaires responsables de son dysfonctionnement, dits composants "responsables "ou "critiques" (parfois un seul).

I.7.1 Fiabilité de système constitué de plusieurs composants

• En série

La fiabilité R_s d'un ensemble de n constituants connectés en série est égale au produit des fiabilités respectives R_A, R_B, R_C, Rn de chaque composant.

$$R_S = R_A * R_B * R_C * ... * R_n$$

Si les "n" composants sont identiques avec une même fiabilité R la formule sera la suivante :

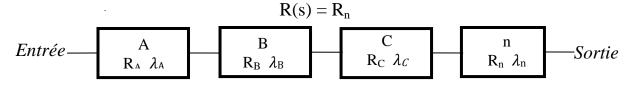


Figure I.6. Composants en série.

Si les taux de défaillances sont constants au cours du temps la fiabilité sera calculée suivant la formule:

$$R(s) = (e^{-\lambda_A t})^* (e^{-\lambda_B t})^* (e^{-\lambda_C t})^* \dots (e^{-\lambda_n t})$$
 (I.12)

Avec:

$$MTBF(s) = \frac{1}{\lambda_A + \lambda_B + \lambda_C + ... + \lambda_n}$$
 (I.13)

Si en plus, les composants sont identiques: $\lambda_A = \lambda_B = \lambda_C = \dots = \lambda_n$

Alors:

$$R(s) = (e^{-\lambda_n t}) \quad \text{et} \quad MTBF = \frac{1}{n \times \lambda}$$
 (I.14)

Exemple 1:

Soit un poste de radio constitué de quatre composants connectés en série, une alimentation R_A =0.95, une partie récepteur R_B =0.92 ; un amplificateur R_C =0.97 et haut parleur R_D = 0.89 ; déterminer la fiabilité R_S de l'appareil.

R_S= R_A. R_B .R_C. R_D=0.95x 0.92x0.97x0.89=0.7545 (soit une fiabilité de 75% environ)

Exemple 2:

Soit une imprimante constituée de 2000 composants montés en série supposés tous de même fiabilité, très élevée R= 0.9999, Déterminer la fiabilité de l'appareil.

 $R(s) = R^n = 0.9999^{2000} = 0.8187$ (soit une fiabilité de 82 % environ

Si on divise par deux le nombre des composants

 $R(s) = R^n = 0.9999^{1000} = 0.9048$ (environ 90.5%)

Si on souhaite avoir une fiabilité de 90 % pour l'ensemble des 2000 composants montés en série, déterminons la fiabilité que doit avoir chaque composant

 $RS = 0.9000 = R^{2000}$

Expression que l'on peut écrire, à partir des logarithmes népériens sous la forme $LnR_S = Ln0.9 = 2000. lnR$ D'où R=0.999945

Exemple 3:

Une machine de production dont la durée totale de fonctionnement est de 1500 heures, se compose de quatre sous-systèmes A, B, C et D montés en série et ayant les MTBF respectifs suivants : MTBFA = 4500 heures MTBFB= 3200 heures MTBFC= 6000 heures MTBFD= 10500 heures. Déterminons les taux de pannes et le MTBF global (MTBFS)

a) Taux de pannes de l'ensemble

$$\lambda_A = \frac{1}{MTBF_A} = \frac{1}{4500} = 0.000222$$
 défaillance par heure = 0.222 pour 1000 heures

$$\lambda_B = \frac{1}{MTBF_B} = \frac{1}{3200} = 0.000313$$
 défaillance par heure = 0.313 pour 1000 heures

$$\lambda_C = \frac{1}{MTBF_C} = \frac{1}{6000} = 0.000167$$
 défaillance par heure = 0.167 pour 1000 heures

$$\lambda_D = \frac{1}{MTBF_D} = \frac{1}{10500} = 0.000095 d\acute{e} faillance~par~heure = 0.095~pour~1000~heures$$

Le taux de défaillance global $\lambda_S = \lambda_A$. λ_B . λ_C . $\lambda_D = 0.000797$ (par heure) La fiabilité globale s'écrit : $R_S = e^{-0.000797.t} = e^{-0.000797.(1500)} = 0.303$ (30.3%)

Remarque:

Si on divise par deux la durée de fonctionnement de la machine (750 heures) $R_s(750) = e^{-0.000797.t} = e^{-0.000797.(750)} = 0.550 (55\%)$

b) la MTBF de l'ensemble

 $MTBF_S = \frac{1}{\lambda_S} = \frac{1}{0.000167} = 1255 \ heures$, Soit un temps de 1255 heures entre deux défaillances

c) Quelle est la probabilité que le système parvienne sans pannes jusqu'à 5000 heures

$$R_s(5000) = e^{-0.000797.t} = e^{-0.000797.(5000)} = 0.0186$$
 (environ 2 %)

En parallèle

La fiabilité d'un système peut être augmentée en plaçant les composants en parallèle. Un dispositif constitué de **n** composants en parallèle ne peut tomber en panne que si les **n** composants tombent en panne au même moment.

Si $\mathbf{F_i}$ est la probabilité de panne d'un composant, la fiabilité associée $\mathbf{R_i}$ est son complémentaire:

$$\mathbf{F_i} = \mathbf{1} - \mathbf{R_i} \tag{I.15}$$

Fi représentant la fiabilité associée.

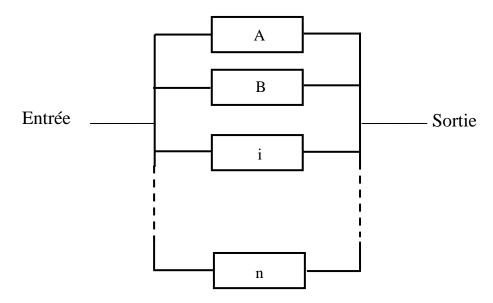


Figure I.7. Composants en parallèle.

Soit les "n" composants de la figure ci-dessous montés en parallèle. Si la probabilité de panne pour chaque composant repéré (i) est notée Fi alors:

$$R(s) = 1 - (1 - R)^{n}$$
 (I.16)

Le cas particulier de deux dispositifs en parallèle si λ est constant R_S est obtenu par : $R_S = 1 - (1 - R_A) \cdot (1 - R_B) = R_A + R_B - R_A \cdot R_B = e^{-\lambda_A t} + e^{\lambda_B t} - e^{-(\lambda_A + \lambda_B)t}$

Exemple:

Trois dispositifs A, B et C de même fiabilité R_A= R_B= R_C=0.75 sont connectés en parallèle

a) Déterminons la fiabilité la fiabilité de l'ensemble

$$R_S = 1 - (1 - 0.75)^3 = 0.984$$

Si on réduit le nombre des composants à deux

$$R_S = 1 - (1 - 0.75)^2 = 0.9375$$

Si on met quatre dispositifs en parallèle

$$R_S = 1 - (1 - 0.75)^4 = 0.9961$$

b) Quel nombre de diapositif en parallèle faudrait-il mettre pour avoir une fiabilité globale de 0.999 (99.9%)

$$R_S = 0.999 = 1 - (1 - 0.75)^n = 1 - (0.25)^n$$

D'où
$$(0.25)^n = 1 - 0.999 = 0.001$$

En utilisant les logarithmes népériens

$$nLn(0,25) = Ln(0.001)$$

$$n(-1,386) = (-6,908)$$

$$n = 4,983$$

Ce qui implique d'avoir au moins cinq dispositifs en parallèle

c) Si on souhaite avoir une fiabilité globale de 99% avec trois dispositifs seulement en parallèle, quelle devrait être la fiabilité R de chacun de ces dispositifs:

$$R_S = 0.999 = 1 - (1 - R)^3$$

D'où

$$(1-R)^3 = 1 - 0.999 = 0.010$$

En utilisant les logarithmes népériens

d)
$$3Ln(1-R) = Ln(0.010)$$

$$3Ln(1-R) = (-4,605)$$

$$Ln(1-R) = (-1,535)$$

$$(1 - R) = 0.2154$$

soit R = 0.7846 (Soit une fiabilité minimale de 78,46%)

I.7.2. Cas des systèmes connectés en parallèle et dis en attente

1.7.2.1 Cas de deux composants en attente

Pour le système proposé, le composant A est en service actif et le composant B en attente. Si B tombe à tour en panne, il est automatiquement remplacé par C, etc.

Si tous les composant sont identique avec λ constant, la fiabilité du dispositif est donnée par :

$$R(t) = e^{-\lambda t} + \lambda t e^{-\lambda t} = e^{-\lambda t}$$

Si A et B ne sont pas identiques la relation devient :

$$R(t) = \frac{\lambda_A}{\lambda_B - \lambda_A} \left(e^{-\lambda_A t} - e^{-\lambda_B t} \right) + e^{-\lambda_A t}$$

1.7.2.2 Cas de n composants en attente

Même démarche que précédemment, si A le composant actif tombe en panne, il est remplacé par B. Si B tombe à son tour en panne, il est automatiquement remplacé par C, etc. Si tous les composants sont identiques avec λ constant, la fiabilité du dispositif est donnée par :

$$R(t) = e^{-\lambda t} \left[1 + \lambda t + \frac{(\lambda t)^2}{2!} + \dots + \frac{(\lambda t)^n}{n!} \right]$$

Exemple avec trois composants identiques en attente.

1.7.2.3 Cas où m composants sur les n sont nécessaires au succès du système

Si on suppose que le système se compose de n composants K, tous de même fiabilité R, et qu'il doit y avoir au moins deux composants en état de fonctionnement, la fiabilité de l'ensemble est donnée par la relation

$$R_S = \sum_{i=m}^{n} \left(\frac{n!}{i!(n-i)!} \right) R^i (1-R)^{n-i}$$

Exemple 1:

Cas avec trois composants K avec un minimum de **deux** composants actifs sur les trois disponibles au départ. On tolère que le système de défaillance d'un seul composant sur les trois. Il doit y avoir au moins deux composants en fonctionnement ou en activité pour accomplir la mission, la relation précédente donne avec n=3 et m=2

$$R_S = R^3 + 3R^2 (1 - R) = 3R^2 - 2R^3$$

Exemple 2:

cas avec quatre composants K en parallèle avec un minimum de deux composants actifs sur les quatre composants disponible au départ. On peut tolérer que le système de défaillance de deux composants sur les quatre. Il doit y avoir au moins deux composants en fonctionnement ou en activité pour accomplir la mission, la relation précédente donne avec n=4 et m=2

$$R_S = R^4 + 4R^3 (1 - R) + 6R^2 (1 - R)^2 = 3R^4 - 8R^3 + 6R^2$$

1.7.3 Combinaison de composants en série et en parallèle

C'est la combinaison des deux sous-paragraphes précédents

Exemple:

La fiabilité des trois composants identiques A, B et C est de 0.65, celle de D de 0,96 ; celle de E 0, 92 celle de G 0, 87 celle de F de 0,89 et celle de H de 1 (100%) La fiabilité globale R est exprimée ici par

$$R_S = [1 - (1 - 0.65)^3].[0.96].[1 - (1 - 0.92.0.87)(1 - 0.89.1] = 0.957.0.96.0.978 = 0.8986 (environ 90%)$$

Exemple 1 :(sur le taux de défaillance définit au paragraphe 1.3 l'expression I.8.)

Huit composants identiques testés sur une durée de 550 heures dans les mêmes conditions. Le premier composant tombe en panne, de manière irréparable, après 65 h de fonctionnement, le deuxième après 115 h, le troisième après 135 h le composant quatre après 340 h, le composant 5 après 535 h, les trois autres composants continuent de fonctionner normalement

$$\lambda = \frac{5}{65 + 115 + 135 + 341 + 535 + 550 + 550 + 550} = \frac{5}{2840} = 0.00171 = 1,71^{-3} \text{ pannes/heure}$$

Exemple 2:

Considérant une machine automatisée fonctionnant pendant un cycle opératoire de 155 heures. Pendant cette période le système subit 5 défaillances à des moments différents, suivies d'une réparation puis d'une remise en activité. Les durées respectives des défaillances sont : 2,5h; 8,3h; 3,7; 1,8 et 7,5 h

$$\lambda = \frac{5}{155 - (2,5 + 8,3 + 3,7 + 1,8 + 7,5)} = \frac{5}{131,2} = 0.0381$$

I.7.4 La loi de survie

Soit un groupe de 300 matériels identiques, utilisés de la même manière et mis en service à la même date.

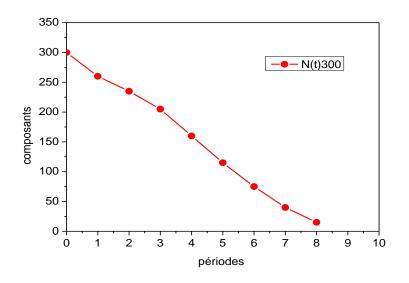
Notons:

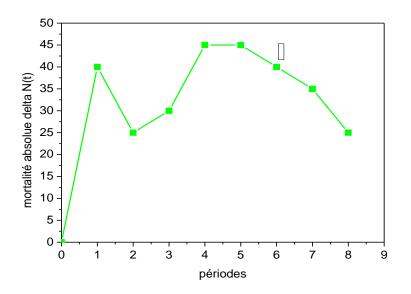
N(t): nombre de survivants à la date t (on fait le compte des éléments encore en service)	
Δ N(t) : mortalité absolue à la fin de la période t (nombre d'élément défaillants après le dernier inventaire)	
$N(0)$: nombre de matériel mis en service à la date t_0 (il s'agit ici de 300)	
R(t): Fréquence relative de survivants probabilité de survie (c'est la proportion des éléments encore en service par rapport au nombre initial, peut s'exprimer en %)	$R(t) = \frac{N(t)}{N(0)}$
$\mathbf{F}(\mathbf{t})$: Probabilité d'observer une défaillance avant \mathbf{t} (c'est le complément de $\mathbf{R}(\mathbf{t})$)	F(t) = 1 - R(t)
f(t) : Proportion des défaillants dans l'intervalle [(t-1); t] (c'est la proportion d'éléments défaillant depuis le dernier inventaire par rapport au total initial)	$f(t) = \frac{\Delta N(t)}{N(0)} = \frac{N(t-1) - N(t)}{N(0)}$
Z(t): Taux de défaillance(ou taux d'avarie); c'est la proportion d'éléments défaillants depuis le dernier inventaire par rapport au total précédent	$Z(t) = \frac{N(t-1) - N(t)}{N(t-1)}$

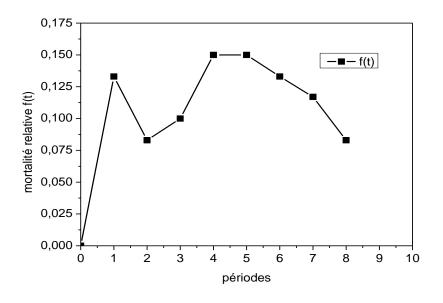
Calcul des paramètres de fiabilité

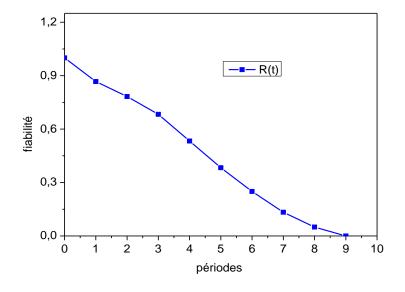
Période	Survivants	Mortalité	Mortalité	Probabilité	Taux de défaillances
t		absolue	relative	de survie	ou d'avarie
k	N(t)	$\Delta N(t)$	f(t)	R(t)	Z(t)
0	300	0	0,000	1,00	0,000
1	260	40	0,133	0,867	0,133
2	235	25	0,083	0,783	0,096
3	205	30	0,100	0,683	0,128
4	160	45	0,150	0,533	0,220
5	115	45	0,150	0,383	0,281
6	75	40	0,133	0,250	0,348
7	40	35	0,117	0,133	0,467
8	15	25	0,083	0,050	0,625
9	0	15	0,050	0,000	1,000

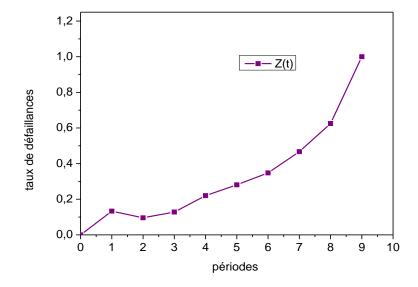
Représentation graphique:











Dans la troisième colonne du tableau de la page recèdent, on remarque que 40 matériels au terme d'une période, 25 au terme de 2^{éme} période puis... La MTBF peut donc s'écrire :

$$MTBF = [(40.1) + 25.2) + (30.3) + (45.4) + (45.5) + (40.6) + (35.7) + (25.8) + (15.9)]/300$$

MTBF=4,68 périodes

Remarques:

$$\sum t f(t) = 4.68 \quad \sum R(t) = 4.68$$

Donc:
$$MTBF = \frac{1}{N(0)} \sum_{1}^{\infty} t \cdot \Delta N(t) = \sum_{1}^{\infty} t \cdot f(t) = \sum_{1}^{\infty} R(t)$$

Posons le rapport $\frac{f(t)}{R(t)}$:

$$\frac{f(t)}{R(t)} = \frac{\frac{N(t-1)-N(t)}{N(0)}}{\frac{N(t)}{N(0)}} = \frac{N(t-1)-N(t)}{N(t)}$$

On peut déduire que: $Z(t) = \frac{f(t)}{R(t)}$

I.8 La relation entre la fiabilité et la maintenance :

Tous les équipements d'une installation industrielle sont soumis à des mécanismes de dégradation dus aux conditions de fonctionnement et/ou d'environnement : usure, fatigue, vieillissement. Face aux défaillances qui en résultent, on peut se contenter de pratiquer une maintenance corrective, mais on n'évite pas ainsi les conséquences des pannes que l'on subit. Une attitude plus défensive consiste à mettre en œuvre une maintenance préventive destinée à limiter, voire à empêcher, ces défaillances, mais on court alors le risque de dépenses excessives et d'indisponibilités inutiles.

Devant cette situation, le responsable de maintenance ne doit plus se contenter de surveiller et de réparer, il doit envisager des stratégies. Une part de son travail consiste à prévoir les événements et à évaluer les différentes alternatives qui s'offrent a lui pour trouver la solution optimale, ou tout au moins pour s'en rapprocher. Les forces dont il dispose, limitées par ses moyens techniques et financiers, doivent être placées aux bons endroits.

C'est dans ce contexte que la maintenance s'est dotée de méthodes qui considèrent à la fois, et plus ou moins, la technique et l'organisation. Les industries de processus ont générale appliquée des démarches alliant une évaluation des risques, une analyse du retour d'expérience, et une logique de sélection de tâches de maintenance. L'Optimisation de la Maintenance par la Fiabilité (OMF).

I.8.1 Principales liaisons fiabilité –maintenance :

Les principales hypothèses retenues :

- Nous remarquons tout d'abord que les études de fiabilité et de maintenance sont faites en parallèle à différents stades (établissement du projet, fabrication, réception, transport, exploitation et renouvellement) ces études étant établies d'un point de vue à la fois technique et économique.
- Les opérations de maintenance, quelque soit le genre considéré, sont liées au caractère aléatoire de la durée de vie de l'élément et par suite, aux caractéristiques de fiabilité de l'élément : fonction de fiabilité, MTBF, taux de défaillance à l'instant t,... etc.
- La fréquence des opérations de maintenance corrective est fonction des taux de panne ou risques de panne De plus, nous pouvons dire que la maintenance corrective, faisant diminuer le taux de panne, améliore la fiabilité.
- Considérons le problème suivant : dans une entreprise, on se fixe un nombre N (t) d'équipements identiques qu'on veut maintenir en service à chaque instant; on se demande alors comment réaliser cet objectif ? Grâce à la fiabilité, on peut donner une réponse à cette question. Dans le cas particulier où :

$$N(t) = N_0 = C^{te} \quad et \ \lambda(t) = C^{te} \tag{I.17}$$

- Le nombre d'équipements à remplacer, depuis l'instant zéro jusqu'a à l'instant θ .
- Intéressons-nous à un élément mis en fonctionnement à l'instant zéro et demandons-nous combien peut-il y avoir de renouvellements dans l'intervalle de temps (0, t)? Evidemment, cette question est sans réponse stricte; mais, lorsqu'on connaît la fiabilité de l'élément on peut calculer la probabilité pour qu'il y ait ou bien 1 ou bien 2 ou bien 3,..., renouvellements. On peut aussi calculer le nombre moyen de renouvellement dans (0, t). Dans le cas particulier où le taux de panne est constant, le nombre de renouvellements dans (0, t) est distribué selon la loi de Poisson.
- Les opérations de maintenance préventive sont à effectuer lorsque la fonction risque de panne est croissante, les époques de renouvellement sont alors déterminées à partir des caractéristiques de fiabilité des éléments considérés.

Lorsque le taux de panne est constant, il est évident qu'il ne faut pas faire de renouvellement préventif. La figure de la courbe en baignoire ci-après explique les différente causes et remèdes de défaillances liées aux trois phases de la durée de vie du matériel.

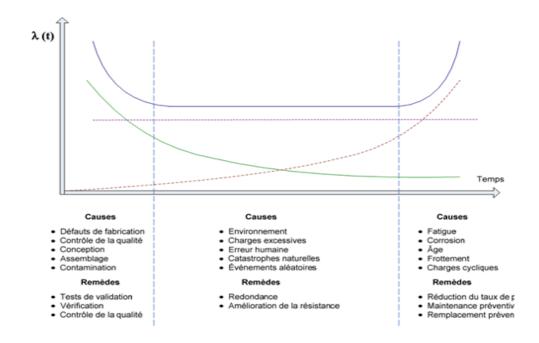


Figure I.8. Evolution du taux de défaillance.

1.8.2 Rôle de La maintenance préventive constitue

On examine les effets de la maintenance préventive sur la fiabilité d'un système ou un composant.

1.8.2.1 Maintenance idéale:

Elle permet la réalisation de deux taches principales :

- Le système (composant) est rétabli dans un état aussi bon que le neuf.
- Il n'y a pas d'erreurs commises lorsque la maintenance préventive est exécutée

R(t) = fiabilité du système

t = temps d'opération

R_m(t) = fiabilité du système maintenu

T = temps auquel on effectue la maintenance

$$0 \le t \le T \Rightarrow R_m = R(T)$$

La maintenance n'a aucun effet sur la fiabilité du système entre [0 et T]

Au temps T, on effectue la maintenance. Le système devient aussi bon que neuf.

Effet de la maintenance idéale sur la fiabilité est représenté sur la figure suivante :

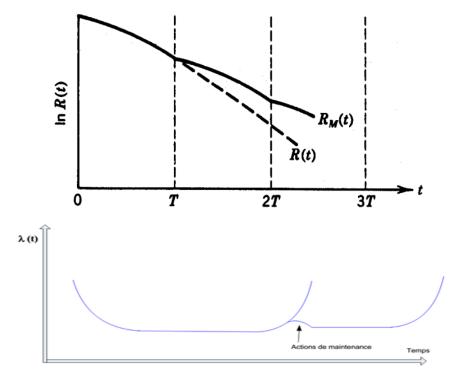


Figure I.9 Effet de la maintenance sur la fiabilité

La prolongation de la durée de vie d'un matériel ne peut se faire que par des actions de maintenance. La figure I.9 schématise ces actions.

la maintenance peut:

- 1. diminuer la fiabilité (erreur humaines dues à l'intervention)
- 2. n'avoir aucun effet (aucun mécanisme de vieillissement, aucun phénomène d'usure)
- 3. améliorer la fiabilité (présence de mécanisme de vieillissement, de phénomène d'usure)

La maintenance idéale est la probabilité que le système survive au temps t

$$T \le t \le 2T$$
 \Rightarrow $R_m(t) = R(t).R(t-T)$

Après 2 opérations de maintenance : $2T \le t < 3T$

$$R_m(t) = R(T)^2 . R(t - 2T)$$

Après N opérations de maintenance :

$$NT \le t < (N+1)T \quad \Rightarrow \quad R_m = R(T)^N \cdot R(t-NT)$$

En maintenance idéale la MTTF se calcul par l'expression :

$$MTTF = \int_0^\infty R_m(t)dt = \sum_{N=0}^\infty \int_{NT}^{(N+T)} R_m(t)dt$$

$$=\sum_{N=0}^{\infty}\int_{NT}^{(N+T)}R(t)^{N}.R(t-NT)dt$$

Pour t'=T-NT

$$MTTF = \sum_{N=0}^{\infty} R(t)^{N} \cdot \left[\int_{0}^{T} R(t)' dt' \right]$$

$$MTTF = \sum_{N=0}^{\infty} R(t)^{N} \cdot \left[\int_{0}^{T} R(t)' dt' \right]$$

$$\sum_{n=0}^{\infty} R(T)^{N} = \frac{1}{1 - R(T)} \Rightarrow \text{s\'erie \`a l'infini}$$

$$\Rightarrow MTTF = \frac{\int_0^T R(t)dt}{1 - R(T)}$$

Effet de la maintenance sur la fiabilité Pour λ =constant. (Panne aléatoire, distribution exponentielle)

$$R_m(t) = (e^{-\lambda T})^N \cdot (e^{-\lambda T})^{(t-NT)} = e^{-\lambda t}$$

$$B R_m(t) = e^{-\lambda t}$$

Ceci implique que la maintenance n'a aucun effet sur la fiabilité du système dans le cas λ = constant !!

Si on considère l'effet de vieillissement qu'on peut modéliser par la loi de Weibull à deux paramètres pour la simplification

$$R(t) = e^{-\left(\frac{t}{\theta}\right)^{m}}$$

$$R_{m}(t) = e^{-N\left(\frac{T}{\theta}\right)^{m}} \cdot e^{-\left(\frac{t-NT}{\theta}\right)^{m}} \quad ; \quad NT \le t < (N+1)T$$
Pour $t = NT$:
$$\frac{R_{m}(t)}{R(NT)} = e^{-N\left(\frac{T}{\theta}\right)^{m} + \left(\frac{NT}{\theta}\right)^{m}}$$

 Δt après une maintenance préventive =0

Il y a un gain à faire de la maintenance préventive lorsque l'exposant m > 0:

Ou
$$\left(\frac{NT}{\theta}\right)^m > N\left(\frac{T}{\theta}\right)^m \implies N^{m-1} > 0$$

- ⇒ Si m>1: Faire la maintenance préventive (MP a un effet positif)
- ⇒ Si m=1: Distribution exponentielle (MP n'a pas d'effet sur la fiabilité)
- ⇒ Si m <1: MP diminue la fiabilité (dans la période de rodage par exemple)

Exemple:

Un compresseur a été conçu pour une durée de vie de 5 ans d'opération (Td =5 ans). Les observations ont démontré qu'il y a deux façons qu'il tombe en panne :

- 1) La défaillance d'un roulement à billes soumise à une distribution Weibull θ =7.5 ans et m=2.5
- 2) La défaillance qui inclut toutes les autres causes avec un taux de défaillance constant de λ 0=0.013/an
- Trouver:
- A) La fiabilité si aucune maintenance préventive n'est réalise pour la période de 5 ans
- B) Si la fiabilité exigée pour 5 ans est de 0.9 et elle est atteinte par le remplacement périodique du roulement, quelle est la fréquence de remplacement?

Solution

Roulement à billes : Weibull θ =7.5 ans et m=2.5

$$R_1(t) = e^{-\left(\frac{t}{\theta}\right)^m}$$

Autres $\lambda_0 = 0.0113/an$

$$R_0(t) = e^{\lambda_0 t}$$

a) La fiabilité du système sans maintenance préventive (MP) est :

$$R(5 \ ans) = R_0(5 \ ans). R_1(5 \ ans) = e^{-0.013.5}. e^{-\left(\frac{5}{7.5}\right)^{2.5}}$$

$$R(5 ans) = 0.5619$$

$$R_0(T_d) = \exp(-0.013.5) = 0.9371$$

$$R_1(T_d) = \exp\left[-\left(\frac{T_d}{\Theta}\right)^m\right] = \exp\left[-\left(\frac{5}{7.5}\right)^{2.5}\right] = 0.6957$$

b) Augmenter la fiabilité à 0.9, déterminer la fréquence de remplacement

$$T = \frac{5ans}{N} = \frac{T_d}{N}$$
 $R_{1m}(5ans) = e^{-N(\frac{T_d}{N-\theta})^m}$

R(T_d): fiabilité du système

$$R_m(T_d).R_0(T_d) = 0.9$$

$$R_M(T_d) = \frac{0.9}{R_0(T_d)} = \frac{0.9}{0.9371} \implies R_m(T_d) \ge 0.9604$$

On divise la période en N intervalles égaux

$$T = \frac{T_d}{N} \Rightarrow T_d = T. N$$

$$R_M(T_d) = exp \left[-N \left(\frac{T}{\Theta} \right)^m \right] = exp \left[-N \left(\frac{T_d}{N - \Theta} \right)^m \right] = exp \left[-N^{1-m} \left(\frac{T_d}{\Theta} \right)^m \right]$$

$$R_M(T_d) = exp \left[-N \left(\frac{5}{N.7,5} \right)^{2,5} \right] \ge 0.9604$$

$$R_M(T_d) = exp \left[-N \left(\frac{5}{N.7,5} \right)^{2,5} \right] \ge 0.9604$$

Avec:

$$\left(\frac{T_d}{\theta}\right)^m = \left(\frac{5}{7.5}\right)^{2.5} = 0.36289$$

$$R_M(T_d) = exp[-0.36289. N^{-1.5}] = 0.9604$$

$$N = exp\left\{-\frac{\ln\left[-\frac{\ln(0.9604)}{0.36289}\right]}{1.5}\right\} = 4.325 \implies 5 \quad \text{Ou}: \quad N = \left[-\frac{0.36289}{\ln(0.9604)}\right]^{2/3} = 4.325$$

Donc l'intervalle de remplacement est :

$$T = \frac{T_d}{N} = \frac{5}{5} = 1an$$

Fiabilité atteinte

$$R_0(T_d) = \exp(-0.013.5) = 0.9371$$

$$R_M(T_d) = exp\left[-N\left(\frac{T}{\theta}\right)^m\right] = exp\left[-5\left(\frac{1}{7.5}\right)^{2.5}\right] \ge 0.9681$$

$$R(T_d) = 0.9371.09681 = 0.9072 > 0.9$$

II.1 Introduction

Il est toujours possible d'associer à une variable aléatoire une probabilité et définir ainsi une loi de probabilité. Lorsque le nombre d'épreuves augmente indéfiniment, les fréquences observées pour le phénomène étudié tendent vers les probabilités et les distributions observées vers les distributions de probabilité ou loi de probabilité. Une loi de probabilité est un modèle représentant "au mieux", une distribution de fréquences d'une variable aléatoire.

II.2 Les lois de probabilité utilisées en fiabilité

On distingue deux types

- Lois discrètes
- Lois continues

II.2.1. Lois discrètes

Une loi est dite discrète si elle prend ses valeur dans N c'est à dire des valeurs entières comme par exemple celle qui compte le nombre de pannes.

Parmi les lois discrètes on peut citer :

- 1. Loi Uniforme
- 2. Loi de Bernoulli
- 3. Loi Binomiale
- 4. Loi Binomiale négative
- 5. Loi Géométrique
- 6. Loi Hypergéométrique
- 7. Loi de Poisson

II.2.1.1 Loi uniforme

Une distribution de probabilité suit une loi uniforme lorsque toutes les valeurs prises par la variable aléatoire sont équiprobables. Si n est le nombre de valeurs différentes prises par la variable aléatoire. La fonction de fiabilité est définie par l'expression suivante :

$$P(X = x_i) = \frac{1}{n} \tag{II.1}$$

Avec les paramètres de signification :

n : est le nombre de valeurs différentes prises par la variable aléatoire.

II.2.1.2 Loi de Bernoulli

Soit un univers constitué de deux éventualités, S pour succès et E pour échec = $\{E, S\}$ sur lequel on construit une variable aléatoire discrète, « nombre de succès » telle que au cours d'une épreuve :

Si (S) est réalisé, X = 1

$$\rightarrow$$
 Si (E) est réalisé, X = 0

L'expression de la fonction de fiabilité s'écrit :

$$P(X = 0) = q$$

 $P(X = 1) = p$ (II.2)
 $(p + q = 1)$

II.2.1.3 Loi binomiale

Décrite pour la première fois par Isaac Newton en 1676 et démontrée pour la première fois par le mathématicien suisse Jacob Bernoulli en 1713, la loi binomiale est l'une des distributions de probabilité les plus fréquemment rencontrées en statistique appliquée.

En mathématiques, une loi binomiale de paramètres n et p est une loi de probabilité qui correspond à une expérience aléatoire à deux issues possibles, généralement dénommées respectivement « succès » et « échec », la probabilité d'un succès étant p.

Sa fonction de probabilité est :

$$P(k) = P(X = k) = C_k^n P^k q^{n-k}$$
(II.3)

$$C_k^n = \frac{n!}{k!(n-k)!}$$
 (II.3.1)

Avec les paramètres de signification :

- $(n \ge 0)$: Nombre d'épreuves
- $(0 \le p \le 1)$: probabilité de succès

et q = 1 - p

II.2.1.4 La loi binomiale négative

La loi binomiale négative est la loi de probabilité de la variable aléatoire X qui comptabilise le nombre d'échecs nécessaires avant obtention de n succès, sachant que la probabilité d'un succès est p [20]

Sa fonction de probabilité est :

$$P(X = k) = f(k, n, p) = C_k^{k+n} p^n q^k$$
(II.4)

La loi binomiale négative peut aussi s'écrire sous la forme

$$f(k, n, p) = C_k^{-n} p^n (-q)^k$$
 (II.4.1)

Où C_k^{-n} est un coefficient binomial appliqué à un entier négatif et est défini par :

$$C_k^{-n} = \frac{(-n)(-n-1)\cdots(-n-k+1)}{k!}$$
 (II.4.2)

Cette expression justifie le nom de loi binomiale négative donnée à cette loi de probabilité.

II.2.1.5 Loi géométrique

La loi géométrique est une loi de probabilité apparaissant dans de nombreuses applications. La loi géométrique de paramètre p (0) correspond au modèle suivant :

On considère une épreuve de Bernoulli dont la probabilité de succès est p et celle d'échec

$$q = 1 - p$$
.

On renouvelle cette épreuve de manière indépendante jusqu'au premier succès. On appelle X la variable aléatoire donnant le rang du premier succès.

Les valeurs de X sont les entiers naturels non nuls 1, 2, 3, ...

La probabilité que X = k est alors, pour k = 1, 2, 3, ...

Sa fonction de probabilité est :

$$p(k) = q^{k-1}p (II.5)$$

II.2.1.6 Loi hypergéométrique

Une loi hypergéométrique de paramètres n, p et A correspond au modèle suivant:

On tire simultanément n boules dans une urne contenant p_A boules gagnantes et q_A boules perdantes (avec q = 1 - p). On compte alors le nombre de boules gagnantes extraites et on appelle X la variable aléatoire donnant le nombre de boules gagnantes. Sa fonction de probabilité :

L'univers X (Ω) est l'ensemble des entiers de 0 à n. La variable aléatoire suit une loi de probabilité définie par

$$P(k) = \frac{C_{PA}^k C_{qA}^{n-k}}{C_A^n}$$
 (II.6)

II.2.1.7. Loi de Poisson

Une variable aléatoire x suit une loi de « Poisson » si elle peut prendre les valeurs entières 0, 1, 2, 3....n. La probabilité pour que x soit égal à k est :

$$P(x=n) = e^{-\lambda} \cdot \frac{\lambda^n}{n!}$$
 (II.7)

 λ : paramètre de la loi (constante positive).

II.2.1.7.1 Relation de Poisson

La probabilité pour qu'un événement se produise est d'autant plus vraie que la population concernée est grande et le nombre d'évènement petit. Par conséquence la loi de Poisson servira à étudier les phénomènes rares, tels que les accidents, pannes, défauts de fabrication où

la probabilité p est très faible (p < 0.05). Elle peut également dans certaines conditions être définie comme limite d'une loi binomiale.

La probabilité de constater un certain nombre de pannes (n) dans le temps (t) et seulement (n) pannes est :

$$P(x = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
 (II.7.1)

✓ L'espérance mathématique est = λt

✓ La variance

✓ L'écart type $\sigma = \sqrt{\lambda t}$

> Exemple d'application

Calculer la probabilité de constater de 1 à 15 pannes pendant le temps t (t= une année de fonctionnement = 24/jours/an) est seulement n pannes sachant que la MTBF est de 41.2 jours.

Le taux d'avarie est : $\frac{1}{MTBF} = \frac{1}{41.2} = 0.0243$

 λ =0.0243, t=240 et n = valeurs de 1 à 15

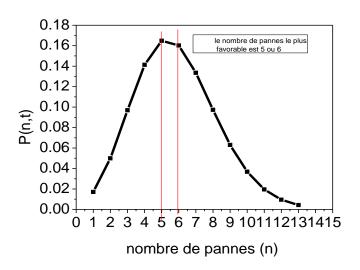


Figure II. 1. Nombre de pannes

Le nombre de panne le plus probable est 5 ou 6 (ce que nous savons déjà puisque le taux de panne est constant et qu'il a une panne tous les 41 jours moyens). On peut dire avec une certitude de 80 % que le nombre de panne se situera entre 3et 8. On voit clairement la tendance de la courbe vers une valeur asymptotique quand le nombre de pannes devient très grand. On voit que pour une défaillance, c'est-à-dire pour une panne et une seule de 0 à t la probabilité devient :

$$P(1,t) = \lambda t e^{-\lambda t}$$

Une fois connu le nombre de pannes le plus probable, on peut chercher la probabilité P d'avoir N pannes et pas plus. Cette probabilité est la somme des P précédentes pour les valeurs de $n \le N$, nous avons :

$$P(N,t) = \sum_{n=0}^{N} \frac{e^{-\lambda t} (\lambda t)^n}{n!}$$

P est la probabilité cumulée de pannes entre 0 et le temps t.

II.2.2 Les lois continues

- 1. La loi du Khi deux
- 2. La loi de Birnbaum-Saunders
- 3. La loi Gamma
- 4. Loi Inverse Gamma
- 5. La loi logistique
- 6. La loi log-logistique
- 7. La Loi de Cauchy
- 8. La loi de Student
- 9. La loi Bêta
- 10. La loi exponentielle
- 11. La loi de Fisher
- 12. La Loi normal
- 13. La loi Log normale
- 14. La loi de Weibull

II.2.2.1 La loi de Pearson ou loi de x² (Khi deux)

La loi Khi-deux, ou loi de Pearson, ne sert pas à modéliser directement la fiabilité, mais essentiellement au calcul des limites de confiance lors des estimations par intervalle de confiance. Elle est caractérisée par un paramètre positif α appelé degrés de liberté et définie que pour des valeurs positives.

Sa fonction de probabilité:

$$\Pr(x^2 < \alpha) = \frac{1}{\frac{n}{2^2} \Gamma(\frac{n}{2})} \int_0^\alpha t^{\frac{n}{2} - 1} e^{-\frac{t}{2}} dt$$
 (II.8)

II.2.2.2 La loi de Birnbaum-Saunders

Pour caractériser des défaillances dues à la propagation de fissure par fatigue, Birnbaum et Saunders (1969) ont proposé une distribution de vie basée sur deux paramètres.

Cette distribution, pour une variable aléatoire non négative t, est obtenue en tenant compte des caractéristiques de base du processus de fatigue. La variable aléatoire t, représente les instants de défaillance.

$$f(t) = \frac{1}{2\sqrt{2\pi}\alpha^2\beta t^2} \cdot \frac{t^2 - \beta^2}{\left(\frac{1}{\beta}\right)^{\frac{1}{2}} - \left(\frac{\beta}{t}\right)^{\frac{1}{2}}} \cdot exp\left[-\frac{1}{2\alpha^2}\left(\frac{t}{\beta} + \frac{\beta}{t} - 2\right)\right]$$
(II.9)

II.2.2.3 La loi Gamma

La loi gamma est la loi de l'instant d'occurrence du $\alpha^{\text{ème}}$ évènement dans un processus de Poisson.

Soit $\{T\}$ le vecteur représentant les durées inter évènements (les temps entre les défaillances successives d'un système). Si ces durées sont des variables aléatoires indépendantes et identiquement distribuées selon une loi exponentielle de paramètre β , alors le temps cumulé d'apparition de ces défaillances suit une loi Gamma de paramètre (α, β) . Sa densité de probabilité s'écrit:

Sa fonction de densité de probabilité est :

$$f(t) = \frac{\beta^{\alpha} \cdot t^{\alpha - 1} \cdot e^{-\beta t}}{\Gamma(\alpha)} \qquad t \ge 0, \alpha \ge 1 \ et \beta \ge 0$$
 (II.10)

II.2.2.4 Loi inverse gamma

Dans la Théorie des probabilités et en Statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une Distribution Gamma. Sa fonction caractéristique est :

$$P(\mathbf{x}) = \frac{\beta}{\Gamma(\alpha)} \mathbf{x}^{-\alpha - 1} e^{\left(\frac{-\beta}{\mathbf{x}}\right)}$$
 (II.11)

Avec les paramètres de signification:

α > 0 : paramètre de forme
β > 0 : paramètre d'échelle

II.2.2.5 La Loi logistique

La loi logistique de paramètre μ et s > 0 est une loi de probabilité dont la densité est :

$$F(x) = \frac{e^{-\frac{x-\mu}{s}}}{s(1+e^{-\frac{x-\mu}{s}})^2}$$
 (II.12)

Sa fonction de répartition est :

$$F(x) = \frac{1}{1 + e^{-\frac{x - \mu}{S}}}$$
 (II.12.1)

Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique.

II.2.2.6 La loi log-logistique

Dans la théorie des probabilités et en statistiques, la loi log-logistique (connue aussi comme la distribution de Fisk en économie) est une loi de probabilité continue pour une variable aléatoire non-négative. Elle est utilisée dans l'étude de la durée de vie d'événement dont l'intensité augmente d'abord pour ensuite décroître, comme par exemple pour la mortalité dû au cancer après diagnostique ou traitement. Elle est aussi utilisée en hydrologie pour modéliser le débit d'un cours d'eau ou le niveau des précipitations, et en économie pour modéliser l'inégalité des revenus.

La loi log-logistique est la loi d'une variable aléatoire dont le logarithme est distribué selon une Loi logistique. Elle ressemble beaucoup à la loi log-normale, mais s'en distingue par des queues plus épaisses. Par ailleurs, sa fonction de répartition admet une expression explicite, contrairement à la log-normale

Sa fonction de répartition est :

$$F(x; \alpha, \beta) = \frac{1}{1 + (x/\alpha)^{-\beta}}$$

$$= \frac{(x/\alpha)^{\beta}}{1 + (x/\alpha)^{\beta}}$$

$$= \frac{x^{\beta}}{\alpha^{\beta} + x^{\beta}}$$
(II.13)

Avec les paramètres de signification:

- Le paramètre $\alpha > 0$ est un paramètre d'échelle et joue aussi le rôle de médiane de la distribution.
- Le paramètre $\beta > 0$ est un paramètre de forme.

La distribution est uni modale lorsque $\beta > 1$ et sa dispersion décroît lorsque β augmente.

II.2.2.7 La Loi de Cauchy

La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité classique qui doit son nom au mathématicien Augustin Louis Cauchy.

Une variable aléatoire X suit une loi de Cauchy si elle admet une densité f_X par rapport à la mesure de Lebesgue, dépendant des deux paramètres x_0 et a (a > 0) et définie par :

Sa fonction de probabilité est :

$$f(x, x_0, \alpha) = \frac{1}{\pi \alpha \left[1 + \left(\frac{x - x_0}{\alpha}\right)^2\right]}$$
$$= \frac{1}{\pi} \left[\frac{\alpha}{(x - x_0)^2 + \alpha^2}\right]$$
(II.14)

Avec les paramètres de signification :

- x_0 : Paramètre de location.
- a : Paramètre d'échelle.

Le quotient de deux variables aléatoires réelles indépendantes suivant des lois normales standard suit une loi de Cauchy.

La loi de Cauchy n'admet aucun moment (donc ni moyenne ni variance, entre autre).

II.2.2.8 La loi de Student

La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ^2 .

Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ^2 à k degrés de liberté. Par définition la variable suit une loi de Student à k degrés de liberté.

$$T = \frac{Z}{\sqrt{U/k}} \tag{II.15}$$

II.2.2.9 La loi Bêta

La loi bêta est une famille de lois de probabilités continues, définies sur [0,1], paramétrer par deux paramètres de forme, typiquement notés α et β . C'est un cas spécial de la distribution de Dirichlet, avec seulement deux paramètres.

II.2.2.10 La loi exponentielle

En raison des applications multiples de cette loi qui n'est autre qu'un cas particulier de la loi de Weibull, on présentera dans ce qui suit un large développement de cette loi avec plusieurs applications.

Nous allons étudier des phénomènes physiques où la durée de vie est l'intervalle de temps écoulé entre l'instant de la mise en fonctionnement ou de la naissance, et l'instant de la première panne ou de la mort.

La plupart des phénomènes naturels sont soumis au processus de vieillissement. Il existe des phénomènes où il n'y a pas de vieillissement ou d'usure. Il s'agit en général de phénomènes accidentels. Pour ces phénomènes, la probabilité, pour un objet d'être encore en vie ou de ne pas tomber en panne avant un délai donné sachant que l'objet est en bon état à un instant t, ne dépend pas de t. Par exemple, pour un verre en cristal, la probabilité d'être cassé dans les cinq ans ne dépend pas de sa date de fabrication ou de son âge. Par définition, on dit qu'une durée de vie est sans usure si la probabilité de survie à l'instant t ne dépend pas de t.

Les modèles de fiabilité basés sur le taux de panne aléatoire sont les plus utilisés

Hypothèses:

- Le taux de défaillance $\lambda(t)$ est indépendant de l'âge du système
- Pour le système qui opère sur demande, la panne à la nième demande est indépendante de celles à la n-1 demande.
- Pour le système opérant en continu, ceci représente un $\lambda(t)$ constant

Pour caractériser la durée de vie et mettre en évidence la notion de vieillissement. On montre en particulier l'utilité pratique de la loi exponentielle pour approcher la distribution des temps de panne.

La distribution exponentielle s'exprime ainsi :

Fiabilité :
$$R(t) = e^{-\lambda t}$$
 (II.16) :

Avec les paramètres de significations :

- e : est la base de l'exponentielle (2,718...)
- λ· c'est l'intensité

Densité de probabilité : $f(t) = \lambda e^{-\lambda t}$ (II.16) :

La fonction de répartition $F(t) = 1 - e^{-\lambda t} = \int_0^t \lambda e^{-\lambda t} dt$ (II.16)

Taux de défaillance :
$$\lambda = \frac{f(t)}{R(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda = constant$$

La moyenne des temps de fonctionnement (MTTF) ou de bon fonctionnement (MTBF) un important estimateur de la fiabilité et de la disponibilité des systèmes et se calcul par l'expression :

$$MTTF = \int_0^\infty R(t) dt = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$

Variance:
$$\sigma^2 = \frac{1}{\lambda^2}$$

Les distributions relatives à cette loi sont représentées par les courbes de la figure en fonction du taux de défaillance d'un ou plusieurs composants supposés avoir un même λ .

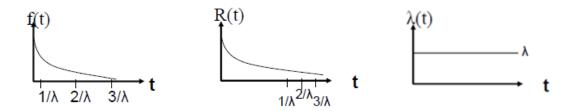


Figure II.2 distribution des fonctions de la loi exponentielle

La distribution exponentielle s'applique aux systèmes opérants en continu (systèmes électroniques) c'est ce qu'on appelle distribution sans mémoire. Les systèmes complexes ont aussi un $\lambda(t)$ constant.

Exemple 1:

Un dispositif a un taux de défaillance constant de $\lambda = 0.03/h$

- a) Calculer la probabilité qu'il tombe défaillant pendant 10 premières heures d'opération
- b) En supposant que le dispositif a bien fonctionné pendant 100 h, calculer la probabilité qu'il tombe défaillant pendant 10 prochaines heures.

Solution:

Sous a)

$$P\{t \le 10\} = \int_0^{10} f(t)dt = F(10) = 1 - e^{-0.03.10} = 0.259$$

Sous b), d'après la règle de calcul de la probabilité conditionnelle

$$P\left\{ \le \frac{110}{t} < 100 \right\} = \frac{P\{(t \le 110) \cap (t > 100)\}}{P(\{t < 100\})} = \frac{P\{100 \le t \le 110\}}{P\{t > 100\}} = \int_{100}^{110} \frac{ft}{1 - F(100)} = \int_{100}^{110} \frac{0.03 \exp(-0.03t) dt}{1 - 1 + \exp(-0.03.100)} = \frac{\exp(-0.03.100) - \exp(-0.03.110)}{\exp(-0.03.100)} = 1 - \exp(-0.03.10) = 0.259$$

Exemple 2:

Quelle est la fiabilité d'un dispositif travaillant pendant une période de temps égale au MTBF? Pour ce cas la probabilité de survie est :

$$R(t) = R(MTBF) = e^{-MTBF/MTBF} = e^{-1} = \frac{1}{2.718} = 0.3679 (environ 37\%)$$

Exemple 3:

Un composant électronique de puissance a un taux de panne constant de 0,07 pour 1000 heures de fonctionnement.

a) Quelle est la probabilité pour qu'il survie 5000, 1000, 2000 h. L'unité de temps est 1000h à 5000 h correspond t=5

$$P(t < 5000) = R(t) = R(5) = e^{-\lambda t} = e^{-0.07.5} = 0.705 \text{ (environ 70.5\%)}$$

Pour 1000 heures (t=1): $R(1) = e^{-\lambda t} = e^{-0.07.1} = 0.932 \text{ (environ 93.2\%)}$
Pour 2000 heures (t=2): $R(2) = e^{-\lambda t} = e^{-0.07.2} = 0.869 \text{ (environ 86.9\%)}$

b) Quelle est la probabilité que le composant dure entre 2000 et 5000 heures
$$P(2000 \le t \le 5000) = F(5) - F(2) = R(2) - R(5) = 0.869 - 0.705 = 0.164$$
(environ 16,4%)

C) Quelle est la probabilité pour que le composant dure 1000 h de plus après 5000h de fonctionnement ?

C'est une probabilité conditionnelle de forme générale

$$P(t > b/t > a) = P(t > b - a)$$

 $P(t > 6/t > 5) = P(t > 6 - 5) = P(t > 1) = R(1) = 0.932$ (environ 93,2%)

II.2.2.10.1 Système opérants sur demande

Pour les systèmes opérants sur demande, l'expression mathématique de la loi exponentielle s'écrit :

 $R(t)=e^{-np}$, Où n : nombre de demandées répétées et p : probabilité de défaillance sur demande

- demande indépendante de l'histoire d'opération du système

n = mp, avec m : nombre de demandes par unité de temps.

L'expression de la fiabilité s'écrira alors :

$$R(t) = e^{-mp^{t}}$$
 où $\lambda_{d} = mp$

Exemple 2:

Système opérant sur demande

Une compagnie de télécommunications trouve que pendant une période de garantie d'un an, 6% de ses téléphones est retourné au moins une fois parce qu'ils sont tombés et endommagés. Un programme exhaustif de tests indiquait que seulement dans 20% de cas le téléphone devrait être endommagé.

- a) En supposant que le fait de laisser tomber le téléphone lors de l'usage normal correspond à un processus de Poisson, quel est le temps moyen entre les chutes (TMEC)?
- **b**) Si la conception des téléphones a changé pour que seulement 4% sont endommagés lors d'une chute, quelle est la fraction des téléphones qui seront retournés au moins une fois lors de la première année de service?

Solution:

Sous a) la fraction des téléphones non retournée est :

$$R(t) = \exp(-mpt)$$
 Donc: $0.94 = \exp(-m0.2.1)$

D'où

$$m = \frac{1}{0.2.1} ln \left(\frac{1}{0.94} \right) = 0.3094 / an$$

Le temps moyen entre les chutes :

TMEC =
$$\frac{1}{m} = \frac{1}{0.3094} = 3.23 \ ans$$

Sous b) pour la conception améliorée

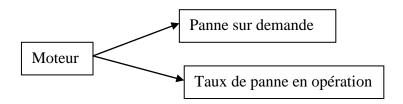
$$R(t) = \exp(-mpt) = \exp(-0.3094.0.04.1) = 0.9877$$

La fraction des téléphones retournée

$$1 - 0.9877 = 1.23\%$$

II.2.2.10.2 Modèles composés

Combinaison de taux de défaillance et de défaillance sur demande : la figure ci-dessous donne une combinaison de deux types de défaillance : sur demande et en opération, le cas d'un réfrigérateur qui opère en continu.



On considère : λ_0 taux de défaillance par unité de temps d'opération

 $C.\lambda_0$. Contribution au taux de défaillance total lorsque la machine (moteur) opère)

C : facteur de capacité

 \bar{t} : Temps moyen que le moteur est en opération

 $\frac{1}{\bar{t}_0}$: Moyenne de nombre de fois que le moteur est sollicité

Donc, $m = \frac{c}{\overline{t}_0}$ Temps moyen que le moteur est sollicité par unité de temps calendrier Alors, $\lambda = \frac{c}{\overline{t}_0} \cdot p + C \cdot \lambda_0$ Si on ajoute λ_s : taux de panne du moteur en mode attente; l'expression devient $\lambda = \frac{c}{\overline{t}_0} \cdot p + C \cdot \lambda_0 + (1 - C)\lambda_s$.

Exemple d'application :

Une pompe qui contrôle le volume dans un procédé chimique opère de façon intermittente. Le taux de défaillance de la pompe est de 4E-04/h et le taux de défaillance en attente est de 1E-05/h. La probabilité de défaillance sur demande est de 5E-04/h. Les temps auxquels est démarrée (t_u) et arrêtée (t_d) sur une période de 24 heures sont listées dans le tableau ci-dessous

t _u	0.78	1.69	2.89	3.92	4.71	5.97	6.84	7.76
t_d	1.02	2.11	4.21	4.21	5.08	6.31	7.23	8.12
t _u	8.91	9.81	11.87	11.87	12.98	13.81	14.87	15.97
t_{d}	9.14	10.08	12.14	12.14	13.18	14.06	15.19	16.09
t _u	16.69	17.71	19.61	19.61	20.56	21.49	22.58	23.61
t_d	16.98	18.04	19.97	19.97	20.91	21.86	22.79	23.89

En supposant que les données sont représentatives :

a) on calcul le taux de défaillance composé pour la pompe dans ces conditions d'opération

à partir des données disponibles on calcule :

$$\sum_{i=1}^{M} t_{di} = 301.50$$
 $\sum_{i=1}^{M} t_{ui} = 294.36$

M= 24 le nombre d'opération (3x8)

Le temps moyen d'opération

$$\bar{t}_0 = \frac{1}{M} \sum_{i=1}^{M} (t_{di} - t_{ui}) = \frac{1}{24} (201.5 - 294.36) = 0.2957h$$

Facteur de capacité :
$$C = \frac{Mx\bar{t}_0}{24} = \frac{24}{24}$$
. 0.2957 = 0.2957

Le taux de défaillance compose:

$$\lambda = \frac{0.2957}{0.2957} \cdot 5E - 04 + 0.2957 \cdot 4E - 04 + (1 - 0.2957) \cdot 1E - 05 = 6.26E - 04h^{-1}$$

b) On calcul la probabilité que la pompe tombe défaillante pendant une durée d'un mois (30 jours)

$$R(t) = \exp(-\lambda.24.30) = exr(-0.000626.24.30) = 0.637$$

Probabilité pour 30 jours : (1- R)= 0.363

II.2.2.11 La loi de Fisher

Dans la Théorie des probabilités et en Statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George W. Snedecor. La loi de Fisher survient très fréquemment en tant que distribution de l'hypothèse nulle dans des tests statistiques, comme par exemple les tests du ratio de vraisemblance ou encore dans l'analyse de la variance.

Sa fonction de fiabilité est :

$$f(x) = \frac{\left(\frac{d_1 x}{d_1 x + d_2}\right)^{d_1/2} \left(1 - \frac{d_1 x}{d_1 x + d_2}\right)^{d_2/2}}{x B(d_1/2, d_2/2)}$$
(II.17)

II.2.2.12 La loi normale

Cette loi est aussi appelée loi de Gauss, en l'honneur du grand mathématicien allemand Karl Friedrich Gauss (1777-1855).

La loi normale est la loi statistique la plus répandue et la plus utile, elle est utilisée afin d'approcher des probabilités associées a des variables aléatoires binomiales possédant un paramètre 'n' très grand. Elle représente beaucoup de phénomènes aléatoires. De plus, de nombreuses autres lois statistiques peuvent être approchées par la loi normale, tout spécialement dans le cas des grands échantillons.

Sa fonction de fiabilité est :

$$n(t) = \frac{n}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$$
 (II.18)

Avec les paramètres de signification :

- μ : est la moyenne
- σ: l'écart type
- **n** : le nombre total d'individus dans l'échantillon
- **n(x)**: le nombre d'individus pour lesquels la grandeur analysée a la valeur x.
- **e**: est la base de l'exponentielle (2,718...)

II.2.2.13 La loi log normal

On a pu voir que les valeurs possibles d'une variable aléatoire normale étaient L'ensemble des nombres réels. Pour une situation réelle ne pouvant prendre des Valeurs négatives, on peut malgré tout utiliser une loi normale lorsque la Moyenne et l'écart type sont tels que la probabilité théorique d'avoir une valeur Négative est à toute fin pratique nulle.

En probabilité et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres μ et σ si la variable Y=ln (X) suit une loi normale de paramètres μ et σ .

Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.

Sa fonction de probabilité est:

$$n(t) = \frac{n}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\log(t)-\mu}{\sigma}\right)^2}$$
 (II.19)

Avec les paramètres de signification

• σ: l'écart type

• μ: c'est la moyenne

II.2.2.14 La loi de Weibull

L'expression loi de Weibull recouvre en fait toute une famille de lois, certaines d'entre elles apparaissant en physique comme conséquence de certaines hypothèses. C'est en particulier, le cas de la loi exponentielle ($\beta = 1$) et de la loi normale ($\beta = 3$).

Sa fonction de fiabilité est :

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$
 (II.20)

Avec les paramètres de signification :

 γ , β , η définissent la distribution de Weibull.

On utilise trois paramètres:

 $\triangleright \beta$: paramètre de forme $(\beta > 0)$

 $\triangleright \eta$: paramètre d'échelle $(\eta > 0)$

 $\triangleright \gamma$: paramètre de position $(-\infty > \gamma > +\infty)$

II.3 Etude des lois de fiabilité

En raison de la complexité des lois citées précédemment, nous nous étudierons que celles qui sont largement employées dans le calcul de la fiabilité des systèmes. On distingue :

II.3.1 Les lois discrètes

II.3.1.1. Loi binomiale

Si une défaillance a une probabilité (P) de survenir, la probabilité de la voir apparaître k fois en (n) essais est :

$$P(k) = P(X = k) = C_k^n p^k (1 - p)^{n - k}$$
 (II.21)

Prob(X = k): Probabilité pour que la défaillance se produise (k) fois

P : probabilité pour que la défaillance se produise au cours d'un seul essai.

 C_n^k : nombre de combinaisons de (k) défaillances pris parmi (n) essais.

Remarque:

- 1. Un dispositif a une probabilité (P) d'être défaillant donc (1-P) d'être au bon fonctionnement.
- 2. Nous sommes en présence d'une loi discrète puisque la variable aléatoire (k) ne peut prendre que des valeurs entières.
- 3. L'espérance mathématique est = np
- 4. La variance est = n.p.(1-p)
- 5. L'écart type est = $\sqrt{n.p.(1-p)}$

En mathématiques, une **loi binomiale** de paramètres n et p est une loi de probabilité qui correspond à une expérience aléatoire à deux issues possibles, généralement dénommées respectivement « **succès** » et « **échec** ». Cette loi apparaît comme étant particulièrement intéressante pour des essais.

Avec les Paramètres et significations :

- $(n \ge 0)$: Nombre d'épreuves
- $(0 \le p \le 1)$: probabilité de succès
- q = 1 p

La courbe théorique de répartition de cette loi est présentée à la figure II.3

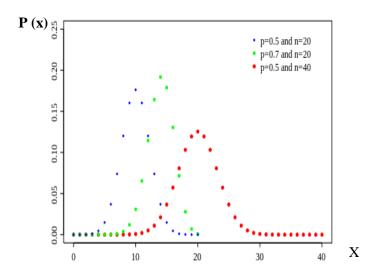


Figure II.3. Courbe théorique de la loi binomiale

Conclusion:

Pour de grandes valeurs de n, le calcul de $\mathbf{P}(\mathbf{x})$ devient vite pratiquement impossible, sauf si l'on cherche à calculer le logarithme de cette expression au lieu de l'expression elle-même. On distingue deux cas :

Cas 1: Lorsque n tend vers l'infini et que p tend vers 0, la loi binomiale converge vers une loi de Poisson de paramètre a. En pratique, on remplace la loi binomiale par une loi de Poisson dès que n > 30 et p < 5 ou dès que n > 50 et p < 0.1.

Cas 2: Lorsque n tend vers l'infini et que p et q sont de même ordre de grandeur, la loi binomiale converge vers une loi normale d'espérance np et de variance npq. En pratique, on remplace une loi binomiale par une loi normale dès que n > 30, np > 5 et nq > 5

II.3.1.2 Loi de Poisson

La loi de Poisson découverte au début du XIX $^{\text{ème}}$ siècle par le magistrat français Siméon-Denis Poisson s'applique souvent aux phénomènes accidentels où la probabilité p est très faible (p < 0.05).

Elle peut également dans certaines conditions être définie comme limite d'une loi binomiale.

Sa Fonction de fiabilité est:

$$P(x = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
(II.22)

Avec les paramètres et significations:

- Un seul paramètre ' λ '
- **e**: est la base de l'exponentielle (2,718...)
- **n!**: est la factorielle de n.
- λ: le nombre moyen d'événement par unité de temps

La courbe théorique de répartitions différentes λ est donnée à la figure II.4. On peut remarquer l'influence du paramètre λ .

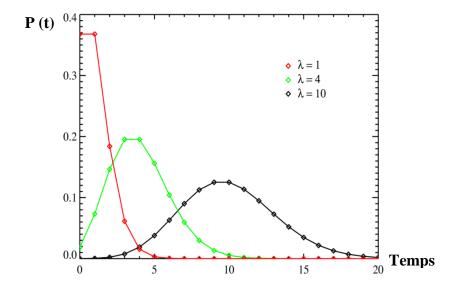


Figure II.4. Courbe théorique de la loi de poisson

En conclusion:

Le domaine d'application de la loi a été longtemps limité a celui des événements rares par exemple : (suicide d'enfants, les accident dus aux coups de pied de cheval dans les années.)

Remarque:

La loi de poisson est souvent utilise la vrais vie pour prédire les risques de pannes ou d'accidents.

II.3.2 Lois continues

II.3.2.1 La loi exponentielle

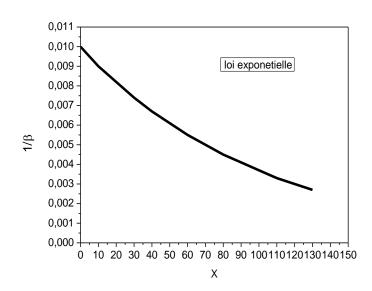
La loi exponentielle a de nombreuses applications dans le domaine de l'ingénierie en particulier dans l'étude de fiabilité d'un équipement. Elle présente également diverses applications dans l'étude des phénomènes d'attentes. Exemples:

- La durée de vie utile d'un composant électronique
- Le temps entre deux arrivées consécutives à un guichet automatique
- Le temps entre deux défaillances consécutives d'un système informatique
- Le temps de service à un guichet de pièces détachées d'une usine...

D'une manière générale la distribution exponentielle est donnée par l'expression suivante :

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{\beta} e^{\frac{-x}{\beta}} & \text{si } x \ge 0 \end{cases}$$

β	100	
$\frac{1}{\beta}$ =	0.01	
	X	f(x)
	0	0,0100
	10	0,0090
	20	0,0082
	30	0,0074
	40	0,0067
	50	0,0061
	60	0,0055
	70	0,0050
	80	0,0045
	90	0,0041
	100	0,0037
	110	0,0033
	120	0,0030
	130	0,0027



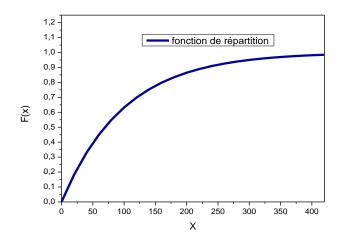
La fonction de réparation est donnée par l'expression suivante :

$$F(x) = \int_0^x f(t)dt = \int_0^x \frac{1}{\beta} e^{-\frac{t}{\beta}} dt$$

$$F(x) = \begin{cases} 0 \sin x < 0 \\ 1 - e^{\frac{-x}{\beta}} \sin x \ge 0 \end{cases}$$

Le tableau ci-après présente un calcul de la distribution de la loi exponentielle

β	100		
1_	0.01		
$\overline{\beta}^-$			5 ()
X	f(x)	F(x)	R(x)
0	0,0100	0,0000	1
20	0,0082	0,1813	0,8187
40	0,0067	0,3297	0,6703
60	0,0055	0,4512	0.5488
80	0,0045	0,5507	0,4493
100	0,0037	0,6321	0,3679
120	0,0030	0,6988	0,3012
140	0,0025	0,7534	0,2466
160	0,0020	0,7981	0,2019
180	0,0017	0,8347	0,1653
200	0,0014	0,8647	0,1353
220	0,0011	0,8892	0,1108
240	0,0007	0,9093	0,0907
260	0,0006	0,9257	0,0743
280	0,0005	0,9392	0,0608
300	0,0004	0,9502	0,0498
320	0,0003	0,9592	0,0408
340	0,0003	0,9666	0,0334
360	0,0002	0,9727	0,0273
380	0,0002	0,9776	0,0224
400	0,0002	0,9817	0,0183
420	0,0001	0,9850	0,015



Courbe théorique de la fonction de répartition

Avec $\frac{1}{\beta} = \lambda$ (taux de défaillance ou de pannes) et $\beta = MTBF$

Et $\mathbf{x} = \mathbf{t}$ (temps)

L'espérance mathématique de X: $E(X) = \beta$

La variance et l'écart-type: $Var(X) = \beta^2$ $\sigma(X) = \beta$

La plupart des phénomènes naturels sont soumis au processus de vieillissement.

Il existe des phénomènes où il n'y a pas de vieillissement ou d'usure. Il s'agit en général de phénomènes accidentels. Pour ces phénomènes, la probabilité, pour un objet d'être encore en vie ou de ne pas tomber en panne avant un délai donné sachant que l'objet est en bon état à un instant t, ne dépend pas de t. Par exemple, pour un verre en cristal, la probabilité d'être cassé dans les cinq ans ne dépend pas de sa date de fabrication ou de son âge. Loi des variables aléatoires représentant une durée de vie sans usure.

Par définition, on dit qu'une durée de vie est sans usure si la probabilité de survie à l'instant t ne dépend pas de t.

Sa fonction de fiabilité est:

$$R(t) = e^{-\lambda t} (II.23)$$

Sa densité de probabilité de paramètre X s'écrit:

$$F(t) = \lambda e^{-\lambda} \tag{II.24}$$

Avec les paramètres et significations:

- **e** : est la base de l'exponentielle (2,718...)
- λ: c'est l'intensité.

La courbe théorique de distribution de la loi exponentielle est donnée à la figure II.5:

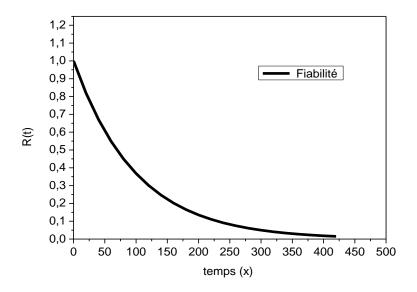


Figure II.5. Courbe théorique de fiabilité de la loi exponentielle.

Remarque:

Les variables aléatoires décrivant une durée de vie sans usure suivent toutes une loi exponentielle. L'étude qui précède nous montre que la loi d'un phénomène de nature totalement aléatoire peut être modélisée par une fonction exponentielle.

Exemple 1:

Un fabricant de fours à micro-ondes veut déterminer la période de garantie qu'il devrait associer à son tube magnétron, le composant le plus important du four. Des essais en laboratoire on indiqué que la durée de vie utile (en années) de ce composant possède une distribution exponentielle avec un taux moyen de défaillance de 0.20 tube/ an.

- a) Quelle est la durée moyenne de vie des tubes?
- b) Quelle est la P qu'un tube opère sans défaillance pour une période excédant sa durée de vie espérée?
- c) Sur 1000 tubes de ce type, combien seront défaillants au cours des cinq premières années?

Solution:

a) La durée moyenne des tubes

$$E(X) = \beta$$
; Puisque 1/ β = 0.20 => β = 1/0.20 = 5 ans.

b) On cherche $P(X>5) = 1 - P(X \le 5) = 1 - F(5)$

 $P(X>5) = 1 - [1 - \exp(-5/5)] = \exp(-1) = 0.3679$ (il y a 36.8% de chances qu'un tube excède sa durée de vie moyenne)

c) Sur 1000 tubes de ce type, combien seront défaillants au cours des cinq premières années?

$$P(X<5) = F(5) = 1 - \exp(-5/5) = 0.6321$$

Sur 1000 tubes approx. 1000*0.6321 = 632 tubes seront défaillants au cours de cinq premières Années

d) Quelle est la P que la durée de vie d'un tube soit comprise dans l'intervalle $[E(X) - \sigma(X), E(X) + \sigma(X)]$?

E(X) -
$$\sigma(X) = 5 - 5 = 0$$

E(X) + $\sigma(X) = 5 + 5 = 10$
On veut P(0\(\leq X \leq 10\)) = P(X\(\leq 10\))
F(10) = 1-\(\text{exp}(-10/5) = 0.8647

e) 50% des tubes fonctionnent sans défaillance pendant combien de temps?

$$F(a) = 1-\exp(-a/5)=0.50$$

 $Exp(-a/5) = 0.50 => Exp(a/5) = 1/0.50$
 $Ln([exp(a/5)=ln(2) => a = 5*ln(2) = 3.47 \text{ ans}$

f) Le manufacturier veut donner une période de garantie sur le tube; toutefois, il ne veut pas remplacer plus que 10% de tubes au cours de cette période de garantie. Quelle devrait être la période de garantie?

$$\int_0^x 0.20 \exp(-0.20) \, dt \le 0.10$$

$$1 - \exp(-0.20x) \le 0.10$$

$$x = \frac{Ln\left(\frac{1}{0.9}\right)}{0.20} = 0,527$$
 ans Le manufacturier peut offrir la garantie de 06 mois!

II.3.2.2 La loi normale

Cette loi est aussi appelée loi de Gauss. La loi normale est la loi statistique la plus répandue et la plus utile, elle est utilisée afin d'approcher des probabilités associées à des variables aléatoires binomiales possédant un paramètre 'n' très grand. Elle représente beaucoup de phénomènes aléatoires. De plus, de nombreuses autres lois statistiques peuvent être approchées par la loi normale, tout spécialement dans le cas des grands échantillons.

Sa fonction de fiabilité est:

$$n(t) = \frac{n}{(\sigma\sqrt{2}\pi)} e^{\frac{-1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$$
 (II.25)

Avec les paramètres et signification:

• μ : est la moyenne

• σ: l'écart type

• **n** : le nombre total d'individus dans l'échantillon

• **n(x)**: le nombre d'individus pour lesquels la grandeur analysée a la valeur x.

• **e**: est la base de l'exponentielle (2,718...)

Sa courbe théorique de distribution est montrée à la figure II.6 :

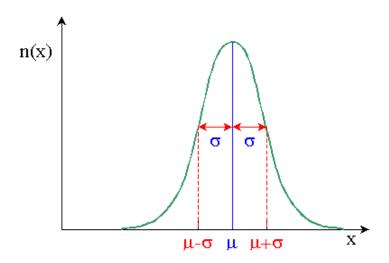


Figure II.6. Courbe théorique de la loi normale

Parmi les paramètres et leur signification on a :

A. l'écart type:

Le coefficient d'aplatissement d'une variable aléatoire mesure si sa distribution est **pointue** (recentrée autour de sa moyenne) c'est- à -dire ses valeurs sont autour de sa moyenne $*\mu*$ ou au contraire étalée. Il est défini par :

Sigma (σ): Sigma de la loi normal mesure la dispersion de ses valeurs autour de la moyenne c'est -à -dire, si sigma est grand les valeurs sont très dispersées, si sigma est petit c'est -à -dire que toutes les valeurs sont proches de sa moyenne.

Sa fonction est:

$$\sigma = \sqrt{npq} \tag{II.26}$$

A titre indicatif, lorsque la distribution des individus dans une population obéit à la loi normale, on trouve:

a) 50 % des individus en dessous de la moyenne et 50 % au-dessus (la loi normale est symétrique), la figure II.6.a, représente cette distribution.

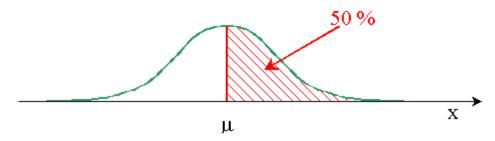


Figure II.6.a. Courbe d'une loi normale pour $\mu = 50 \%$

b) 68 % des individus entre μ - σ et μ + σ , la figure II.6.b montre cette distribution.

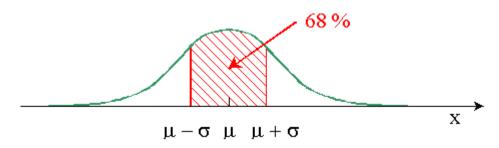


Figure II.6.b. Courbe d'une loi normale pour $\mu = 68 \%$

c) 95 % des individus entre μ -1,96 σ et μ +1,96 σ , que nous arrondirons à l'intervalle [μ - 2σ , μ +2 σ]. Cette distribution est présentée à la figure II.5.c

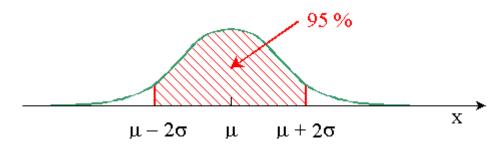


Figure II.5.c. Courbe d'une loi normale pour $\mu = 95 \%$

d) 99,7 % des individus entre μ -3 σ et μ +3 σ (il y a donc très peu de chances qu'un individu s'écarte de la moyenne de plus de 3 σ). La figure II.6.d illustre cette répartition.



Figure II.6.d. Courbe d'une loi normal pour $\mu = 99.7 \%$

En Conclusion:

La loi normale est une loi qui s'adapte au domaine mécanique car les défaillances sont essentiellement dues à l'usure.

II.3.2.3 La loi log normal

On a pu voir que les valeurs possibles d'une variable aléatoire normale étaient l'ensemble des nombres réels. Pour une situation réelle ne pouvant prendre des valeurs négatives, on peut malgré tout utiliser une loi normale lorsque la moyenne et l'écart type sont tels que la probabilité théorique d'avoir une valeur négative est à toute fin pratique nulle.

En probabilité et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres μ et σ si la variable Y=ln (X) suit une loi normale de paramètres μ et σ . Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.

Sa fonction de probabilité est:

$$n(t) = \frac{n}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\log(t) - \mu}{\sigma}\right)^2}$$
 (II.27)

Avec les paramètres et signification

 \triangleright σ : l'écart type

» μ: c'est la moyenne

Sa courbe théorique de distribution est présentée à la figure II.7:

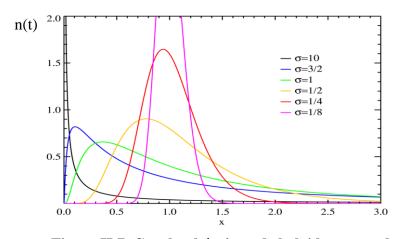


Figure II.7. Courbe théorique de la loi log normal

En Conclusion:

Cette loi de distribution est particulièrement utilisée en analyse quantitative pour représenter les cours des instruments financiers (notamment actions, cours de change, taux d'intérêt, métaux précieux). Les cours ne peuvent pas être négatifs et il est plus pertinent d'exprimer les variations sous forme relative en pourcentage, donc les cours sont représentés généralement grossièrement par une loi log-normale.

II.3.2.4 La loi de Weibull

L'expression loi de Weibull recouvre en fait toute une famille de lois, certaines d'entre elles apparaissent en physique comme conséquence de certaines hypothèses. C'est en particulier, le cas de la loi exponentielle ($\beta = 1$) et de la loi normale ($\beta = 3$).

Ces lois constituent surtout des approximations particulièrement utiles dans des techniques diverses alors qu'il serait très difficile et sans grand intérêt de justifier une forme particulière de loi. Une distribution à valeurs positives (ou, plus généralement mais moins fréquemment, à valeurs supérieures à une valeur donnée) a presque toujours la même allure. Elle ne part d'une fréquence d'apparition nul, croît jusqu'à un maximum et décroît plus lentement. Il est alors possible de trouver dans la famille de Weibull une loi qui ne s'éloigne pas trop des données disponibles en calculant β et à partir de la moyenne et la variance observées.

Sa fonction de fiabilité est:

$$R(t) = e^{-\frac{(t-\gamma)}{\eta}\beta}$$
 (II.28)

Avec les paramètres et signification:

 γ , β , η définissent la distribution de Weibull.

On utilise trois paramètres:

 $\triangleright \beta$: paramètre de forme $(\beta > 0)$

 \triangleright η : paramètre d'échelle $(\eta > 0)$

 $\triangleright \gamma$: paramètre de position $(-\infty > \gamma > +\infty)$

Sa courbe théorique de distribution est donnée à la figure II.8:

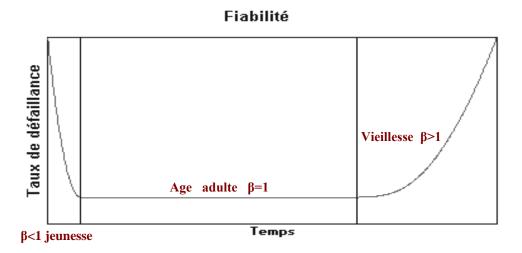


Figure II.8. Courbe en baignoire

 β : est le paramètre de forme du modèle. Nous constatons que : Si $\beta < 1$ le taux de défaillances est décroissant, nous avons donc des panne de jeunesse, si $\beta = 1$ le taux de défaillances est constant et si $\beta > 1$ e taux est croissant, panne de vieillesse ou maturité en mécanique.

 η : est le paramètre d'échelle et indique l'ordre de grandeur de la durée de vie moyenne.

 γ : est le paramètre de décalage, souvent il est égal à 0. Le modèle de Weibull ne peut à lui seul représenter l'ensemble des cofacteurs influents sur la fiabilité de la macro composant, l'adjonction d'un modèle à hasard proportionnel sous forme de régression apporte une réponse qui devrait être plus adaptée.

En conclusion:

Pour les composants mécaniques, le taux de défaillances constant ne convient pas aux modes de dégradations provoquent un taux croissant (usure, fatigue, corrosion). Le modèle de Weibull permet de mettre en évidence cette représentation. Il est d'une pratique aisé et universellement admis, il couvre a lui seul l'ensemble des phénomènes de défaillance.

III.1 Introduction

La fiabilité est le domaine de la statistique inférentielle traitant des durées de vie (ou de bon fonctionnement) des matériels et donc de l'étude statistique de leurs pannes.

Le nom de Wallodi Weibull (1887 – 1979) y est attaché. D'origine suédoise, Weibull travailla comme inventeur (roulements à billes, marteau électrique...) et ingénieur conseil dans de nombreuses sociétés suédoises ou allemandes, par exemple chez *SAAB*. Il s'intéressa aux problèmes de résistance des matériaux, en particulier à ceux de fatigue et de rupture des tubes à vide. C'est dans ce cadre qu'apparaît en 1939 pour la première fois la distribution de Weibull. Mais l'article qui eut le plus d'influence fut publié en 1951 dans le "Journal of Applied Mechanics" sous le titre "A Statistical Distribution Function of Wide Applicability" où sont décrient sept cas d'utilisation de la distribution de Weibull. En effet, l'intérêt de cette distribution, outre ses propriétés analytiques satisfaisantes, est de permettre un bon ajustement d'une grande variété de problèmes de durée de vie.

On constate expérimentalement, que pour la plupart des matériels, la courbe représentative du taux d'avarie λ (taux de variation du nombre de pannes) en fonction du temps, a la forme d'une "courbe en baignoire".

III. 2. La loi de Weibull

L'expression loi de Weibull recouvre en fait toute une famille de lois, certaines d'entre elles apparaissant en physique comme conséquence de certaines hypothèses. C'est en particulier, le cas de la loi exponentielle ($\beta = 1$) et de la loi normale ($\beta = 3$).

Ces lois constituent surtout des approximations particulièrement utiles dans des techniques diverses alors qu'il serait très difficile et sans grand intérêt de justifier une forme particulière de loi. Une distribution à valeurs positives (ou, plus généralement mais moins fréquemment, à valeurs supérieures à une valeur donnée) a presque toujours la même allure.croît jusqu'à un maximum et décroît plus lentement. Il est alors possible de trouver dans la famille de Weibull une loi qui ne s'éloigne pas trop des données disponibles en calculant β et à partir de la moyenne et la variance observées.

III.3 Fonction de fiabilité R (t)

La forme générale de la fonction de fiabilité est désignée par \mathbf{R} (t) représentant la probabilité de bon fonctionnement à l'instant t.

$$R(t) = e^{\left(\frac{t-\gamma}{\eta}\right)^{\beta}} \tag{III.1}$$

La signification des paramètres a été décrite aux chapitres précédents.

Sa fonction de répartition \mathbf{F} (\mathbf{t}) est la probabilité que le dispositif soit en panne à l'instant \mathbf{t} . Elle est exprimée par :

$$F(t) = 1 - R(t) = 1 - e^{-\left(\frac{t - \gamma}{\eta}\right)^{\beta}}$$
 (III.2)

Son taux instantané de défaillance λ (t) est un estimateur de fiabilité. Il s'exprime par :

$$\lambda(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta}\right)^{\beta - 1} \tag{III.3}$$

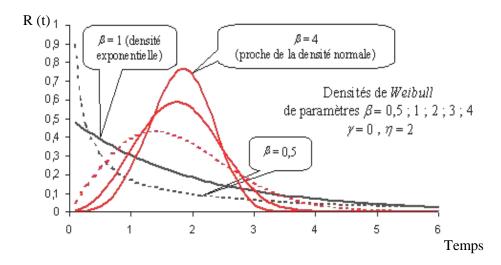
Remarque si:

$$\begin{cases} \gamma = 0 \\ \beta = 1 \end{cases} \Rightarrow \lambda = \frac{1}{\eta} = \frac{1}{MTBF}$$

Sa densité de probabilité f(t) se calcul par l'expression suivante :

$$f(t) = \lambda(t) \times R(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta}\right)^{\beta - \gamma} \cdot e^{-\left(\frac{t - \gamma}{\eta}\right)}$$
(III.4)

La courbe theorique de distribution est montrée à la figure III.1. On peut remarquer l'influence du paramètre β (coefficient de forme).



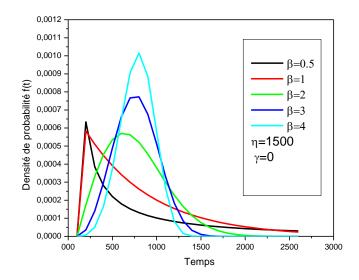


Figure III.1 Courbes théoriques de Weibull

Si l'on désigne par t la variable aléatoire qui, à tout matériel choisi au hasard, associe son temps de bon fonctionnement avant défaillance, lorsque β est constant, on montre que t suit une loi exponentielle. Pour couvrir tous les cas, Weibull a choisi pour λ une fonction dépendant de trois paramètres : γ , β et η . L'expression de $\lambda(t)$ est donnée par (III.3)

Avec $t > \gamma$, $\beta > 0$, $\eta > 0$ (le paramètre important étant β paramètre "de forme", les autres terminent l'ajustement). Ainsi, lorsque la variable aléatoire t, correspondant au temps de bon fonctionnement, suit la loi de Weibull de paramètres γ , β et η . On montre que sa densité est donnée par l'expression (III.6)

III.4. Domaine d'application

La distribution de Weibull est souvent utilisée dans le domaine de l'analyse de la durée de vie, grâce à sa **flexibilité** car elle permet de représenter au moins approximativement une infinité de lois de probabilité.

Un taux de panne croissant suggère une "usure ou un problème de fiabilité" : les éléments ont de plus en plus de chances de tomber en panne quand le temps passe.

III.4.1 Papier de Weibull

Ce papier de Weibull sert à lire graphiquement les paramètres d'une loi de Weibull dans le cas ou le paramètre γ est nul.

En effet, la fonction de répartition associée à une loi de Weibull de paramètres β , $\gamma = 0$, η est définie par :

$$F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}}$$

$$\Rightarrow \ln\left(1 - F(t)\right) = -\left(\frac{t}{\eta}\right)^{\beta}$$
(III.5)

$$\Rightarrow -\ln(1 - F(t)) = \left(\frac{t}{\eta}\right)^{\beta}$$

$$\Rightarrow \ln(-\ln(1 - F(t))) = \beta \ln \frac{t}{\eta}$$

$$\Rightarrow \ln(-\ln(1 - F(t))) = \beta \ln t - \beta \ln \eta$$

$$\Rightarrow Y = \beta X - \beta \ln \eta$$

La dernière équation obtenue est l'équation d'une droite dans le repère rouge (O; X; Y) où O est le point correspondant à X = 0 et Y = 0 soit à t = 1 et Y = 0 et Y = 0 soit à Y = 0 et Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 soit à Y = 0 et Y = 0 et Y = 0 soit à Y = 0 et Y = 0

Le paramètre se lit directement à l'intersection de la droite précédente avec l'axe des abscisses puisque celui-ci est gradué en échelle logarithmique, ce qui est montré sur les figures III.2.a et III.2.b.

Le paramètre est le coefficient directeur de la droite précédente, il suffit de tracer une droite parallèle à la précédente et de lire directement le coefficient directeur de cette droite sur l'axe d'équation X = -1.

III.4.1.1. Echelles utilisées sur le papier de Weibull :

- → Abscisse haute : échelle naturelle en X
- → Abscisse intermédiaire : échelle logarithmique (lecture du paramètre t)
- → Abscisse basse : échelle logarithmique (on fait correspondre à chaque valeur de t son logarithme népérien ln t).
- \rightarrow Ordonnée gauche : on place les valeurs de F (t) en pourcentage en échelle ln (- ln (1 F (t)))
- \rightarrow Ordonnée sur l'axe X = -1 (lecture du paramètre) : ce sont les valeurs ln (- ln (1 F (t)))

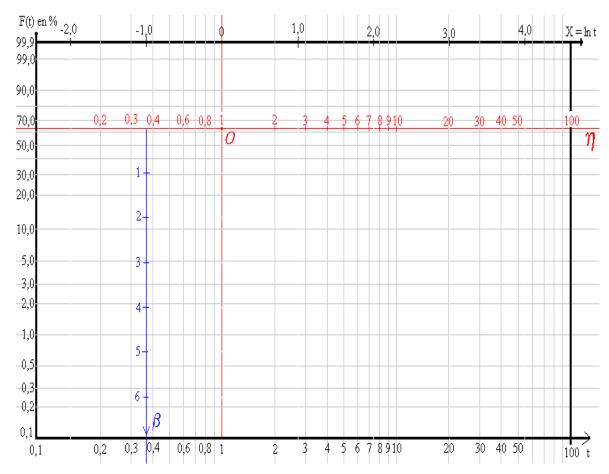


Figure III.2.a. Papier de Weibull

A titre d'exemple :

On construit tout d'abord le nuage de points (t ; F(t)) puis une droite d'ajustement D, on lit la valeur du paramètre η sur l'axe des abscisses puis on trace la parallèle D' à la droite D passant par l'origine O du repère, on lit le paramètre β sur l'axe d'équation X = -1.

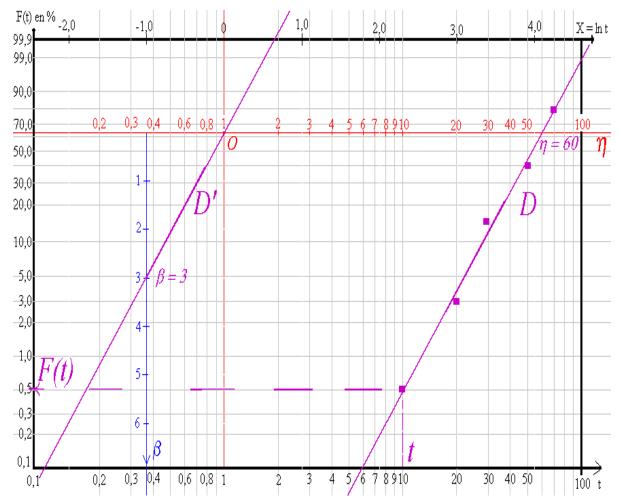


Figure III.2.b. Papier de Weibull

Pour calculer gamma. Si le nuage de points correspond à une droite, alors $\gamma=0$. Si le nuage de points correspond à une courbe, on la redresse par une translation de tous les points en ajoutant ou en retranchant aux abscisses "t", une même valeur (gamma) afin d'obtenir une droite. Ceci est montré à la figure III.3

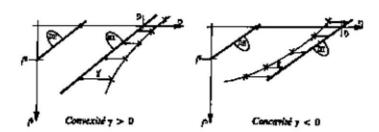


Figure III.3. Recherche de gamma

Pour le calcul d'êta. La droite de régression linéaire coupe l'axe A à l'abscisse t= éta. Bêta est la pente de la droite de corrélation. On trace une droite parallèle à la droite de corrélation, et passant par $\eta=1$ On lit ensuite bêta sur l'axe bêta est sans dimension. La figure III.3, montre la démarche pour ce calcul.

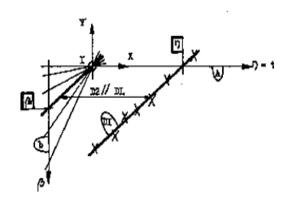


Figure III.4. Recherche de bêta

Remarque:

Si le nuage de point met en évidence plusieurs droites, on déterminera plusieurs pentes **b** montrant des populations distinctes qui correspondent à des modes de défaillances successifs et différents (défaillances juvéniles suivit de défaillances par usure par exemple).

III.4.1.2. Signification des paramètres

- Paramètre d'échelle êta (η) : Ce paramètre permet d'utiliser le papier d'Allan Plait quelque soit l'ordre de grandeur de t. Il n'a donc pas à être interprété.
- Paramètre de forme bêta (β): Ce paramètre donne des indications sur le mode des défaillances et sur l'évolution du taux de défaillances dans le temps. Les courbes des figures III.5.a, III.5.b et III.5.c, illustrent respectivement l'évolution de la fiabilité, de la fonction de répartition et du taux de défaillance en fonction du paramètre de forme (β)

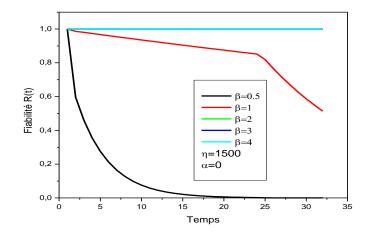


Figure III.5.a: Fiabilité

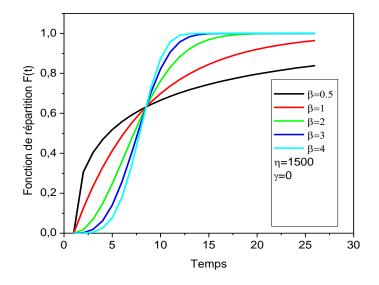


Figure III. 5. b : Fonction de répartition

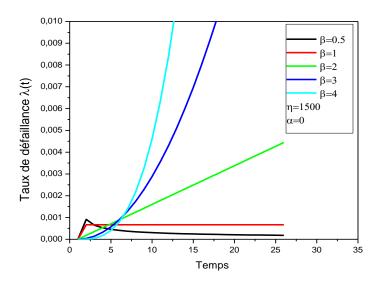


Figure III.5.c: Taux de défaillance

On peut donc remarquer que si :

- $\beta < 1 = > \lambda (t)$ décroît \rightarrow période de jeunesse.
- $\beta = 1 = \lambda(t) = c^{te} \rightarrow \text{indépendance du temps.}$
- $\beta > 1 = > \lambda$ (t) croit \rightarrow période d'obsolescence.
 - $^{\circ}$ 1.5< β > 2.5 \rightarrow exprime un phénomène de fatigue.
 - $^{\circ}$ 3 < β > 4 \rightarrow exprime un phénomène d'usure.

Remarque:

Si $\beta = 3.5 \Rightarrow f(t)$ symétrique \Rightarrow distribution normale.

Le paramètre de position gamma donne des indications sur le retard de la fonction f (t). La figure 3.6d montre cette variation.

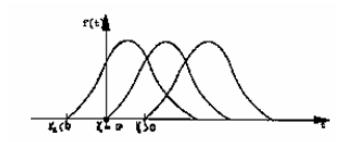


Figure 3.6d : Les courbes de f(t) [40]

- Avec $\gamma < 0$ ceci explique qu'une probabilité de défaillance est déjà présente au moment de l'installation du système.
- \sim Avec $\gamma = 0$ une probabilité de défaillance sera présente dés la mise en service du Système
- $^{\circ}$ Avec $\gamma > 0$ une probabilité de défaillance dans les premières utilisations du système est nulle.

III.5. Exemples d'application

III.5.1. Cas d'un réducteur de vitesse

Pour justifier notre choix de la loi de Weibull, nous considérons un exemple d'application sur un matériel mécanique. Il s'agit d'un réducteur de vitesse présenté à la figure III.7. Les différents composants et leurs paramètres sont présentés au tableau III.1.

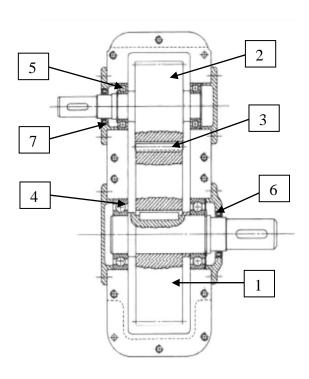


Figure III.7. Réducteur de vitesse

Les différents composants critiques vis-à-vis de la fiabilité sont les suivants: deux roues dentées, un engrenage, deux roulements et deux joints à lèvres, d'après la référence [41], on

propose de leurs associer comme loi de défaillance la distribution de Weibull dont les paramètres figurent dans le tableau 1 (η s'exprime en tours d'arbre d'entrée), en supposant les paramètres de décalage nuls (γ =0).

Tableau. III.1. Données Des composants du réducteur

C	omposant	η	ß
composant 1	Roue dentée 1	38000	1,4
composant 2	Roue dentée 2	70500	1,8
composant 3	Engrenage	1966600	13
composant 4	Roulement 1	9100000	1,11
composant 5	Roulement 2	15200000	1,11
composant 6	joint à lèvre radial 1	66000000	1,0
composant 7	joint à lèvre radial 2	6000000	1,0

III.5.1.1 Modélisation du système

En général, un système se représente sous forme d'un schéma bloc. Ceci sous-entend qu'une analyse topologique préalable du système doit être réalisée. La défaillance de tel composant entraîne-t-elle la défaillance du système? Si la réponse est affirmative alors ce composant doit être associé en série. La figure III.2, montre le schéma de la modélisation.

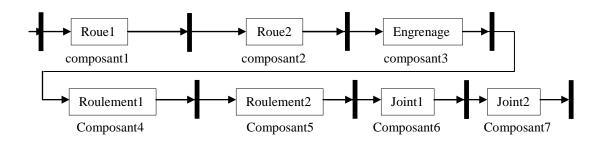


Figure III.8. Schéma bloc du réducteur

III.5.1.2 Calcul et résultats

La fiabilité du système est calculée en fonction des fiabilités des sept composants qui le constituent. On calcul les valeurs de R(t) et F(t) pour différents paramètres de la loi de Weibull à savoir :

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$
 et $F(t) = 1 - R(t)$

Composant 1: $\gamma = 0$, $\beta = 0.1$ et $\eta = 38000$

La courbe de la figure III.9 donne l'allure des fonctions R (t) et F (t) de la roue dentée 1.

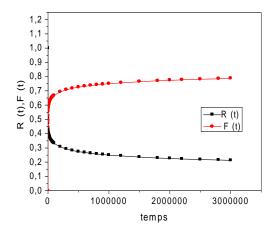


Figure III.9 courbes de R (t) et F (t) de la roue dentée 1

Composant 2: $\gamma = 0$, $\beta = 0.4$ et $\eta = 70500$

La courbe de la figure III.10 donne l'allure des fonctions R (t) et F(t) de la roue dentée 2

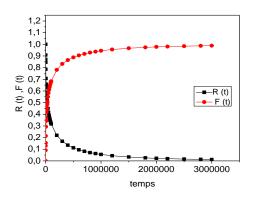


Figure III.10. courbes de R (t) et F (t) de la roue dentée 2

Composant 3 : $\gamma = 0$, $\beta = 0.7$ **et** $\eta = 1966600$

La courbe de la figure III.11 donne l'allure des fonctions R(t) et F(t) de l'engrenage

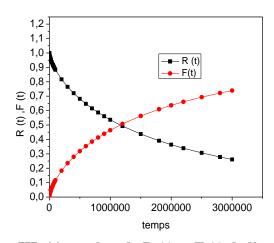


Figure III. 11 courbes de R (t) et F (t) de l'engrenage

Composant 4 : γ =0, β =1 **et** η =9100000

La courbe de la figure III.12 donne l'allure des fonctions R(t) et F(t) pour le roulement 1

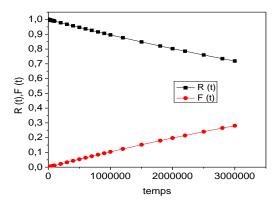


Figure III. 12 courbes de R (t) et F (t) de roulement 1

Composant 5: $\gamma = 0$, $\beta = 1.5$ et $\eta = 1520000$

La courbe de la figure III.13 donne l'allure des fonctions R(t) et F(t) pour le roulement 2

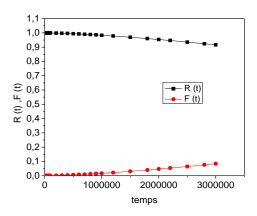


Figure III. 13 courbes de R (t) et F (t) de roulement 2

Composant 6 : $\gamma = 0$ $\beta = 3$ et $\eta = 66000000$

La courbe de la figure III.14 donne l'allure des fonctions R (t) et F (t) pour le joint à lèvre radial 1

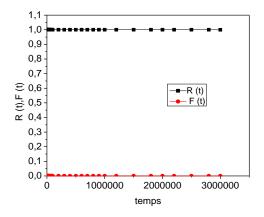


Figure III. 14 courbes de R (t) et F (t) de joint à lèvre radial 1

Composant 7 : $\gamma = 0$, $\beta = 10$ et $\eta = 6000000$

La courbe de la figure III.15 donne l'allure des fonctions R(t) et F(t) pour le joint à lèvre radial2

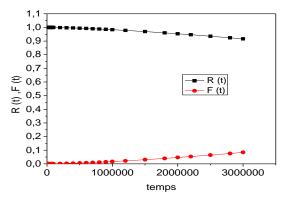


Figure III. 15 courbes de R (t) et F (t) de joint à lèvre radial 2

Sur les figures III.16.a et III.16.b, sont rassemblées les courbes précédentes relatives à R(t) et F(t) pour pouvoir faire une meilleure comparaison.

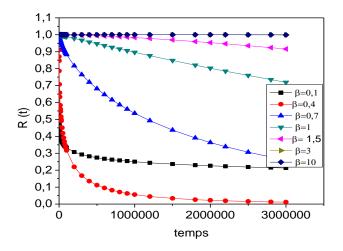


Figure IV. 16. a. Courbes R (t) pour $\beta = 0.1, 0.4, 0.7, 1, 1.5, 3, 10$

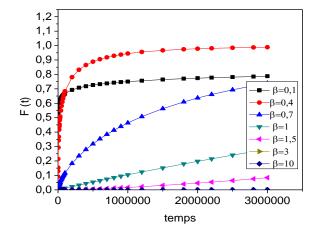


Figure IV.16.b. Courbe F (t) pour $\beta = 0.1, 0.4, 0.7, 1, 1.5, 3, 10$

Conclusion

A travers le précédant calcul, nous avons montré l'importance de l'utilisation de la loi de Weibull comme modèle pour décrire le comportement des systèmes mécaniques. Les différentes courbes obtenues pour le réducteur montrent clairement que la durée de vie du mécanisme est liée à celle de la roue dentée N° 1 et 2 en premier lieu Ce qui est à notre sens plus logique. Ceci conduit de manière générale à une bonne maîtrise de la maintenance de tout le système en mettant l'accent sur les éléments les plus pénalisants.

III.5.2 Cas d'une Vis sans fin

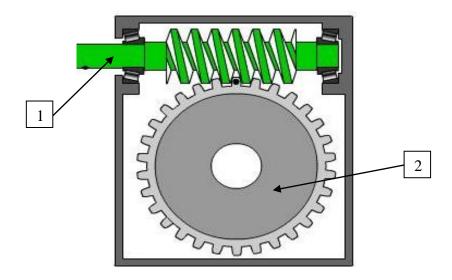


Figure III.17. vis sans fin

Tableau. III.2. Données Des composants de la vis sans fin

Composant		β	η	N d'entrée	N sortie
composant1	vis sans fin	0,1-0,4-0,7-1-1,5- 3-10	540000	1500	
composant 2	roue d'entrée	0,1-0,4-0,7-1-1,5- 3-10	43200		120

III.5.2.1 Calcul et résultats

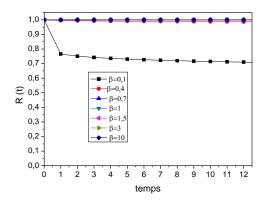
La fiabilité du système est calculée en fonction des fiabilités de deux principaux composants qui le constituent. On calcul les valeurs de R(t) et F(t) pour différents paramètres de la loi de Weibull à savoir :

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$
 et $F(t) = 1 - R(t)$

Dans le calcul ci-après, on considère $\gamma = 0$ et en faisant varier les deux autres paramètres à savoir β et η .

Cas 1: $\gamma = 0$ $\eta = 540000$

La courbe de la figure III.18 donne l'allure des fonctions R(t) et F(t) de la vis sans fin à η constante et avec variation du coefficient de forme β .



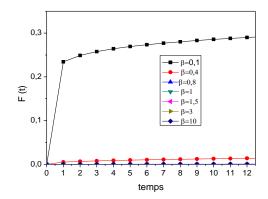
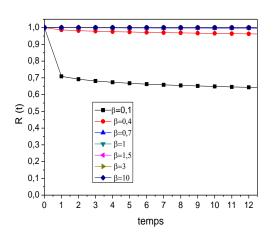


Figure III.18 La courbe de R (t) et F (t) de la vis sans fin. Pour $\eta = 540000$

Cas 2: $\gamma = 0$ $\eta = 43200$

La courbe de la figure III.19 donne l'allure des fonctions R (t) et F (t) de la roue à η constante et avec variation du coefficient de forme β .



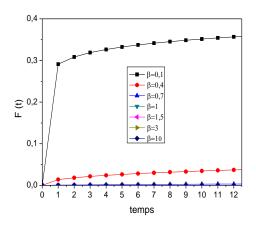
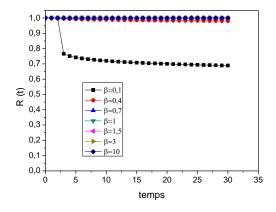


Figure III.19 La courbe de R (t) et F (t) de la roue. Pour η = 43200

Dans le calcul ci-après, on considère $\gamma = 2$ en faisant varier les deux autres paramètres à savoir β et η .

Cas 1: $\gamma = 2 \eta = 540000$

Le calcul de R (t) et F (t) se fait à partir des mêmes expressions que précédemment. La courbe de la figure III.20 montre l'évolution de R (t) et F (t) pour γ = 2 relative à la vis sans fin à $\mathbf{\eta}$ constante et avec variation du coefficient de forme β .



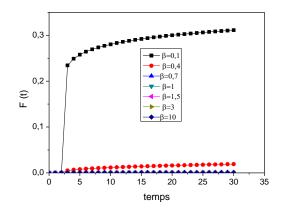
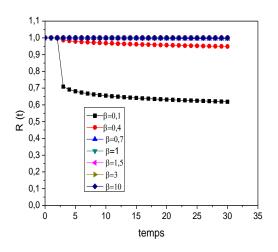


Figure III.20 La courbe de R (t) et F (t) de la vis sans fin. Pour $\eta = 540000$

Cas 2: $\gamma = 2 \eta = 43200$

La courbe de la figure IV.46 montre l'évolution de R (t) et F (t) pour γ = 2 relative à la roue. à η constante et avec variation du coefficient de forme β .



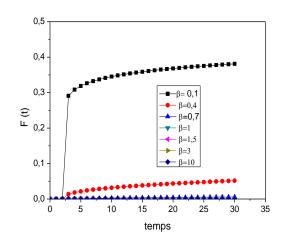


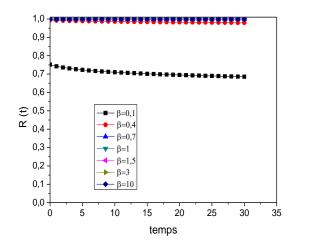
Figure III.21 La courbe de R (t) et F (t) de la roue. Pour η =43200

Dans le calcul ci-après, nous avons on considère γ = -2 en faisant varier les deux autres paramètres à savoir β et η .

Cas 1: $\gamma = -2 \eta = 540000$

Le calcul de R (t) et F (t) se fait à partir des mêmes expressions que précédemment.

La courbe de la figure III.22 montre l'évolution de R (t) et F (t) pour γ = -2 relative à la vis sans fin à $\mathbf{\eta}$ constante et avec variation du coefficient de forme β .



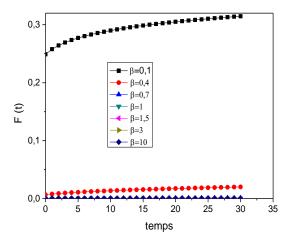
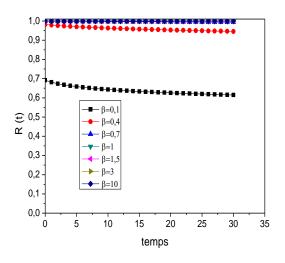


Figure III.22 La courbe de R (t) et F (t) de la vis sans fin. Pour η = 540000

Cas 2: γ = **-2** η =43200

La courbe de la figure IV, 48 montres l'évolution de R (t) et F (t) pour γ = 2 relative à la roue à η constante et avec variation du coefficient de forme β .



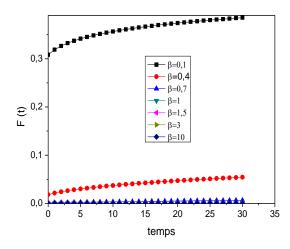


Figure III.23 La courbe de R (t) et F (t) de la roue. Pour η =43200

III.5.3 Application pneus

Pour cet exemple nous appliquons la loi de Weibull avec un ajustement.

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$

Tableau III.3 des données des pneus :

Temps	Pneus défaillants durant la période	Nombre cumulé de pneus défaillants	Nombre de pneus restant
0	-	0	2500
1	5	5	2495
2	15	20	2480
3	40	60	2440
4	90	150	1350
5	160	310	2190
6	200	510	1990
7	250	760	1740
8	350	1110	1390
9	600	1710	790
10	450	2160	340
11	250	2410	90
12	60	2470	30
13	20	2490	10
14	10	2500	0
15	0	2500	0

III.5.3.1.Calcul et résultats

La fiabilité des pneus est calculée en fonction des fiabilités. On calcul les valeurs de R (t) et λ (t) pour différents paramètres de la loi exponentielle à savoir :

$$=> \alpha = 0.12, \beta = 4.4, \eta = 1$$

Tableau III. 4 des calculs et résultats :

Instant t	Pneus défaillants	Nbre cumulé de	Nbre de pneus	R(t)	λ(t)
mstant t	durant la période	pneus défaillants	restants	11(0)	
0	-	0	2500	1.000	-
1	5	5	2495	0.998	0.002
2	15	20	2480	0.992	0.006
3	40	60	2440	0.976	0.016
4	90	150	2350	0.940	0.037
5	160	310	2190	0.876	0.068
6	200	510	1990	0.796	0.091
7	250	760	1740	0.696	0.126
8	350	1110	1390	0.556	0.201
9	600	1710	790	0.316	0.432
10	450	2160	340	0.136	0.570
11	250	2410	90	0.036	0.735
12	60	2470	30	0.012	0.667
13	20	2490	10	0.004	0.667
14	10	2500	0	0.000	1.000
15	0	2500	-	-	-

Cas 1 : $\alpha = 0.12$ $\beta = 4.4$

$$R(t) = \frac{nombre\ des\ pneus\ restants}{nombre\ total\ des\ pneus}$$

$$\lambda(t) = \frac{pneus \ d\'efaillants \ durant \ la \ p\'eriode}{nombre \ des \ pneus \ restants}$$

La courbe de la figure III.24 donne l'allure des fonctions R (t)

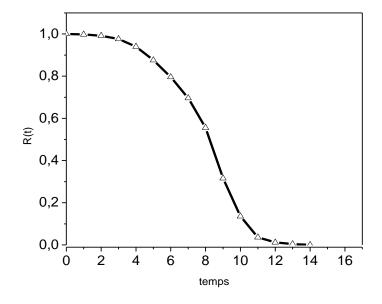


Figure III.24 La courbe de R (t) des pneus

La courbe de la figure III.25 donne l'allure des fonctions λ (t)

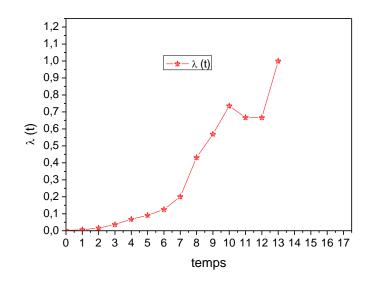


Figure III.25.La courbe de λ (t) des pneus

III.5.3.1.Calcul et résultats

La fiabilité des pneus est calculée en fonction des fiabilités. On calcul les valeurs de R (t) et λ (t) (théorique) pour différents paramètres de la loi de Weibull à savoir :

$$R(t)_{th\acute{e}orique} = e^{-(\alpha - t)^{\beta}}$$

 $\alpha = 0.12 \quad \beta = 4.4$

Tableau III.5 des calculs et résultats :

t	$R(t)_{th\'eorique}$	$\lambda(t)_{thcute{e}orique}$	$R(t)_{observ\acute{ ext{e}}}$	$\lambda(t)_{observcute{e}}$
0	1.000	-	1.000	-
1	1.000	0.000	0.998	0.002
2	0.998	0.004	0.992	0.006
3	0.989	0.016	0.976	0.016
4	0.961	0.044	0.940	0.037
5	0.900	0.093	0.876	0.068
6	0.790	0.173	0.796	0.091
7	0.629	0.292	0.696	0.126
8	0.434	0.460	0.556	0.201
9	0.246	0.686	0.316	0.432
10	0.107	0.981	0.136	0.570
11	0.034	1.357	0.036	0.735
12	0.007	1.824	0.012	0.667
13	0.001	2.395	0.004	0.667
14	0.000	3.081	_	1.000
15	0.000	3.895	-	-

La courbe de la figure III.26 donne l'allure des fonctions $R(t)_{th\'eorique}$ et $R(t)_{observ\'e}$

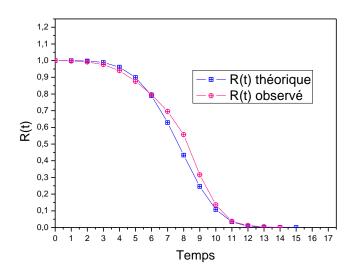


Figure III.26 La courbe de R (t) théorique et R (t) observé des pneus

La courbe de la figure III.27 donne l'allure des fonctions λ (t) théorique et λ (t) observé

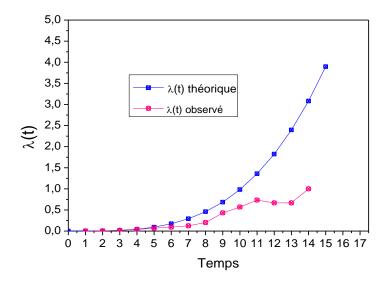


Figure III.27.La courbe de λ (t) théorique λ (t) observé des pneus

Conclusion

Nous constatons à travers cette application que la loi exponentielle n'est qu'une forme aménagée de celle de Weibull. L'ajustement de cette dernière a permis de décrire le comportement de la défaillance du pneumatique. Nous remarquons la bonne concordance des courbes théoriques et observées. Les différents paramètres de la loi de Weibull peuvent êtres modifiés suivant la nature du comportement du matériel.

B-MANTENABILITE

I. Définition

Dans des conditions données, la maintenabilité est l'aptitude d'un bien à être maintenu ou rétabli dans un état où il peut accomplir une fonction requise, lorsque la maintenance est accomplie dans des conditions données, en utilisant des procédures et des moyens prescrits.

Maintenabilité = être rapidement dépanné

C'est aussi la probabilité de rétablir un système dans des conditions de fonctionnement spécifiées, en des limites de temps désirées, lorsque la maintenance est accomplie dans des conditions données, en utilisant des procédures et des moyens prescrits.

A partir de ces définitions, on distingue :

- La maintenabilité intrinsèque : elle est « construite » dès la phase de conception à partir d'un cahier des charges prenant en compte les critères de maintenabilité (modularité, accessibilité, etc).
- La maintenabilité prévisionnelle : elle est également « construite », mais à partir de l'objectif de disponibilité.
- La maintenabilité opérationnelle : elle sera mesurée à partir des historiques d'interventions.

L'analyse de maintenabilité permettra d'estimer la MTTR ainsi que les lois probabilistes de maintenabilité (sur les mêmes modèles que la fiabilité).

I.1 Commentaires:

La maintenabilité caractérise la facilité à remettre ou de maintenir un bien en bon état de fonctionnement. Cette notion ne peut s'appliquer qu'a du matériel maintenable, donc réparable.

« <u>Les moyens prescrits</u> » englobent des notions très diverses : moyens en personnel, appareillages, outillages, etc.

La maintenabilité d'un équipement dépend de nombreux facteurs :

Facteurs liés à	Facteurs liés au	Facteurs liés à la
l'EQUIPEMENT	CONSTRUCTEUR	MAINTENANCE
documentationaptitude au démontagefacilité d'utilisation	 conception qualité du service après-vente facilité d'obtention des pièces de rechange coût des pièces de rechange 	 préparation et formation des personnels moyens adéquats études d'améliorations (maintenance amélioratives)

Remarque:

On peut améliorer la maintenabilité en :

- ☐ Développant les documents d'aide à l'intervention
- ☐ Améliorant l'aptitude de la machine au démontage (modifications risquant de coûter cher)
- ☐ Améliorant l'interchangeabilité des pièces et sous ensemble.

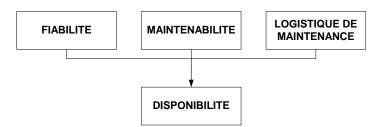
I.2 Maintenabilité et maintenance :

Pour un technicien de maintenance, la maintenabilité est la capacité d'un équipement à être rétabli lorsqu'un besoin de maintenance apparaît. L'idée de « facilité de maintenir » se matérialise par des mesures réalisées à partir des durées d'intervention.

Il est évident que la maintenabilité intrinsèque est le facteur primordial pour que la maintenance soit performante sur le terrain. En effet, une amélioration ultérieure de la maintenabilité initiale n'est jamais chose facile.

Il est donc indispensable que la maintenance sache définir ses besoins et les intégrer au cahier des charges d'un équipement nouveau afin que celui-ci puisse être facilement maintenable.

I.3 Maintenabilité et disponibilité :



Le schéma ci-dessus rappelle les composantes de la disponibilité d'un équipement. Il met en évidence :

- Que la maintenabilité est un des leviers d'action pour améliorer la disponibilité et donc la productivité d'un équipement.
- Que la fiabilité et la maintenabilité sont 2 notions parallèles de même importance (et dont les démarches d'analyse sont semblables).

I.4 Construction de la maintenabilité intrinsèque :

La construction de cette maintenabilité doit prendre en compte un certain nombre de critères listés en pages suivantes et intégrés dès la phase de conception d'un nouvel équipement.

Modularité et interchangeabilité :

La conception modulaire d'un équipement repose sur l'idée de la simplification de sa fabrication, mais aussi de la simplification de sa maintenance grâce à l'interchangeabilité des modules.

La facilité de l'interchangeabilité (carte électronique par exemple) est un facteur favorisant le transfert de tâches vers les opérateurs, dans le cas de la TPM. Le module de remplacement peut provenir

- d'un stock interne (module neuf ou remis en stock après réparation) ;
- d'un stock externe (module ou composant tenu en stock chez le fournisseur);
- du bien lui-même (par échange de deux éléments constitutifs, redondance) ;
- d'un bien identique hors service ou déclassé (cannibalisation) ;
- d'un bien différent comportant le même module;
- d'un atelier de fabrication. Dans le cas d'un composant, il doit être fabriqué dans le respect des spécifications et des tolérances normalisées (joint d'étanchéité, coussinet de palier, etc).

Cela offre une gamme large de solutions pour organiser une intervention. L'interchangeabilité suppose le respect des normes (ajustements, filetages, produits, lubrifiants, raccords, connexions, etc).

> Standardisation :

Elle vise à la simplification par réduction aussi bien en matière de fabrication que de logistique et de maintenance. En maintenance, elle s'exerce à tous les niveaux techniques et commerciaux, en permettant la réduction des stocks aussi bien que la rapidité et la simplicité des interventions. Prenons quelques exemples :

- Les équipements : il est plus facile de maintenir 10 machines de même type que de types différents.
- Les technologies : il est plus facile de se tenir à un modèle d'automate et de former les techniciens à sa programmation que de multiplier les formations.
- Les modules : utiliser 20 moteurs électriques ou 20 pompes centrifuges identiques offre plus de facilité d'organisation de la maintenance que s'ils étaient tous différents.
- Les outillages : démonter tout un module avec une clé de 13 est plus simple que d'avoir à inventorier toute sa caisse à outils.
- Les composants élémentaires : quincaillerie, visserie, graisseurs, robinets, trappes de visites, interrupteurs sont autant d'éléments qu'il est facile de standardiser.
- Les lubrifiants et leur fournisseur : ne pas suivre les préconisations par références de marque, qui conduiraient à une profusion de fûts. Il existe des tableaux d'équivalence et il suffit de 5 types d'huile et de 2 types de graisse pour assurer la lubrification d'un site industriel.
- Les procédures : standardiser leur présentation facilite l'exploitation.
- Les fournisseurs : un équilibre est à trouver entre le monopole accordé à un fournisseur privilégié et la multiplication des sources.

Notons que la normalisation est un outil de standardisation, qui elle-même facilite interchangeabilité.

> Accessibilité :

Elle est caractérisée par la rapidité avec laquelle un élément peut être atteint. Elle doit être d'autant mieux maîtrisée que la fréquence probable des opérations de maintenance est grande. C'est le cas des filtres, des graisseurs, des points de réglage, de mesure, de surveillance, etc.

Dans certains cas, l'accessibilité peut être définie sur des bases réglementaires touchant à la sécurité (exemple : échafaudage) ou ergonomiques (dimensions de l'ouverture d'un « trou d'homme » ou d'une trappe de visite).

> Aptitude à la pose et à la dépose :

Elle concerne les modules qui nécessitent un échange standard en préventif ou en cas de défaillance. Elle concerne les liaisons à supprimer pour isoler le module de son ensemble.

Prenons l'exemple d'un groupe moteur électrique / pompe centrifuge : la dépose se rapporte à l'électricité (consignation, accès au bornier, connectique), à l'hydraulique (vannes d'isolement, vidange, boulonnerie des brides), à la mécanique (boulonnerie de la fixation). Des solutions plus ou moins rapides existent pour faciliter chacune de ces opérations de maintenance. Quelques problèmes à optimiser pour améliorer l'aptitude à la pose / dépose

- réduction du nombre de liaisons ;
- réduction du nombre d'outils à utiliser (standardisation des liaisons);
- assurer un pré positionnement à la pose : repères, tétons de centrage, rails de guidage, détrompeurs ;
- absence de réglages, préférable à des réglages longs et délicats ;
- facilité d'accès.

Notons que l'interchangeabilité d'un module se fait souvent en « temps réel » d'indisponibilité de l'équipement, contrairement à sa remise en état réalisée en temps différé. Son aptitude à la dépose est donc un facteur de disponibilité de l'équipement.

> Démontabilité :

Elle concerne l'accès plus ou moins facile et plus ou moins rapide à des composants potentiellement « fragiles » et inaccessibles lorsque le sous-ensemble est monté. Elle se caractérise par des manœuvres rapides (portes de visites et capots avec verrous et charnières) demandant un minimum d'outils standards et facilitées par une documentation efficace (perspective éclatée montrant le fractionnement des éléments).

> Détectabilité :

Elle concerne la réduction des temps de localisation et de diagnostic, principalement pour les PC des équipements. Un logiciel de recherche et de localisation des défauts, les outils d'aide au diagnostic, une supervision, mais aussi un simple voyant ou le repérage des câbles et des points de mesure sont autant d'éléments de réduction des temps d'investigation. La réalisation d'une AMDEC amène le concepteur à évaluer le critère « détectabilité » et à proposer des solutions si nécessaire.

> Autres critères de maintenabilité :

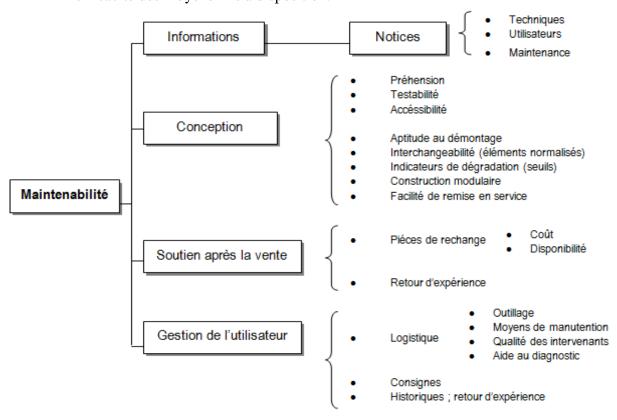
Tout ce qui peut être intégré à la conception d'un équipement afin de faciliter sa maintenance ultérieure est un critère de maintenabilité. Il en est ainsi pour l'installation de compteurs d'unités d'usage, pour les taraudages permettant la fixation d'un accéléromètre de surveillance vibratoire, pour le repérage visuel des graisseurs, pour la présence d'un anneau d'élingage sur le bâti, etc.

- le soutien logistique accompagnant l'équipement est également un critère de maintenabilité. Quelques exemples :
 - la possibilité de dépannage par téléphone (télémaintenance) ;
 - la formation des techniciens aux interventions correctives probables;

- l'obtention rapide de pièces de rechange sans ambiguïté de références ;
- le sérieux, la pérennité et la proximité du SAV

La logistique de maintenance est distincte de la maintenabilité. Beaucoup d'éléments de la logistique de maintenance convergent avec les éléments de maintenabilité intrinsèque afin de réduire les temps d'intervention et les coûts d'indisponibilité des équipements industriels. Citons en particulier :

- la qualité de la documentation technique (DTE),
- la disponibilité des rechanges en stock interne,
- l'efficacité des moyens mis à disposition.



II – ANALYSE DE LA MAINTENABILITE OPERATIONNELLE :

Comme pour la fiabilité, les analyses de Maintenabilité opérationnelle se justifient :

- Dans le cadre d'une évaluation précise de la disponibilité opérationnelle d'un équipement.
- Dans le cadre de la génération de standards de temps en interne afin d'améliorer l'ordonnancement ou de mieux maîtriser certains coûts directs.
- Dans le cadre de la rédaction de clauses de maintenabilité quantifiées pour de futurs équipements.
- Dans le cadre de la recherche d'amélioration permanente de l'efficacité des actions de maintenance.

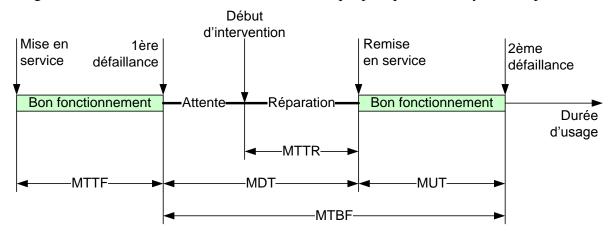
Les analyses reposent sur le traitement d'échantillons de N durées d'intervention TTR collectées sur l'historique des interventions relatives à un équipement. Comme pour la fiabilité, ces données peuvent se rapporter à un système complet ou se limiter aux seules interventions sur un module sensible en particulier.

III – APPROCHE MATHEMATIQUE DE LA MAINTENABILITE M(t) :

La maintenabilité peut se caractériser par sa MTTR (Mean Time To Repair) ou encore Moyenne des Temps Techniques de Réparation.

$$MTTR = \frac{\sum Temps \ d'intervention pour \ n \ pannes}{Nombre \ de \ pannes}$$

La figure ci-dessous schématise les états successifs que peut prendre un système réparable :



Les N valeurs de l'échantillon des durées d'intervention seront relevées à partir des bons de travaux complétés, puis portés sur l'historique d'un équipement, que ce soit sous une forme « papier » ou « écran ».

L'analyse de maintenabilité peut porter sur l'ensemble de l'équipement (afin de déterminer sa disponibilité opérationnelle le plus souvent), ou sur l'un quelconque de ses modules. C'est ainsi que sont élaborés par exemple les barèmes de temps de réparation automobile.

Il existe une analogie forte entre les notions de fiabilité et de maintenabilité. Les démarches d'analyse sont donc semblables :

- □ La VA : c'est la durée d'intervention corrective ou préventive de maintenance. Elle se note *t* = *TTR* (*Time To Repair* ou *Temps Technique de Réparation*), de moyenne MTTR.
- □ La densité de probabilité est notée g(t). La distribution des durées d'intervention est cependant dissymétrique. Les lois de probabilité ajustables à cette dissymétrie sont la loi « *log normale* », la loi « *gamma* » et la loi « *LVE* » des valeurs extrêmes appelée aussi loi de *Gumbel*.
- La fonction de répartition est notée M(t). Elle exprime la probabilité qu'une intervention ait une durée TTR < t, ou que le $M(t) = 1 e^{-\mu t}$ système en panne à t = 0 soit rétabli à t :

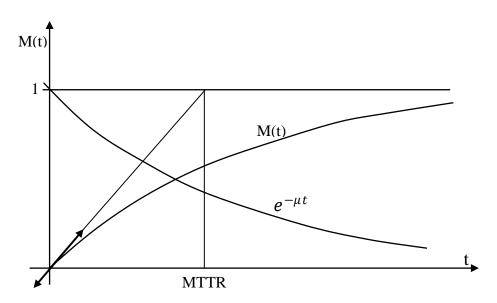
$$M(t) = g(t). dt = Prob(TTR < t).$$

De façon analogue au taux de défaillance, on définit un **taux de réparation** $\mu(t)$ tel que :

$$E(t) = MTTR = \tau = \frac{1}{\mu}$$

$$\mu(t) = \frac{g(t)}{1 - M(t)}$$

Les calculs prévisionnels de maintenabilité reposent sur l'hypothèse **exponentielle**, signifiant ici que le taux de réparation est supposé constant. La répartition des TTR est alors exponentielle.



Analogie des analyses de fiabilité et de maintenabilité :

FIABILITE	MAINTENABILITE	
Probabilité « durée de bon fonctionnement »	Probabilité de « durée de réparation »	
$R(t) = P(T_p > t)$	$M(t) = P(T_R < t)$	
Variable aléatoire : temps de fonctionnement	Variable aléatoire : temps de réparation	
Densité de probabilité du temps avant défaillance : f(t)	Densité de probabilité du temps de réparation : $g(t)$	
Fiabilité :	Maintenabilité :	
Fiabilité: $R(t) = \int_{t}^{+\infty} f(t)dt = e^{-\int_{0}^{t} \lambda(t)dt}$	Maintenabilité : $M(t) = \int_0^t g(t) dt = 1 - e^{-\int_0^t \mu(t) dt}$	

MTBF= mean time between failures :

$$MTBF = \int_0^{+\infty} t \cdot f(t) dt = \int_0^{+\infty} R(t) dt$$

Relation fondamentale:

$$f(t) = \lambda(t). e^{-\int_0^t \lambda(t)dt}$$

MTTR= mean time to repair:

$$MTTR = \int_0^{+\infty} t. g(t) dt$$

Relation fondamentale:

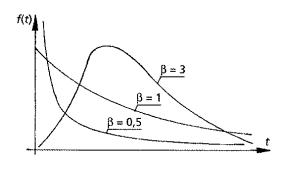
$$g(t) = \mu(t). e^{-\int_0^t \mu(t)dt}$$

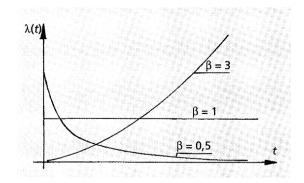
Lois usuelles:

Si λ = constant, loi exponentielle:

$$R(t) = e^{-\lambda t}$$

Si $\lambda(t)$ est variable, loi de Weibull (loi à 3 paramètres)





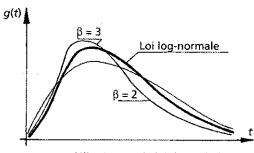
Application: systèmes réparables ou non

Lois usuelles:

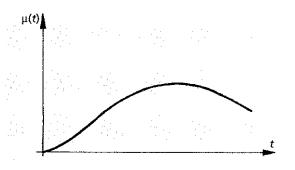
Si μ = constant, loi exponentielle:

$$M(t) = 1 - e^{-\mu t}$$

Si $\mu(t)$ est variable, loi log-normale (distribution fréquence des durées d'interventions de maintenance), paramètres m et σ



Une modélisation par la loi de Weibull avec $2 < \beta < 3$ est possible



Application: systèmes réparables

IV Exemples d'application

On possède un échantillon de N=19 valeurs issues du retour de bons de travaux en clientèle, dans le cadre d'un contrat de maintenance. Ces interventions correctives se rapportent à un même module fragile de l'équipement à maintenir. Une révision des prix du contrat s'impose. Mais sur quelle base de temps ?

L'objectif est donc de déterminer, à l'aide de la loi LVE la loi de maintenabilité du module et sa MTTR.

☐ Les TTR relevés et classés par ordre croissant sont les suivants :

Ordre i	TTR (heures)	$M(t_i)$
1	3.4	
2	3.6	
3	4.3	
4	4.5	
5	4.8	
6	5.5	
7	5.9	
8	6.4	
9	6.8	
10	7.3	
11	8	
12	8.5	
13	9	
14	9.7	
15	10.3	
16	11.5	
17	12.7	
18	13.9	
19	16	

La loi des valeurs extrêmes LVE a pour fonction de répartition :

$$M(t) = e^{-e^{-a(t-u)}} = P(TTR < t)$$

Les paramètres « a » et « u » représentent respectivement l'inverse de la pente du « papier fonctionnel de Gumbel » et le « paramètre de localisation ».

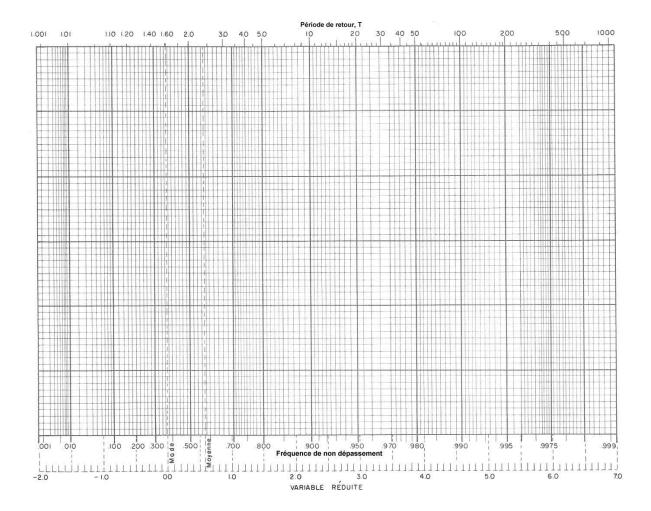
L'espérance mathématique de la loi a pour valeur :

$$E(t) = MTTR = u + \frac{0.5778}{a}$$

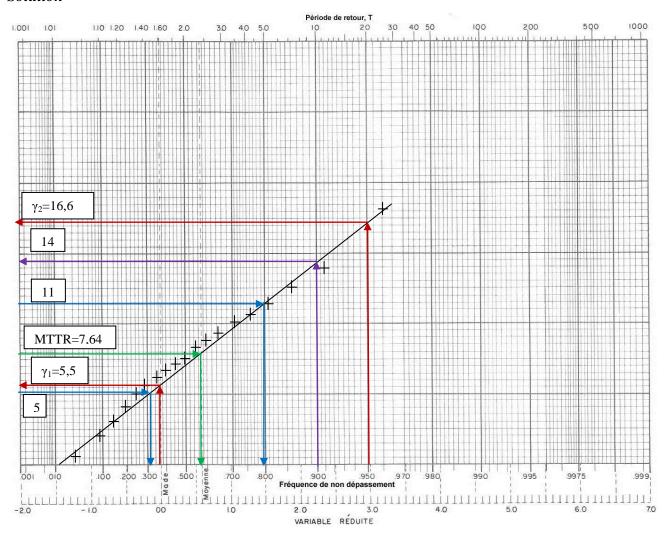
Travail demandé:

- 1. Déterminer les valeurs des M(t_i) par approximation des rangs médians et compléter le tableau ci-dessus
- 2. Porter les couples de points (M(t_i), TTR_i) sur le papier fonctionnel de Gumbel
- 3. Tracer la droite de régression
- 4. Déterminer les paramètres « a » et « u » de la loi de Gumbel
- 5. Etablir la loi de maintenabilité
- 6. Calculer la MTTR

- 7. Calculer la probabilité associée à la MTTR
- 8. Calculer la probabilité de terminer en moins de 11 heures puis en moins de 5 heures
- 9. Refaire les questions 7 et 8 de manière graphique
- **10.** Déterminer le TTR correspondant à une probabilité de 90%



Solution



Recherche des paramètres de la loi :

Pour $M(t_i) = 0.37$, on trouve $\gamma_1 = 5.5$ heures

Pour $M(t_i) = 0.95$, on trouve $\gamma_2 = 16.6$ heures

A $M(t_i) = 0.37$ est associée la variable réduite 0

A $M(t_i) = 0.95$ est associée la variable réduite 3

 $u = paramètre de localisation = \gamma_1 = 5,5 heures$

$$\frac{1}{a} = pente = \frac{\gamma_2 - \gamma_1}{3 - 0} \Rightarrow a = \frac{3}{\gamma_2 - \gamma_1}$$

$$a = \frac{3}{16.6 - 5.5} = 0.27$$

Loi de maintenabilité :

$$M(t) = e^{(-e^{-0.27(t-5.5)})}$$

MTTR:

$$E(t) = MTTR = u + \frac{0.5778}{a} = 5.5 + \frac{0.5778}{0.27} = 7.64 \text{ heures}$$

Probabilité associée à la MTTR:

$$M(7.64) = e^{(-e^{-0.27(7.64-5.5)})} = 0.57$$

Probabilités associées à des TTR de 5h et 11h :

$$M(5) = e^{(-e^{-0.27(5-5.5)})} = 0.32$$

$$M(11) = e^{(-e^{-0.27(11-5.5)})} = 0.80$$

TTR associé à une probabilité de 90% :

$$M(t) = e^{(-e^{-0.27(t-5.5)})} = 90\%$$

$$-e^{-0.27(t-5.5)} = ln0.9 \Rightarrow e^{-0.27(t-5.5)} = -ln0.9$$

$$-0.27(t - 5.5) = \ln(-ln0.9)$$

$$t = \frac{ln(-ln0.9)}{-0.27} + 5.5 = 13.83$$

C-DISPONBLITE

Chapitre I : Concept de Disponibilité

Chapitre II : La Disponibilité des Systèmes Réparables

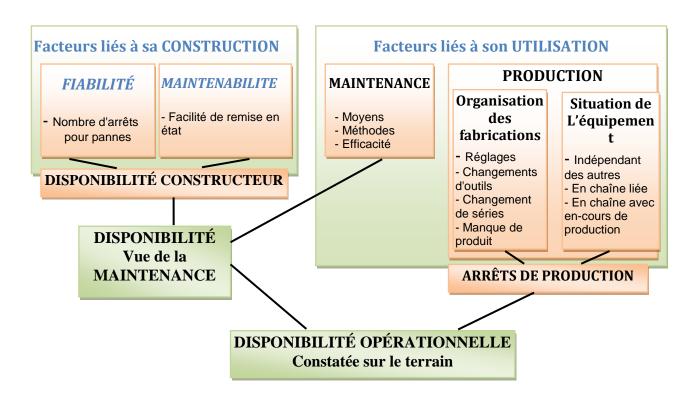
Chapitre I : Concepts de Disponibilité

I. Introduction

La politique de maintenance d'une entreprise est fondamentalement basée sur la disponibilité du matériel impliqué dans le système de production. Pour qu'un équipement présente une bonne disponibilité, il doit :

- ☐ Avoir le moins possible d'arrêts de production
- ☐ Etre rapidement remis en bon état s'il tombe en panne

La disponibilité d'un équipement dépend de nombreux facteurs :



La disponibilité allie donc les notions de fiabilité et de maintenabilité Augmenter la disponibilité passe par :

- ☐ L'allongement de la MTBF (action sur la fiabilité)
- ☐ La notion de le MTTR (action sur la maintenance)

II. Quantification de la disponibilité :

La disponibilité peut se mesurer :

- sur un intervalle de temps donné (disponibilité moyenne),
- à un instant donné (disponibilité instantanée),
- à la limite, si elle existe, de la disponibilité instantanée lorsque t→∞ (disponibilité asymptotique)

II.1. Disponibilité moyenne

 La disponibilité moyenne sur intervalle de temps donné peut être évaluée par le rapport suivant :

$$D_o = \frac{temps\ de\ disponibilit\'e}{temps\ de\ disponibilt\'e + temps\ d'indisponibilt\'e}$$

$$ou \quad D_o = \frac{TCBF}{TCBF + TCI}$$

Où:

- TCBF = temps cumulé de bon fonctionnement
- TCI = Temps cumulé d'immobilisation.

Remarque:

Le temps cumulé d'immobilisation comprend les temps d'intervention et les temps logistique.

- En l'exprimant par rapport à des temps moyens, la disponibilité moyenne s'écrit :

$\frac{\textit{Temps moyen de disponibilit\'e}}{\textit{Temps moyen de disponibilit\'e} + \textit{temps moyen d'indisponibilit\'e}} = \frac{\textit{TMD}}{\textit{TMD} + \textit{TMI}}$

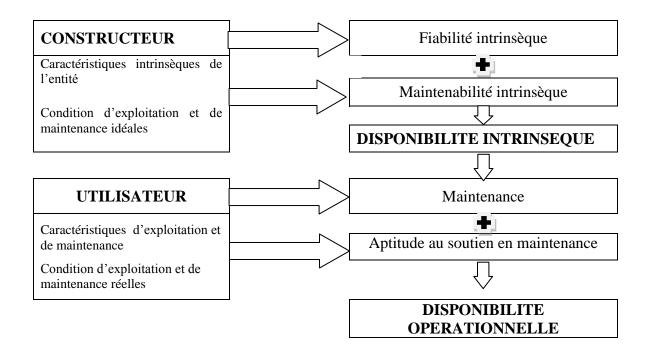
En anglais: *TMD* = MUT (Mean Up Time) et *TMI* = MDT (Mean Down Time).

Exemple:

Dans des équipements de surveillance ou de secours (tels que la surveillance d'un réacteur nucléaire, le pilote automatique d'un avion, la source d'énergie autonome d'un engin spatial), l'indisponibilité doit être $< 10^{-5}$.

II.2. Disponibilité intrinsèque :

Elle exprime le point de vue du concepteur. Ce dernier a conçu et fabriqué le produit en lui donnant un certain nombre de caractéristiques intrinsèques, c'est à dire des caractéristiques qui prennent en compte les conditions d'installation, d'utilisation, de maintenance et d'environnement, supposées idéales.



Exemple:

Un fabricant de contacteur indique que tel type de contacteur peut supporter 1 million de cycles de manœuvres dans des conditions d'utilisation bien précises.

Le calcul de la disponibilité intrinsèque $\mathbf{D_i}$ fait appel à 3 paramètres :

⇒ TBF : temps de bon fonctionnement

⇒ TTR : temps techniques de réparation

⇒ TTE : temps techniques d'exploitation

$$D_i = \frac{TBF}{TBF + TTR + TTE}$$

Exemple:

Un fabricant de machines-outils prévoit en accord avec son client la disponibilité intrinsèque d'une machine en prenant compte des conditions idéales d'exploitation et de maintenance :

- \Rightarrow Temps d'ouverture mensuel = 400 heures
- \Rightarrow 1 changement de fabrication par mois = 6 heures
- ⇒ Maintenance corrective mensuelle : taux de défaillance = 1 pannes / mois ; TTR estimé = 4 heures
- ⇒ Maintenance préventive mensuelle = 3 heures

$$TBF = 400 - 6 - 4 - 3 = 387 \text{ heures}$$
 $TTE = 6 \text{ heures}$
 $Di = 387/(387 + 7 + 6) = 0,9675$
 $TTR = 4 + 3 = 7 \text{ heures}$
 $Di = 387/(387 + 7 + 6) = 0,9675$

II.3. Disponibilité opérationnelle

Il s'agit de prendre en compte les conditions réelles d'exploitation et de maintenance. C'est la disponibilité du point de vue de l'utilisateur.

Le calcul de **Do** fait appel aux mêmes paramètres **TBF**, **TTR** et **TTE** sauf que ces 3 paramètres ne sont plus basés sur les conditions idéales de fonctionnement mais sur les conditions réelles (historiques d'exploitation).

Exemple:

Sur la machine outil précédente, une étude d'exploitation sur un mois a conduit aux résultats réels suivants :

- ⇒ Temps d'ouverture mensuel = 400 heures
- \Rightarrow Changement de production = 6 heures
- ⇒ Manque approvisionnement matière = 3 heures
- \Rightarrow Maintenance préventive = 3 heures
- ⇒ Maintenance corrective = 8 heures (3 heures d'attente maintenance + 5 heures d'intervention)

TBF = $400 - 6 - 3 - 3 - 8 = 380$ heures	TTE = 6 + 3 = 9 heures	Di = 380 / (380 + 9 + 11) =
TTR = 3 + 8 = 11 heures		0,95

III Exemples d'application

Machine-outil:

Le responsable maintenance d'une entreprise a le fichier historique d'un matériel équipé d'un terminal de saisie des données de production. Ces données sont récapitulées dans le tableau ci-dessous.

N°	Défaillance	Cause	TBF en h.	TTR en h.
1	Moteur	Electrique	80	2
2	Moteur	Electrique	40	3
3	Broche	Mécanique	50	2
4	Broche	Mécanique	100	8
5	Avance	Electrique	60	5
6	Avance	Electrique	40	2
7	Lubrification	Mécanique	20	3
8	Lubrification	Hydraulique	5	4
9	Lubrification	Hydraulique	10	3
10	Lubrification	Hydraulique	20	1.25

- 1. Calculer le total des TBF.
- 2. Calculer le total des TTR.
- 3. Calculer la MTBF.
- 4. Calculer la MTTR.
- 5. Calculer la disponibilité intrinsèque.

Somme des TBF	Somme des TTR	MTBF	MTTR	Disponibilité intrinsèque

Solution:

N °	Défaillance	Cause	TBF en h.	Pièce de rechange	Coûts en €.	TTR en h.
1	Moteur	Electrique	80	Contacteur	300	2
2	Moteur	Electrique	40	Relais thermique	300	3
3	Broche	Mécanique	50	Courroie	150	2
4	Broche	Mécanique	100	Roulement	200	8
5	Avance	Electrique	60	Pignon	300	5
6	Avance	Electrique	40	Relais	150	2
7	Lubrification	Mécanique	20	Moteur	600	3
8	Lubrification	Hydraulique	5	Pignon	100	4
9	Lubrification	Hydraulique	10	Filtre	100	3
10	Lubrification	Hydraulique	20	Réservoir	0	1,25
			425			33,25

MTBF	MTTR	Di
42,5	3,325	92,74%

Chapitre II : La Disponibilité des Systèmes Réparables

I – Définition et Différentes Formes :

1.1 – Définition:

La disponibilité est l'aptitude d'un bien à être en état d'accomplir une fonction requise dans des conditions données, à un instant donné ou durant un intervalle de temps donné, en supposant que la fourniture des moyens extérieurs est assurée. Les moyens autres que la logistique de maintenance (personnel, documentation, rechanges, etc.) n'affectent pas la disponibilité d'un bien.

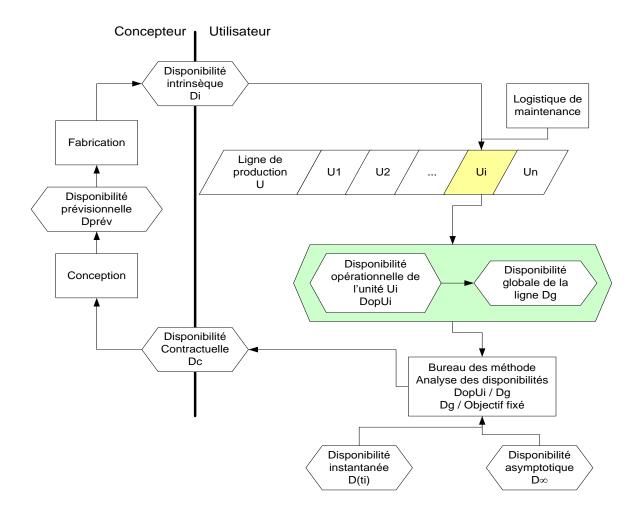
La disponibilité se traduit par « *Availability* » et se note souvent A(t).

Seuls les temps d'arrêt intrinsèques, appelés également « temps d'arrêt propres » et caractérisés par la **MTI** (moyenne des temps d'indisponibilité), seront relevés pour évaluer la disponibilité opérationnelle d'un système.

La figure ci-dessous montre les 3 facteurs d'influence de la disponibilité intrinsèque Di.



La figure ci-après schématise les différentes formes de disponibilité et leur contexte.



1.2 Explications sur les différentes disponibilités :

\triangleright Disponibilité « propre » ou opérationnelle de l'unité de production U_i :

Nommée **disponibilité opérationnelle** et notée *Dop*, l'évaluation de cette disponibilité est obtenue à partir des mesures de temps saisies à partir des états de l'équipement. Elle est évaluée à partir des relevés de temps relatifs :

- A une période de temps (1 jour, 1 semaine, n mois, 1 an)
- A un équipement ou, s'il s'agit d'une ligne de production, d'un tronçon Ui
- Aux temps d'indisponibilité propre de moyenne MTI et des durées de bon fonctionnement de moyenne MTBF suivant le modèle :

$$D_{op} = \frac{MTBF}{MTBF + MTI} < 1$$

On obtient une valeur moyenne de **Dop** mesurée sur un intervalle de temps Δt (d'une journée à un an). Cette disponibilité propre est un indicateur de gestion technique, spécifique à la maintenance. Elle suppose la prise en compte de « micro défaillances » par saisie automatique des « micro arrêts » et par imputation codée des causes intrinsèques d'arrêts, car elles représentent le gisement majeur d'amélioration de la disponibilité.

Le suivi périodique de **Dop** permet de tracer le graphe d'évolution montrant l'efficacité des actions de maintenance.

> Disponibilité opérationnelle globale ou résultante :

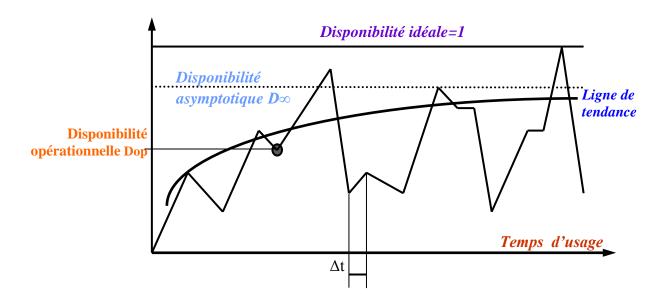
Notée Dg, cette disponibilité s'obtient par la composition des Dop d'unités, suivant présence et la valeur de stocks intermédiaires (ou stocks tampons) que la logique de flux tendu tend à supprimer.

Elle constitue un gisement d'amélioration de la productivité, donc un objectif à atteindre pour la maintenance. L'amélioration passe obligatoirement par une augmentation des *DopUi* les plus faibles.

> Disponibilité intrinsèque ou asymptotique :

Pour un équipement donnée, il existe une limite de disponibilité $\mathbf{D}\infty$ au même titre qu'il existe une limite de performance de production (temps de cycle ou cadence) qui est mieux connue que $\mathbf{D}\infty$.

Cette disponibilité intrinsèque est une caractéristique initiale de l'équipement, de valeur difficile à connaître à priori ; c'est normalement vers cette valeur que doit tendre la Dop. Par contre, elle est la résultante de la prise en compte initiale des critères de fiabilité et de maintenabilité qui doivent figurer au cahier des charges de l'équipement.



\triangleright Disponibilité instantanée $D(t_i)$:

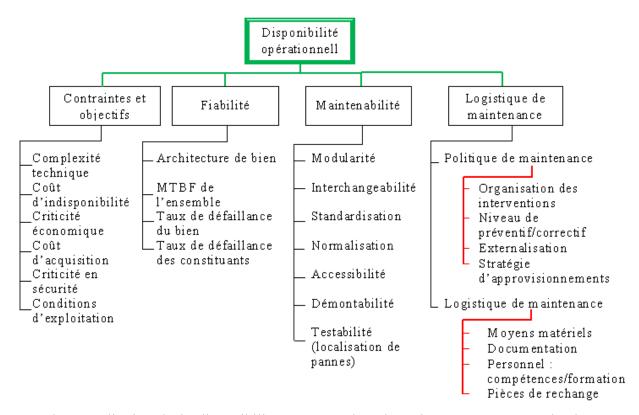
Elle permet de montrer l'existence d'une disponibilité asymptotique.

> Disponibilité contractuelle Dc et disponibilité prévisionnelle Dprev :

Certains contrats d'achat d'équipement imposent une valeur allouée Dc qu'il appartient au concepteur de « construire » en réalisant une modélisation à partir de valeurs supposées (bases de données) de MTBF et de MTTR. Cette disponibilité prévisionnelle devra être confrontée à la Dop mesurée suivant des procédures précisées et acceptées par les 2 parties fournisseur / utilisateur – client.

1.3 Analyse de la disponibilité opérationnelle :

Facteurs influents sur la disponibilité opérationnelle :



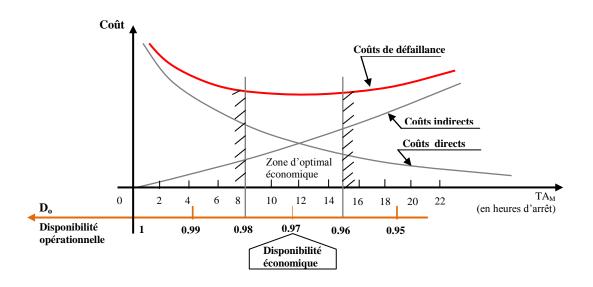
L'analyse qualitative de la disponibilité passe par l'analyse des MTI. Après avoir classé et sélectionné certaines indisponibilités critiques ou anormales, on peut analyser l'indisponibilité à 3 niveaux :

- 1. **Analyse de la défaillance** à l'origine de l'indisponibilité. S'il est possible de la guérir ou de la prévenir, l'analyse s'arrête là, sinon,
- 2. **Analyse des critères de disponibilité** (cf. ci-dessus). Il faut alors identifier le ou les critères à l'origine des temps d'arrêt propres anormalement pénalisants. On recherche ensuite des améliorations qui peuvent être de nature technique ou organisationnelle.
- 3. Analyse des conditions de l'intervention ou de la série d'interventions. Il s'agit de remettre en cause la logistique de maintenance et son organisation (ex : sur 2h d'indisponibilité, on met en évidence qu'il a fallu 1,25h pour rechercher une pièce de rechange au magasin, puis comme on ne la trouvait pas, on a été obligé de l'acheter chez le distributeur voisin).

L'analyse de la disponibilité passe aussi par une **approche économique** selon 2 objectifs possibles :

- 1. Obtenir la meilleure disponibilité au moindre coût pour un budget fixé
- 2. Obtenir une disponibilité performante, en mettant en œuvre la meilleure logistique de maintenance possible

L'environnement économique de l'entreprise et du produit concerné conditionne la politique à appliquer, donc l'objectif de disponibilité fixé à la maintenance. Cependant, la productivité dépend obligatoirement des 3 facteurs suivants : cadence de production, **Dop** et qualité des produits ; éléments qui sont à la base du calcul du TRS.



II. Approche Mathématique de la Disponibilité :

2.1 Modèles d'évaluation de Dop:

Disponibilité opérationnelle propre :

$$Dop = \frac{MTBF}{MTBF + MTI} = \frac{MTBF + RT}{MTBF + MTTR + MTL} = \frac{MTBM}{MTBM + MMT}$$

MTBF: moyenne des temps de bon MTTR: moyenne des temps techniques de fonctionnement

MTI: moyenne des temps d'indisponibilité

RT: « ready time » ou temps moyens d'attente, le système étant prêt à fonctionner

MTL: moyenne des temps logistique

réparation

MTBM: temps moyen entre actions de maintenance préventive ou corrective

MMT: temps moyen des actions préventives

ou correctives

$$Dop = \frac{To - Tap}{To} = \frac{TMc.N}{TMc.N + Tap}$$

To: temps d'ouverture de la ligne ou temps requis

Tap: temps cumulés des arrêts propres

TMc.N: temps moyen de cycle x nb de pièces produites

2.2 Modes de saisie de Dop:

La saisie traditionnelle par BT, relevés compteurs ou feuilles de saisie documentées par un opérateur n'est pas pertinente pour évaluer régulièrement l'indicateur Dop, qui doit obligatoirement intégrer les « micros temps » d'indisponibilité pour être significatif.

La saisie automatique en temps réel des arrêts de production est presque toujours disponible (gestion de production) par information des entrées-sorties du système de commande.

Par contre, il faudra mettre en place une saisie semi-automatique pour imputer chaque arrêt a un code recensant les « causes d'arrêt « propres » et les m causes d'arrêt induits par l'environnement du système.

L'imputation des feuilles de saisie par usage de code-barres est envisageable.

Le redémarrage conditionné à l'imputation garantit que l'imputation d'un arrêt à une cause est réalisée (sans qu'elle soit pour autant pertinente).

Un autre problème à maîtriser est le code « causes diverses » ou « autres causes » : il n'est pas facile de cibler des actions d'amélioration lorsque 66ù des arrêts ont des causes diverses non identifiées !

La qualité des saisies est donc un facteur prépondérant de la valeur de l'indicateur « disponibilité » et de l'efficacité des actions d'amélioration que l'on va en déduire.

2.3 Modélisation de la disponibilité instantanée :

On se place dans l'hypothèse exponentielle, avec les taux de défaillance λ et de réparation μ constants et indépendants du temps :

$$\lambda = \frac{1}{MTRF} \ et \ \mu = \frac{1}{MTTR}$$

On définit la disponibilité instantanée d'un système réparable par :

$$D(t) = \frac{\mu}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

- \triangleright Disponibilité : D(t) = P0(t) = Probabilité que le système fonctionne = probabilité qu'il y ait 0 défaillance.
- Indisponibilité : I(t) = 1 D(t) = P1(t) = Probabilité de non fonctionnement = probabilité qu'il y ait une défaillance.
- La qualité initiale du système garantit que : P0(0) = 1 et que P1(0) = 0.
- Par complémentarité, P1(t) = 1 P0(t).

Pour que le système fonctionne à l'instant (t + dt), avec une probabilité P0(t + dt), il faut :

- \Rightarrow Qu'il fonctionne à l'instant t et qu'il n'y ait pas de défaillance t entre et (t+dt): probabilité = P0(t). $(1-\lambda dt)$
- \Rightarrow Ou qu'il ne fonctionne pas à l'instant t, mais qu'il soit remis en état à (t+dt): probabilité = 1-P0(t). μ . dt

Equation des probabilités : $P0(t + dt) = P0(t) \cdot (1 - \lambda dt) + (1 - P0(t)) \cdot \mu dt$

En divisant par dt tendant vers $0: P0(t) + (\lambda + \mu).P0(t) = \mu$

La solution de cette équation est : $D(t) = P0(t) = \frac{1}{\lambda + \mu} (\mu + \lambda e^{-(\lambda + \mu)t})$

 $^{\circ}$ Quand $t \to \infty$, D(t) tend vers une limite asymptotique D^{∞} qui se traduit par les formules suivantes :

$$D_{\infty} = \frac{\mu}{\lambda + \mu} = \frac{MTBF}{MTBF + MTTR} = \frac{1}{1 + \frac{\lambda}{\mu}} = \frac{1}{1 + \frac{MTTR}{MTBF}}$$

Le rapport (MTTR / MTBF) est appelé le « rapport de maintenance ».

2.4 Composition des disponibilités asymptotiques :

L'objectif est de modéliser la disponibilité d'un système **Dg** à partir de la disponibilité **DUi** de ses unités constitutives. Il faut cependant envisager 2 cas :

Les éléments sont statistiquement indépendants (rare dans le cas des systèmes automatisés)

Les éléments sont statistiquement dépendants (le plus fréquent) car une dépendance fonctionnelle crée une dépendance sur les probabilités.

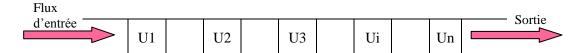
Cas possibles	Formule de calcul	Exemple
n unités indépendantes en série	$Dg = \prod_{i=1}^{n} DUi$	Soient 2 unités de disponibilités 0,9 et 0,8 en série : Dg = 0,9 x 0,8 = 0,72
n unités indépendantes en //	$Dg = 1 - \prod_{i=1}^{n} (1 - DUi)$	Soient 2 unités de disponibilités 0,9 et 0,8 en // : Dg = 1-(1-0,9) x(1-0,8) = 0,98
n unités dépendantes en série	$Dg = 1 - \sum_{i=1}^{n} \frac{\lambda_i}{\mu_i}$	
Redondance active de n unités identiques	$Dg = 1 - \prod_{i=1}^{n} \frac{\lambda_i}{\mu_i}$	

2.5 Composition des disponibilités opérationnelles :

Une chaîne est constituée de différentes unités (ou machines) ayant leur vie propre (bon fonctionnement, mode dégradée, panne, etc.), donc leur disponibilité DUi.

❖ Modèle « série » des lignes à unités liées (ou dépendantes) :

Sur ce type de chaîne, l'arrêt d'une unité implique l'arrêt de l'ensemble.



Dans ce cas la disponibilité opérationnelle de la ligne sera :

$$Dg = \frac{1}{\sum_{i=1}^{n} \left[\frac{1}{DUi}\right] - (n-1)}$$

Dans ce type de chaîne, on peut remarquer que :

- Plus le nombre d'unités mis en série est élevé et plus on pénalise la disponibilité de la machine,
- ➤ Une perte, même infime de la disponibilité élémentaire des unités fait chuter considérablement la disponibilité de la chaîne.

Pour améliorer la disponibilité des chaînes en série dépendantes, il faut :

- ✓ Détecter l'unité pénalisante,
- ✓ Engager une action de fiabilité maintenabilité pour l'emmener au niveau des autres unités mais inutile de 'pousser' au dessus,
- ✓ Vérifier l'homogénéité des Di.

Exemple:

Soit une ligne de 10 unités dont chacune à une DUi=0,99 :

$$Dg = \frac{1}{\sum_{i=1}^{10} \left[\frac{1}{0.99} \right] - (10 - 1)} = 0.908$$

Si 9 unité ont une DUi=0,99, et une unité DUi=0,80:

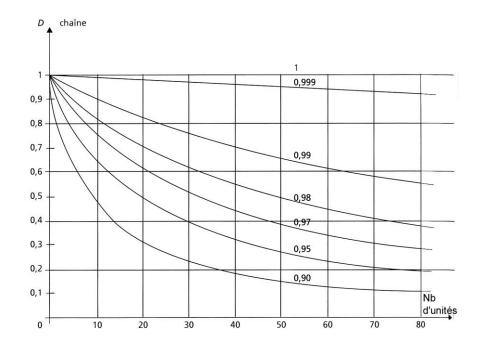
$$Dg = \frac{1}{9 \times \frac{1}{0.99} + \frac{1}{0.80} - (10 - 1)} = 0.746$$

Cet exemple montre très simplement que pour améliorer la disponibilité d'une ligne, il suffit de « s'attaquer » à l'unité la plus pénalisante.

Pour plus de simplicité, la formule de Dg a été mise en abaque pour un nombre d'unités important.

Ex : pour 50 unités de DUi=0,97, Dg=0,40.

Ex : pour une Dg=0,6, avec 30 unité, DUi=0,978

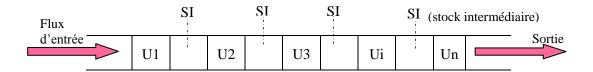


Unités en série indépendantes :

Sur ce type de ligne, l'arrêt d'une unité n'entraîne pas l'arrêt de l'ensemble de la ligne : existence d'un stock intermédiaire « SI » permettant d'alimenter la machine en aval de l'unité

défaillante pendant une durée établie à partir du temps moyen d'arrêt le plus important enregistré en régime normal.

Les stocks intermédiaires « SI » sont reconstitués en faisant varier les cadences.

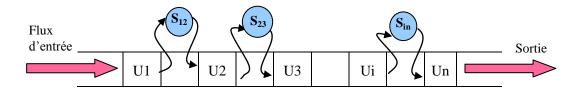


Si D_i est la disponibilité de la machine U_i:

$$D_{(chaine)} = \prod_{i=1}^{n} (Di)$$

❖ Chaînes à « rempotage – dépotage » :

Sur ce type de ligne, il est possible, en cas de panne d'une unité de « rempoter » le stock aval et de « dépoter » le stock amont. Ceci n'est souvent possible que pour un *court arrêt*.

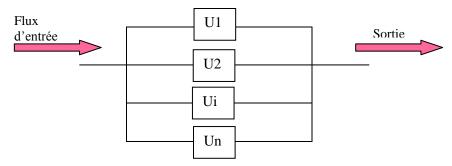


La disponibilité de la chaîne est conditionnée par la plus mauvaise disponibilité de machine.

$$D_{(chaine)} = \min de (D_1, D_2, \dots D_n)$$

❖ Disponibilité des chaînes à unités en redondance active ; modèle « parallèle » :

Dans ce type de ligne, toutes les unités permettant d'accomplir la fonction requise, elles fonctionnent simultanément en dessous de leur capacité théorique. En cas de panne, leurs cadences augmentent pour accomplir la fonction requise.



Si D_i est la disponibilité de la machine U_i :

$$D_{(chaine)} = 1 - \prod_{i=1}^{n} (1 - Di)$$

Remarque:

dans le cas de 2 machines en redondance passive en parallèle, lorsque les 2 éléments sont en état de marche, un seul fonctionne ; lorsqu'il tombe en panne, l'autre se met en marche :

dans le cas d'un montage en parallèle de n éléments identiques sans redondance, la disponibilité de la ligne est la moyenne des disponibilités.

REFERENCES BIBLIOGRAPHIQUES

- [1] **B.S. Dhillon, Ph.D.** « Engineering Maintainability: How to Design for Reliability and Easy Maintenance » 257 pages Publisher: Elsevier Science & Technology Books I SBN: 088415257X Pub. Date: Jeune 1999
- [2] Jan Claude Ligeron « cours de Fiabilité en Mécanique » M20S/IMdR2009 779 page
- [3] **Pierre DAVID** « Management des Risques Industriels Déploiement de la Sûreté de Fonctionnement: Notions, Méthodes, Cycle de Vie » 209 pages, année 2010-2011

[4] ENGINEERING STATISTIC HANDBOOK

http://www.itl.nist.gov/div898/handbook/apr/section4/apr47.htm (4 of 4) [5/7/2002 4:32:26 PM]

- 1. Procaccia H., Aufort P., Arsenis S., *The European Industry Reliability Data Bank* (EIReDA), Third Edition, 1998.
- 2. Exida L.L.C., Electrical & Mechanical Component Reliability Handbook, 2005.
- 3. G. Thoquenne . Prévisions des durées de vie en fatigue des roulements. PhD Thesis. Ecole Polytechnique ,2004.
- 4. Rausand M., Høyland A., System Reliability Theory, Models, Statistical Methods, and applications, Second Edition, New Jersey, Editions Wiley, 2004.
- 5. J.H Horng, M-L, and J-S Lee. *The contact characteristics of rough surfaces in line contact during running-in process Wear*, (253) ,2002, p. 899-913
- 6. D.H. Kelly, C.G. Barnes, R.W. Freeman, and G.W. Critchlow. *Running in and the enchancement oh scuffing resistance. In Proc. IME* Volume 206 p 425-429,.
- 7. C.C. Chou and J.F. Lin . *Tribological effects of roughness and running –in on the oil lubricated line contacts. In Proc. IME* Volume 211 ,2002, p.209-222, 1997.
- 8. P.Pawlus. A study on the fonctionnal properties of honed cylinders surface during running- in . Wear, (176): 1994, p. 247-254
- 9. Carroll K.J., "On the use and utility of the Weibull model in the analysis of survival data", Controlled Clinical Trials, vol. 24, 2003, p. 682-701.
- 10. Barger P. Evaluation et Validation de La Fiabilité et de la disponibilité des Systèmes D'Automatisation à Intelligence Distribuée, en Phase Dynamique. Thèse de Doctorat de l'UHP Nancy 1, France, 2003
- 11. P. Lyonnet . Ingénierie de la Fiabilité. Edition Tec et Doc, Lavoisier, Paris 2006.
- 12. H. Langseth, L. Portinale, Bayesian networks in reliability, Reliability Engineering and System Safety 92 (2007) 92–108
- 13. XieM, Lai, CD.On the increase of the expected lifetime by parallel redundancy. Asia–Pac J Oper Res 1996;13:171–9.
- 14. Guangbin Yang, Life Cycle Reliability Engineering. 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-71529-0

- 15. Dragan Komljenovic, Structure de système et redondance, Cours Ecole de Technologie Superieure, Université de Québec
- 16. Toshio Nakagawa, Advanced Reliability Models and Maintenance Policies, (Springer series in reliability engineering) 2008 Springer, London Limited ISBN-13: 9781848002937
- 17. Olivier Basile. Modélisation de la fiabilité des équipements mécaniques. Travail de fin d'études, Faculté Polytechnique de Mons, 2001.
- 18. P. Chapouille. Fiabilité. Maintenabilité. Techniques de l'ingénieur, 6 : T4300-T4305, 1980.