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1. Introduction 
 
 
1.1 Acknowledgements  
 
The Kirkhouse Trust has been involved with the UAS Bangalore for three 
years. In this period, we have supported a number of activities in the 
university, but our primary project has centred on the training courses in 
marker assisted selection. The first of these, which was the first major activity 
of the Trust, took place in November 2003, a collaborative endeavour 
involving the John Innes Centre and the UAS. We are especially pleased that 
this course was successfully repeated by the UAS in 2004. These activities 
brought other benefits to the Trust. We have learned a great deal about 
working with colleagues in parts of the world where scientific research is still 
developing; about the problems they face and how we can best support them. 
The experience has shaped the way in which we are developing projects at 
other centres and in other countries. It has focussed our attention on the grain 
legumes, important crops, which are relatively neglected by most aid 
agencies.  
 
The 2003 and 2004 courses focussed on characterising genome sequence 
diversity in Lablab cultivars. The 2005 course will explore how this can be 
used in mapping traits and incorporated into breeding programmes. As 
scientists, we must take a detached view as to the usefulness of this 
technology; there are circumstances in which traditional breeding methods 
are more economical. An important part of this course will be an objective 
evaluation of the potential benefits. This caution notwithstanding, we have 
committed support for a research project to develop more molecular markers 
for Lablab.  
 
The 2005 course will take place in the laboratory refurbished for Trust 
supported activities. We are pleased to acknowledge the persistent efforts on 
the Trust’s behalf of Professor T.K.S.Gowda and other members of the 
Department of Biotechnology in supervising this work and in other aspects of 
our activities. We are grateful for his generosity in making the facilities we 
provide available to other departments in the university. Many others have 
helped in the 2004 course and in preparing for the 2005 course; among these 
are Drs A. Mohan Rao, P.H. Ramanjini Gowda, P. Mahadevu, and Mr S.C. 
Venkatesh. 
 
The principal organisers of the 2005 course are Dr Maggie Knox and Professor 
Noel Ellis, who developed and ran the successful 2003 course. A number of 
experts in the use of MAS in India have agreed to lecture on the course, 
including Drs Mohapatra from IARI, New Delhi, K.V. Bhat from NBPGR New 
Delhi, Girish Kumar, and C.T. Hash  from ICRISAT.  Others joining the 
teaching team from outside India are Drs Ian Mackay, D.J. Kim and Robert 
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Koebner; administrative support will be provided by the Department of 
Biotechnology and Drs Sonia Morgan and Janice Henderson. We are 
delighted that two international Lablab experts, Drs Brigitte Maass and Bruce 
Pengelly can also be present for part of the course.  
 
Once more, Professor K. VijayRaghavan, the Director of the National Centre 
of Biological Sciences in Bangalore and his staff have been generous in 
making available the Centre’s Computer Lab and other facilities for the 
course. 
 
We are grateful to Dr T.K. Prabhakara Setty and Professor Sheelavantar the 
Research Director, and the Vice Chancellor of the University of Agricultural 
Science, Bangalore, for their generous support of the Trust’s work in the 
University and to Professor Sharat Chandra for his unstinting help and 
advice. 
 
 
 
Professor Sir Edwin Southern 
Oxford, 13th October 2005 
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1.2 Challenges for plant breeding & the role of molecular genetics  
 
Agriculture faces the problem of increasing demand from an 
expanding population, coupled to threats of reduced area for 
production as a consequence of climate change for example through 
water deficit, soil salinity or unpredictable weather at harvest. In 
essence within the next 50 years agricultural productivity will need to 
double. No doubt the major determinants of the success or failure of 
this endeavour will depend on factors remote from molecular genetics 
and in the end it will be farmers that produce food and inevitably most 
will have limited resources, what then is the role of resource rich 
molecular genetics? 
 
While molecular genetics will not feed people, I think it can help plant 
breeders who in turn will supply seed that is the raw material for 
agriculture. A basic problem for the exploitation of molecular genetics 
in plant breeding is its cost. To obtain one data point from molecular 
marker analysis costs about 0.5$, and this does not include the costs 
associated with marker development, or determining the association 
between a marker allele and a relevant trait. Deploying markers with 
this cost in breeding programs presupposes a high commercial value 
of the crop, or a great willingness for public sector investment. 
 
A major challenge is therefore to reduce the cost of molecular genetics 
in plant breeding. This may rely on technical developments, but a 
major means to reduce cost is to ensure that molecular marker 
methods are appropriate to the context in which they are used. In the 
first of this series of courses we focussed on molecular markers 
providing genotype information associated with germplasm because 
this is simply a means for attaching knowledge to breeding materials. 
Once this is done the information, especially for inbreeding crops, can 
be disseminated and used at very low additional cost. 
 
The primary aim of the first course was to facilitate the use of 
molecular markers in the choice of breeding material notably the 
selection parental lines. The objective in this second course is to 
explore the exploitation of molecular markers in later aspects of 
breeding. Having selected parents that contrast for breeding traits 
that are also maximally distinct as judged by molecular markers we 
should be able to use this molecular diversity to obtain deeper 
knowledge of the genetics of traits that are the focus of breeding 
programmes, again we will focus on Lablab purpureus (Dolichos 
lablab), as a crop of specific interest in UAS Bangalore. 
 
Professor Noel Ellis 19th July 2005 
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1.3 Lablab purpureus (Dolichos) – Characteristics & plant details  
 
See: Lablab Purpureus (Dolichos) – Characteristics & plant details (p9) 
of Part I Course Manual. 
 
1.4 Course Administration  
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1.5 Course programme  
Course timetable: 
 
The course aims to cover three component parts as outlined below:  
 
(Part i) Data generation and collection - How do markers work? 
This includes SNPs, SSRs etc., and can include experimental work on 
Lablab populations. 
 
(Part ii) Data analysis – all of the issues about segregation ratios and 
mapping, including QTL analysis. This could analyse the Lablab data. 
 
(Part iii) Generation of markers and populations. This includes 
comparative genomics both for comparative marker positions and 
primer design. Here we also need to consider population structures 
and get some input from the breeders on the best way to include 
marker analysis in a breeding strategy. The issue of marker diversity 
in relation to populations also comes in here. 
 
All of these components will be discussed with all course participants. 
However towards the end of the course part iii will be subdivided into 
two sections with the intention that participants could dig a little 
deeper into the subject as best meets their needs: 
  
1) The means to incorporate marker analysis in breeding strategies. 
2) Comparative genomics and the construction of comparative genetic 
maps.  
 
NB all participants will cover these issues within the course as a 
whole, the intention is to tailor the further details to individual needs. 
 
For the main part of the course the participants will be in two cohorts 
( A & B ). This separation is purely for the purpose of timetabling and 
the efficient use of lab / computing room space. the separation into 
two groups for the specialisms a and b will probably require a re 
grouping, and participants may wish to change their mind on which 
avenue they choose during the progress f the course. 
 
The proposed timetable is presented below. Note that the group as a 
whole will meet at UAS in the morning for debriefing and discussion of 
the day’s planned events. Hopefully the two cohorts will be able to 
help each other by highlighting difficulties or specific areas hat are of 
particular interest to pursue. 
 
 
 
 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     10 

 
 
 
 
 
 
 

   
Sunday 6th Nov. groups arrive 
Monday 7th Nov. Course planning : final details 

 
 
  Morning Afternoon 
Tuesday 8 Use of KT funded facilities/applying for research grants/verbal presentations  
Tuesday 8 course set up 
Wednesday 9 Open seminars Open seminars 

 

Colour codes 
Lecture / data analysis   NCBS split sessions also at UAS 
Lab session   UAS 
Group joins together    
Breather    
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Group A 
 
day date start of day morning afternoon 

Thursday 10 intro to first two days 
1) part ii  
Introduction to genetic mapping   

2) part ii 
Statistics in genetic mapping 

Friday 11 
round up and plans 
for today 

3) part i 
checking DNA preps: FTA paper 

4) part i 
checking DNA preps: FTA paper 

Saturday 12 Late start  5) Lablab workshop (afternoon and evening) 
Sunday 13       

Monday 14 
intro to second two 
days 

6) part ii 
Construction of genetic maps 

7) part ii 
examples and data sets 

Tuesday 15 
round up and plans 
for today 

8) part i 
PCR markers 

9) part i 
Microsatellite markers 

Wednesday 16 
intro to third two 
days 

10) part iii  
Comparative genetic maps  

11) part iii (2) 
Markers for comparative genetics 

Thursday 17 
round up and plans 
for today 

12) part i (part iii) 
SNP / allele specific PCR 

13) part i 
Marker analysis / Data collation 

Friday 18 
intro to fourth two 
days 

14) part iii (1 or 2) 
Comp. genetics or markers & traits  

15) part iii (1 or 2) 
Comp. genetics or markers & traits 

Saturday 19 
round up and plans 
for today 

16) part iii (1) 
Workshop on MAS in breeding 

Sunday 20       

Monday 21 
round up and plans 
for today 

17) part ii 
Introduction to QTL 

18) part iii (1) 
Statistics in MAS and Breeding 

Tuesday 22 
round up and plans 
for today 

19a) part ii 
Interpreting map data 

19b) part ii 
Interpreting map data 

Wednesday 23   
20) 
Preparing posters and scientific papers  
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Group B 
 
day  date start of day morning afternoon 

Thursday 10 intro to first two days 
3) part i 
checking DNA preps: FTA paper 

4) part i 
checking DNA preps: FTA paper 

Friday 11 
round up and plans 
for today 

1) part ii  
Introduction to genetic mapping   

2) part ii 
part iStatistics in genetic mapping 

Saturday 12  Late start 5) Lablab workshop (afternoon and evening) 
Sunday 13       

Monday 14 
intro to second two 
days 

8) part i 
PCR markers 

9) part i 
Microsatellite markers 

Tuesday 15 
round up and plans 
for today 

6) part ii 
Construction of genetic maps 

7) part ii 
examples and data sets 

Wednesday 16 
intro to third two 
days 

12) part i (part iii) 
SNP / allele specific PCR 

13) part i 
Marker analysis / Data collation 

Thursday 17 
round up and plans 
for today 

10) part iii 
Comparative genetic maps  

11) part iii (2) 
Markers for comparative genetics 

Friday 18 
intro to fourth two 
days 

17) part ii 
Introduction to QTL 

18) part iii (1) 
Statistics in MAS and Breeding  

Saturday 19 
round up and plans 
for today 

16) part iii (a) 
Workshop on MAS in breeding 

Sunday 20     

Monday 21 
round up and plans 
for today 

14) part iii (1 or 2) 
Comp. genetics or markers & traits 

15) part iii (1 or 2) 
Comp. genetics or markers & traits 

Tuesday 22 
round up and plans 
for today 

19a) part ii 
Interpreting map data 

19b) part ii 
Interpreting map data 

Wednesday 23   
20) 
Preparing posters and scientific papers  



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     13 

 
item title person 

1 Introduction to genetic mapping   Noel 
2 Statistics in genetic mapping Noel 
3 checking DNA preps: FTA paper Venkatesh \ Mohan 
4 checking DNA preps: FTA paper Venkatesh \ Mohan 

5 5) Lablab workshop 
Maggie Knox, Byre Gowda, Brigette Maas, Bruce Pengally,Ian Ian Mackay + 
nuritionist 

6 Construction of genetic maps Noel / Maggie 

6 5) Lablab workshop 
Maggie Knox, Byre Gowda, Brigette Maas, Bruce Pengally,Ian Ian Mackay + 
nuritionist 

7 examples and data sets Noel / Maggie 
8 PCR markers Venkatesh \ Mohan 
9 Microsatellite markers Venkatesh \ Mohan 
10 Comparative genetic maps Noel \ DJ Kim 
11 Markers for comparative genetics Noel \ DJ Kim 
12 SNP / allele specific PCR DJ / Noel / Maggie / Venkatesh / Mohan 
13 Marker analysis / Data collation DJ / Noel / Maggie / Venkatesh / Mohan 
14 Marker design or QTL analysis Noel / Ian 
15 Marker design or QTL analysis Noel / Ian 
16 Workshop on MAS in breeding Girish Kumar, Robert Koebner and Tom Hash (plus debate on MAS) 
17 Introduction to QTL Ian / Noel / Robert 
17 Workshop on MAS in breeding Girish Kumar, Robert Koebner and Tom Hash (plus debate on MAS) 
18 Statistics in MAS and Breeding Ian / Noel / Robert 
19 Interpreting map data Noel / Robert / Ian 
20 Interpreting map data Noel / Robert / Ian 
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1.6 Speakers and teachers  
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1.7 Course participants  
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2. An introduction to genetic mapping  
 
Mendelian genetics is one of the great scientific theories: it has 
simplicity, predictive power and a wide scope. Mendelian genetics has 
three basic propositions: (1) Parents contribute equally to their 
offspring; (2) Characters have discrete determinants; and (3) These 
determinants behave independently both in the formation of gametes 
and in the association of gametes to form a zygote. Sometimes this is 
formulated as two ‘laws’. The first is the law of segregation (essentially 
1 and 2 above) and the second is the law of independent assortment 
(3).  
  
For diploid organisms (peas, people, parrots ...) there are at most two 
different types of determinant for any character and the usual 
Mendelian ratios follow. However there are also polyploid organisms 
(alfalfa, bananas, clover ... and many crop species are polyploid) where 
there may be more than two different types of determinant for any 
character. In these cases segregation can differ from ‘the usual 
Mendelian ratios’ but follows the same basic laws.  
 
Since the early 20th century a number of examples of ‘non-Mendelian’ 
genetics have been found; for example, of plastid genetics, bacterial 
genetics, transposable elements and especially pertinent to this 
course, genetic linkage and quantitative traits. These have not been 
taken to disprove Mendel’s theory, but are seen as special cases where 
some additional information is needed to understand the way 
inheritance works. Mendel’s basic ideas remain intact.  
 
Genetic linkage was discovered very early in the history of genetics 
even before the chromosome theory was accepted. William Bateson 
(the first director of the John Innes Institute) knew about this but 
was, for most of his life, implacably opposed to the chromosomal 
theory of inheritance1.  We now know that the independent 
segregation of types of determinants (alleles) is a consequence of the 
way that chromosomes behave at meiosis. There are many more genes 
(determinants) than chromosomes so this means that some alleles 
tend to follow each other into the same gametes (linkage in coupling) 
or tend to go into opposite gametes (linkage in repulsion). This means 
that genetic linkage is a modification of Mendel’s ideas about 
independent segregation. 
 
There was a long and somewhat bitter argument in the early days of 
genetics between ‘biometricians’ and ‘Mendelian genetics’, the source 
of this dispute is rather hard to understand now, but the nub of it is 

                                       
1 He could not accept that something identical in every cell could be responsible for 
the huge diversity of cell types.  
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clearly described by Lewontin2. This appears to have been a dispute 
about the discreteness of allelic states. Although some allelic 
differences seem clear (eg. round vs wrinkled seeds) others are less so 
(small vs large, or not-so-small seeds). The issue at stake was whether 
these different classes of traits (quantitative vs qualitative) are 
determined in the same way, by the same type of genes. Thomas 
Mather ascribed some of these properties to a distinct class of 
determinant that he called ‘polygenes’.  The current accepted view is 
that quantitative traits are determined by alleles of weak effect, or 
where the effect is comparable with environmentally determined 
variation. Often these weak alleles are distributed over many genes, so 
their segregation is difficult to follow. 
 
A related issue was whether genes were indivisible units of 
inheritance, hence the name locus. If they were not (as was first 
shown in bacterial genetics) then could some discrete states be 
combinations of nearby differences in adjacent determinants or within 
individual extended genes? There are indeed some examples of 
haplotypes that determine individual character states. This 
complication could be regarded as modification to the Mendelian view 
of discrete determinants with different forms, but there are alternative 
ways of thinking about it. 
 
From this discussion we can see that Mendelian genetics is a robust 
framework for understanding inheritance. However we now know a lot 
about the underlying molecular mechanism so we can choose whether 
to think in molecular terms or as Mendel did, in either case we must 
think carefully about the meanings of some of the entities under 
discussion and when that is done much that appears different 
between the two modes of thought  becomes less so.  
 
In this course we will address the two issues of genetic linkage and 
quantitative traits. The course will draw heavily on Dominique de 
Vienne’s text book3 (cited as de Vienne pp in the text below), and 
where appropriate individual papers will be cited. In the section below 
some words are highlighted and these are discussed in the glossary. 
 
2.1 Linkage  
 
Genetic mapping, like diversity analysis, depends on the scoring of 
marker data. Markers can be of a wide range of types, from flower 
colour to bands on gels. However, the main difference between genetic 
mapping and diversity analysis is that for genetic mapping, population 
structure is defined; while for diversity studies this is not known a 

                                       
2 Lewontin R.C. (1974) The Genetic Basis of Evolutionary Change, Columbia 
University Press [ISBN 0-231-08318-1] 
3 de Vienne D. (2003) Molecular Markers in Plant Genetics and Biotechnology. 
Science Publishers, Inc. Enfield (NH) USA, Plymouth UK. 
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priori. When looking for associations in diversity analysis we ask 
which samples share allelic states, and so score data according to 
these alleles. In segregation analysis we want to know which parent 
the alleles are derived from, and we are searching for associations 
between alleles from the same parent in a segregating population. So 
for segregation analysis parent-of-origin is the key point rather than 
allele type (see below). The alleles from the two parents are expected to 
be found in non-parental combinations among the offspring in a 
segregating population, and these new patterns are recombinant. 
Those that tend to be found together in the same individuals 
(segregants) have experienced little recombination and are said to be 
associated or linked.  
 
2.2 Parent-of-origin  
 
It seems a simple matter to decide the parent of origin of a given 
marker, but this is not always the case. This section will consider 
some, thankfully rare cases where parent-of-origin may not be easy to 
determine. In classical genetics unstable mutant alleles may revert, so 
in a cross to wild type an allele may appear to be wild type but in fact 
be inherited from the mutant parent. An accurate assessment of the 
parent of origin of a marker or gene assumes that it has high 
expressivity and penetrance. 
 
Figure 3.2.1 illustrates this in the context of a molecular marker. In 
this figure it appears that the arrowed segregants have inherited the 
allele revealed by the band arrowed in P1. However, the tracks labelled 
A1 and A2 are an alternative assay for this allelic difference and show 
a different result: both parents appear to carry the same DNA 
sequence. In this example the difference between P1 and P2 is not a 
DNA sequence difference; rather it is the methylation state of a 
restriction site. It may be that the bands arrowed in the segregants 
derive from the P1 parent, but it is also possible that they derived 
from P2 where the DNA methylation state has been changed. If the 
methylation state of the restriction site does not (always) follow the 
parent-of-origin then clearly scoring the banding pattern may not 
properly reflect the allelic state.  
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Figure 3.2.1 
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P1, P2     : Parents,   
S1 to S24      : segregants (RILs) from the cross between P1 and P2. 
A1, A2      : an alternative way to assay the P1 band.  
From Knox and Ellis (2001)4 
 
This example illustrates how a marker assay may not give a reliable 
indication of the parent of origin of the corresponding DNA sequence. 
In the case illustrated what is assayed is the segregation of the 
determinant of the methylation state of the relevant restriction site. 
This may segregate in a normal Mendelian fashion or as some 
interaction between the locus corresponding to the restriction site and 
the determinant of its methylation state. If the segregation is not 
simple the marker will be ignored from the point of view of genetics, 
but if segregation is normal (or nearly so) the marker will likely be 
included in a genetic analysis.  
 
This raises two important issues. First the genetic locus that 
determines the segregation pattern may not correspond to the location 
of the DNA sequence on which the assay is based. Secondly, if these 
two do correspond the assay may not be an entirely reliable indicator 
of the parent of origin. 
 
2.3 Errors 
 
The discussion above describes one type of error associated with DNA 
based genetic markers. There are many other potential types of error, 
and some of these are shared with other marker types. Errors may be 
trivial in their origin (mis-typed scores for example). Some errors can 
be eliminated by independent scoring of the data and re-checking the 
scores. In principle the fewer operations between an assay and its 
being recorded the fewer errors are likely to occur. The minimisation 
                                       
4 Knox M.R. and Ellis T.H.N. (2001) Stability and Inheritance of Methylation States 
at PstI Sites in Pisum. Mol. Gen. Genet. 265: 497-507 
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of sources of error is important, but even where attempts to minimise 
errors have been exhaustive we cannot be sure that data is error free. 
Attempts to assess errors are an important part of any quantitative 
exercise.  Determining marker order can be considered a way of 
dealing with data errors. 
 
 
 
2.4 Marker order 
 
Genetic mapping is simply a way of describing how allelic differences 
are distributed among offspring. However simple this is in concept, 
there are many practical difficulties. First of all, candidates for linked 
markers depend on statistical inference. Among the statistical 
approaches used to search for marker segregation patterns that are 
unexpectedly similar, are LOD scores and Chi square tests. For both 
these approaches it is necessary to be aware of their weakness. For 
example, in a Chi square analysis it is often considered that a value 
that would be expected by chance alone in 5% (or 1% etc) or fewer of 
pair-wise tests is a good indication of an association that is not due to 
chance alone.  
 
For N markers there are N(N-1) possible pairs, so for 10 markers there 
are 90 possible pairs, so at 95% confidence between 4 and 5 
associations are expected by chance alone. Genetic mapping needs to 
sort out the difference between linked markers and those associated 
by chance alone. There are several approaches to overcoming this 
problem. The first is simply to set the threshold value rather high, so 
that chance associations are rare given the size of the data set. The 
second approach is to rely on expected properties of linked markers. 
Genetic linkage is a consequence of the linear arrangement of DNA 
sequences with respect to the formation of crossover events. So 
markers on genetic maps should obey linear rules of arrangement. 
This constraint does not apply to chance associations. Thus the 
construction of linear genetic maps is a test of the reliability of these 
associations or linkage. Deviations from linearity indicate problems 
with the underlying data. 
 
To find the 'best' order of markers from a given data set is, in 
principle, simple to determine. All we need to do is look through all 
possible orders and find the one that proposes the smallest number of 
recombinants and also proposes the smallest number of double 
recombinants. This is the simplest hypothesis. However, there is a 
complication: given N markers there are ½N ! orders to look through, 
so for a modest number of markers the amount of work to do is 
prohibitively large (for 10 markers there are about 1.8 million orders, 
and for 20 about 1018). This means that some system is needed to 
simplify the problem. Several mapping programs compute all possible 
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maps for markers taken three at a time: three-point mapping. This 
simply serves to eliminate a very large number of possible orders from 
the search for the simplest map. Other factors need to be taken into 
account, such as segregation ratio: adjacent markers should have 
similar segregation ratios, but distorted segregation may make 
markers appear to be linked when in fact they are not. Thus it is 
always important to consider the monogenic segregation ratio for a 
given marker. These brief comments are intended to serve as a 
background to genetic mapping, and experience with relevant 
mapping software5 will be provided during the course. 
 
2.5 Maps, and mapping functions  
 
If we consider three markers A, B and C, if they are associated by 
chance alone then the recombination fraction between any pair is 
undefined, and there is no expected relationship between the 
recombination fractions between the three possible pairs. However, if 
these markers have a linear arrangement and the order is A - B - C 
then there are two intervals AB and BC between the markers. The 
compound interval AC between the external markers A and C has 
some relationship to the AB and AC intervals. In a genetic map we 
expect the recombination events to obey some rule such that the 
recombination between A and C will be more than between A and B or 
B and C. This simple relationship does not apply to markers 
associated by chance alone, where all these values could be the same. 
However, except for very small values of the recombination fraction, 
the recombination fraction between A and C is not expected to be the 
sum of the recombination fractions in the AB and BC intervals. We 
know that recombination is a fraction and that the maximum value is 
about 50 % (free association or no linkage), furthermore for ten 
successive intervals each with 10 % recombination we do not expect 
100 % recombination between the extreme markers. So the 
recombination fractions themselves can not be additive. 
 
Where the recombination fraction between markers A and B is written 
as rAB (etc) we can say: rAC ≠ rAB + rBC. But we want to define a function, 
map distance (d), that is additive and is a function of r such that dAC = 
dAB + dBC Given the order A – B – C where the fraction of recombinants 
in the interval A – B  (rAB) is m and the fraction of recombinants in the 
interval B – C  (rBC) is n then the fraction of non-recombinants in AC is 
                                       
5 Lander E.S. and Green P. (1987) Construction of multilocus linkage maps in 
human PNAS USA 84: 2363-2367 
 
Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E. and 
Newburg L. (1987) MAPMAKER: an interactive computer package for constructing 
genetic linkage maps of experimental and natural populations. Genomics 1: 174-181 
 
Stam P. (1993) Construction of integrated genetic linkage maps by means of a new 
computer package: JoinMap. The Plant Journal 3: 739-744  
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(1-m)(1-n). The fraction of single recombinants in AB is m(1-n) and the 
fraction of single recombinants in BC is n(1-m). So the fraction of 
single recombinants in the combined interval AC is (1-m)n + m(1-n) = 
m + n -2mn.  
 
We need to define d as a function of r such that dAC = rAB +  rBC- 
2rABrBC. Haldane’s function [d = -½ln(1-2r)] satisfies this requirement 
as can be seen in figure 3.5.1.   
 
Figure 3.5.1 

A B C

Addition rules: but
rAC = rAB + rBC dAC = dAB + dBC

Haldane’s function: d = -½ln(1-2r)
r = ½(1 – e-2d)
rAC = ½(1 – e-2dAC)

= ½(1 – e-2dAB e-2dBC)
= ½(1 – [(1-2rAB)(1-2rBC)])

rAC = rAB + rBC – 2rABrBC

qv. m +n - 2mn

fraction of recombinants in the interval AB is m 
fraction of recombinants in the interval BC is n  

Fraction of single recombinants is AB m(1-n) 
Fraction of single recombinants is BC n(1-m) 

Fraction of AC single recombinants (1-m)n + m(1-n) 
= m +n -2mn

rAB

rAC

rBC

 
Note that Haldane's function fits the assumption that adjacent 
recombination events are independent. This is not always the case, 
and other map functions take account of interference between 
adjacent recombination events. (see de Vienne p 50 – 53 for the 
derivation of the Haldane mapping function and a discussion of 
interference.) 
 
2.6 Linkage groups and chromosomes 
 
The terms ‘linkage group’ and ‘chromosome’ are often used 
interchangeably. There is some justification for this, but they are 
really two different things.  
A chromosome is literally a coloured thing, it is what you see when 
you stain some cells in an appropriate way and then look down a 
microscope to see the rod shaped structures that do marvellous things 
at mitosis and meiosis. The term is, logically, extended to the thing 
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that is stained in this way. My cells have chromosomes in them even 
though they are not stained. 
A linkage group is a part of a data set. It corresponds to markers that 
are associated with each other according to a set of rules. It is not 
necessarily the case that all markers in a linkage group are observably 
‘linked’, often they are in ‘free segregation’. Markers at one end of a 
linkage group may well have no more association with markers at the 
other end than with markers on other linkage groups. However, you 
can always trace a series of connections between markers on a linkage 
group. On a linkage group with ten markers, where there is 10 % 
recombination between each adjacent marker, there is a chain of 
connection, and the extreme markers do not have 100 % 
recombination, but - as a property of the way probabilities are added -
something approaching 50 %.  
The markers on a linkage group are in some way derived from a 
chromosome (in the extended sense). Either they correspond to DNA 
sequences that are part of the chromosome or some derived property 
of that DNA sequence – a protein with a certain interesting mobility in 
a gel system, a flower colour ... The way these markers behave 
genetically: how they are distributed among offspring is a direct 
consequence of the way the chromosome behaves in meiosis and 
zygote formation. The properties of a linkage group are determined by 
chromosome behaviour and chromosome behaviour can be inferred 
from linkage group behaviour. 
Of course all this had to be proved, and at the outset some serious 
geneticists thought the idea was nonsense – but that’s another story. 
 
2.7 Molecular markers and crop improvement 
 
The purpose of this course is to explore, in some detail, the ways in 
which genetic markers can be applied to crop improvement. The first 
part of the course dealt with the issue of assessment of genetic 
diversity, and stressed the utility of molecular marker diversity in the 
choice of material for trait analysis. Part II of the course deals with the 
way molecular markers can be exploited in trait analysis both for 
understanding the inheritance of trait determinants and their 
manipulation in breeding. The value of molecular markers is clear for 
the understanding of trait genetics, but their deployment in a given 
breeding context is a matter of informed judgement. We hope that the 
present course will provide a firm foundation for this decision making.    
 
In the source text, de Vienne states: 

“In conclusion about marker assisted selection, it appears that 
markers can save time by selection in off-season generations, 
without agronomic evaluation, and above all they are 
irreplaceable for the management of recombinations, in order 
to accumulate favourable alleles as quickly as possible in a 
single genotype. To exploit their value fully, new schemes of 
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recurrent selection or rather recurrent genotype construction 
must be devised”. 

 
Breeding is both a skill and an art, drawing on the breeder’s 
knowledge, imagination and aspirations. Molecular markers are a tool 
the challenge is to deploy them with skill and good design. 
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2.8 Glossary  
  
Expressivity: The intensity to which an organism expresses a 
phenotype 
 
Haplotype: A set of linked alleles. Often this will refer to DNA 
sequence variation within a gene where one sequence variant may 
occur in the presence or absence of another. For two nucleotide 
positions this will generate four possible haplotypes: 
 
1     ...A...C... 
2     ...G...C... 
3     ...G...T... 
4     ...A...T... 
 
A haplotype may arise by mutation. For example if the original allele is 
1 above, and the mutation A > G occurs then the variant 2 will be 
generated. As this differs from the other alleles at one position it is not 
usually called a haplotype. However if a subsequent mutation occurs 
(C > T) then this must occur either in allele 1 or in allele 2, not both.  
This means we would expect to fine either haplotype 3 or haplotype 4. 
It is this coincidence of patterned allelic variation that makes 
haplotypes interesting. If the set of haplotypes 1, 2 and 3 arose by 
mutation haplotype 4 would arise either by independent mutation or 
(either G > A reversion from 3, or C > T mutation from 1) it could arise 
by recombination between alleles 1 and 2. If haplotypes represent 
variation at multiple sites then independent mutation at several is less 
likely than recombination. Thus haplotype structure in populations 
tells us a lot about which alleles have been present in the same 
individuals. That is it tells us about population substructure. 
 
Interference: In the context of genetic mapping this refers to the 
positioning of crossovers with respect to each other. When chiasmata 
form, there are precursor structures that seem to combine or be 
coordinate to form a mature chaisma. This means that independent 
chiasmata tend not to occur immediately adjacent to each other. 
Chiasmata interfere with each other and with telomeres, but 
interference seems to ignore the centromere. 
This means that there is a non-random distribution of recombination 
with respect to the chromosome. 
Interference can (theoretically) also apply to  chromatids. In the 
absence of chromatid interference when one chiasma forms between 
two chromatids of a bivalent, the chromatids involved in a second 
crossover are independent of the first selection 
 
Orthology: Literally ‘the same word’. Genes in two different species 
are said to be orthologous if they are descended from the same single 
gene in their most recent common ancestor. This is in fact difficult to 
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know for certain because the common ancestor may have had two 
different but very similar genes, and these different genes may be 
different progenitors of the two single genes present in the species 
being compared (in both of which the other second gene has been 
lost). A pair of genes descended from the same single gene, but 
present in the same genome (for example after a gene duplication 
event, or the formation of a polyploidy) are said to be paralogues. 
Paralogues and orthologous, are special cases of ‘genes descended 
from a common ancestor’ more generally known as homologous genes.  
 
Penetrance: The proportion of organisms that show the effect of an 
allele. 
 
Synteny: ‘Holding together’ – Synteny is the property of syntenous 
genes or genes in a syntenic region. This term has slightly different 
usage in animal vs plant genetics. In the former genes are considered 
syntenic if they are found in an equivalent segment of the genome of 
two species. In plant genetics the additional requirement is placed 
that syntenic genes should have the same relative order. In animal 
systems these are said to be collinear (with the confusing spelling). 
Plant geneticists tend to use collinear and syntenic as synonyms.  
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3. Genetic maps: the practicalities 
 
3.1 Markers 
 
Any segregating character can act as a genetic marker. Morphological 
characters, in the loose sense eg. flower colour, are easy to score and 
provide good genetic 
information, but often these 
characters exhibit dominance. 
Dominance is a genetic 
property, and is independent 
from the nature of the trait. For 
example, a dwarf trait such as 
that determined by the wheat 
Rht genes can be dominant6. In 
the example shown on the 
right, the F1 of the cross 
between two inbred sweet pea 
(Lathyrus odoratus) lines shows 
that, in this case, the white 
flowered trait is dominant. In 
this case the F2 segregated 3:1, white : coloured, and not all coloured 
flowers were red. 
 
Not all morphological characters have clear dominance; in some cases 
the heterozygotes can be identified. This means that in an F2 
population more precise genotypic information is available. Marker 
types that allow the easy identification of heterozygotes include both 
isozyme markers and some types of DNA based markers. 
 
In de Vienne’s book many sources of molecular markers for genetic 
analysis are described in Chapter 1. The important point to note 
about DNA based markers is that there are potentially very many of 
these, and some differences between individuals in DNA sequence 
have no obvious consequence. Redundancy in the genetic code means 
that different sequences can encode the same polypeptide. Such 
differences may be completely silent, and the strength of selection is 
measured by the ratio of synonymous to non-synonymous differences. 
We know that most of the genome in eukaryotic organisms does not 
encode protein. DNA sequences in introns and in intergenic DNA are 
not necessarily subject to such intense selection as protein coding 
DNA. For this reason markers derived from such sequences are likely 
to be good sources of polymorphic markers. 

                                       
6 J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, J. 
Beales, L.J. Fish, A.J. Worland, F. Pelica, D. Sudhakar, P. Christou, J.W. Snape, 
M.D. Gale and N.P. Harberd (1999). ‘Green Revolution’ genes encode mutant 
gibberellin response modulators. Nature 400: 256-261. 
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3.2 Dominant and co-dominant molecular markers 
 
For molecular markers the idea of dominance may seem a little odd, 
but this simply reflects the way the different alleles are detected. If 
only one allele can be detected, and the other is inferred the marker is 
said to be dominant. If a marker is identified by the presence of a 
given band and its absence is the other, then if we see the band we 
know there is at least one ‘band present’ allele, but we don’t know 
whether there is one or two of these. If the band is absent then we 
know there ‘no band present’ alleles, so we infer that there are two 
‘band absent’ alleles. This seems reasonable, but it is an inference. 
Dominant molecular markers are thus much like dominant classical 
markers, when one allele is present the nature of the other is masked. 
 
Co-dominant molecular markers are perhaps a little harder to 
understand because they push the idea of a locus or allele a little.  
 
The picture to the right is a 
simple example of an RFLP. The 
hybridization probe (in this case 
a chalcone synthase gene) 
hybridises to different sized 
EcoRI fragments in two pea 
lines and these appear to be 
alleles. A heterozygote shows 
both bands and it is clear 
which band is which. In an F2 
the two parental bands and the 
heterozygote patterns segregate 
1:1:2.   
It is easy to score this RFLP as 
a co-dominant marker, but 
what is the allelic difference?  
In the interpretation shown in the diagram, the DNA sequences at 
both alleles are almost identical. The exceptions are the restriction 
sites, and in principle could be single base differences. In allele 1 the 
restriction site at ‘b’ is missing, but we have no direct information that 
can tell us whether the restriction site at position ‘c’ is present in 
allele 2. In effect the assay is telling us whether the site at ‘b’ is 
present or not, and we can identify both possibilities. The allelism 
appears to be a single base difference identified by the restriction site 
present or absent from position ‘b’.  
What would be the consequence of an (extremely unlikely) crossover 
between the positions ‘b’ and ‘c’. For one possibility (starting at the left 
of the sequence representing allele 1 and ending at the right of the 
sequence representing allele 2), we have no clear expectation for the 

Interpretation:

allele 1
restriction 
sites

RFLP image
probe Chs1

a b c

21

9.6

5.4

4.3

kb

allele 2

Chs1 gene

Chs1 gene

(not to scale)
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resulting band size. What appears to be a simple assay for a co-
dominant marker is a little more complex than seems at first. 
Fortunately this type of crossover is exceptionally rare, so for all 
practical purposes these two dominant markers, tightly linked in 
repulsion phase (see below), behave as a single co-dominant marker. 
 
3.3 Markers for comparative genetics 
 
In the development of genetic markers that can be used to relate 
genetic maps of different species it is good to have a clear identifier for 
a genetic marker. It is useful if this is derived from a gene because it 
is often possible to identify the same gene in different species. In the 
case of Rht discussed in Peng et al (1999) the same gene and mutant 
phenotype has been identified in monocot and dicot species.  
 
If we want to target genetic markers to genes, so that they can be 
identified in different species, or even wild relatives, then we have a 
problem. We have chosen a DNA sequence that is constrained in its 
evolution, and variants will be hard to find. We can overcome this to 
some degree by exploiting the structure of eukaryotic genes. The 
protein coding parts of genes (exons) are often interrupted by DNA 
sequences that correspond to parts of the mRNA that is removed 
(introns). These may have functions that are subject to purifying 
selection, but these often do not seem to depend precisely on their 
sequence and rather relate to approximate length or base composition. 
This means that introns can be good sources of markers because their 
sequence is variable and they are bounded by sequences that are 
conserved. This means that intron directed PCR is a good source of 
cross species genetic markers. 
 
See intron directed PCR (see 4.5.4). 
 
 
3.4 Scoring data and the codes used by mapping programmes 
 
For the analysis of joint segregation of marker we need to know two 
things. The first is the parent-of-origin of the marker, and this has 
been discussed at length above. The second is the phase of the marker 
association. Alleles are said to be in ‘coupling phase’ when they are 
carried on the same homologue, but in ‘repulsion phase’ when they 
are carried on different homologues. This information is clear in the F1 
because the phase is determined by the parents. In the F2 however 
this information is lost. One way round this problem is to use 
population types that avoid the need for this type of information, 
recombinant inbred or doubled haploid populations for example. In 
these populations the segregants are homozygous, so the worries 
about dominance are also avoided.  
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For dealing with these uncertainties the mapping programmes use 
codes for scoring and these need to be adopted. There are many 
possible ways of doing this but a common scheme, and the one used 
by Mapmaker is as follows: 
You need to decide which parent is a, and which is b. Conventionally 
the first parent in the cross title is the female so the female parent 
could always be the a parent. However this is an important decision 
when scoring and analysing data from comparative mapping where 
there may be a parent common to many mapping populations. 
For the F2 data presented later in the manual (5.1.1) the parental line 
JI15 is a, and JI399 is b. 
 
The codes for codominant markers are as follows: 
 
A Homozygote for the allele from the a parent, ie. aa 
B Homozygote for the allele from the b parent, ie. bb 
H Heterozygote, ie. carrying both alleles from a and b, ie. ab 
- Missing data for an individual at the locus 
 
 
There are additional codes for dominant markers, to allow for the 
heterozygotes being indistinguishable from either one of the 
homozygote class, they are as follows: 
 
C Not a homozygote for allele parent a, ie. bb or ab 
D Not a homozygote for allele parent b, ie. aa or ab 
 
Worked example for round vs wrinkled seeds of pea. 
Round seeds carry the dominant R allele 
Wrinkled seeds are homozygous for the r allele 
In the cross between two inbred lines JI15 (round seeded RR) and 
JI1194 (wrinkled seeded rr) we can designate JI15 as parent a and 
JI1194 as parent b 
Code Genotype 
A RR 
B rr 
C Rr or rr 
D RR or Rr 
H Rr 
- not known 
 
This may seem complicated but is straightforward. The following 
examples using the F2 population for pea where JI15 is parent a, and 
JI399 is parent b. 
For a dominant marker from the a parent (JI15), the codes required 
are B and D, where B is the absence of the JI15 marker and D is the 
JI15 homozygote or the heterozygote, as for *T56p marker below:  
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*T56p 
DDDDDDDDDBDBDDDDDDDDDBDBBDBDDBDBBDBBDDDDDBDDDDDBDDDDBDBDDDDDDDDBDBDDDDDDBDBD
DDDBDBDDBDDBDBDBDDDDDDDDDDDDDBDDDDDDDDDDDD 

 
So we expect a 3:1 ratio of D:B (aa+ab:bb). 
 
For a dominant marker from the b parent (JI399), the codes required 
are A and C, where A is the absence of the JI399 marker and C is the 
JI399 homozygote or the heterozygote, as for *S10m marker below:  
 
*S10m   
CACACCCCACCCCCCCCCCCCACCCACCCCACCCCCCCCCACCAACCCCCACACACCAAACACAACCCCACCCCCC
-CCCCAAACACCCACCCC-CCCCCCCCCCCCACCCCCCCCCC 
 

Again we expect a 3:1 ratio of C:A (bb+ab:aa). 
 
For a codominant marker the codes are A, B and H, as for *Catheps 
(Cathepsin) below: 
 
*Catheps   HBHABBHAAHAAHHAAAHAHHHAHAHHHBHHBHHAABAHAAAHAHA-
HHHHAHHHHABHABABHHAHBHABHABHHAAHAHBAAHHAHABAAHBAHH-HBHABHHHHHAABABAABBH 

 
 
3.5 Coupling and repulsion phase - see de Vienne p53 
 
Getting back to coupling and repulsion with dominant markers. 
 
Coupling phase: 
 
A series of linked markers that have the A and C mapping codes only 
are said to be linked in coupling; similarly for a series with the B and 
D codes only.  
 
Repulsion phase: 
 
A pair of linked markers where one has A and C and the other has the 
B and D codes are said to be linked in repulsion. 
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4. Practical Course: Molecular marker techniques for crop 
improvement  
 
4.1 Safety information  
 
SAFETY NOTE: wear gloves, labcoat and safety glasses throughout all 
of these procedures. 
 
All of the liquid chemicals listed below are highly toxic and hazardous 
compounds. Take extreme care when handling these compounds and 
always wear a labcoat, gloves and safety glasses. On contact with 
skin/eyes wash immediately with water. 
 
Acrylamide:Bisacrylamide (19:1) 40 % solution is bought ready 
made. 
It is a neurotoxin and possible carcinogen; causes a tingling sensation 
on contact with skin. 
 
Chloroform a carcinogenic and toxic solvent, readily absorbed 
through the skin, degreases and deproteinates the skin; dispense in 
the fumehood.  
 
CTAB is harmful if swallowed, with a risk of serious damage to eyes: 
wear gloves and safety glasses. 
 
Ethanol highly flammable 
 
Ethidium bromide may cause heritable genetic damage. 
 
Formaldehyde highly volatile carcinogenic and toxic, dispense stock 
in the fumehood. 
 
Formamide a toxic and teratogen, dispense large volumes in the fume 
hood, small volumes in an aerated laboratory area. 
 
Liquid nitrogen risk of cryogenic burns, always handle in a well 
aerated and open area. 
 
Phenol a carcinogenic and toxic solvent, readily absorbed through the 
skin, causes severe and immediate burns, best treated initially with 
10%PEG solution. Always dispense in fumehood. 
  
Repelcote VS highly flammable, an irritant, use in the fumehood 
 
Silver nitrate a possible carcinogen, causes burns, absorbed through 
the skin and stains. 
 
Sodium thiosulphate irritant dispense stock in the fumehood. 
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TEMED Highly flammable, harmful by inhalation; causes burns. 
 
All other chemicals in powder or crystal form that you are likely to 
encounter on this course will generally be irritants in one way or 
another, possibly causing irreversible effects on contact with the skin 
or on inhalation, always wear gloves when weighing, dispensing and 
handling solutions. 
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4.2 Buffers and solutions  
 
DNA Extraction Buffer: 
a) 
3 X SSC 
50mM EDTA pH 8 
Store at RT 
b) 
500 mM      NaCl 
100 mM      Tris pH 8.0 
50 mM        EDTA (same ish pH) 
10 mM        β Mercapto-ethanol (stock is 14M)  
Store at RT  
 
5 x RL Buffer 
50 mM        Tris-H acetate pH 7.5  
50 mM        Mg acetate  
250 mM      K acetate  
25 mM        DTT  
Make from filter sterilized solutions and give a final filter sterilizations.  
Store at -20ºC  
 
10 x PCR  
500 mM       KCl  
100 mM       Tris-HCl pH8.5  
15 mM         MgCl2  
1 mg/ml      Gelatin  
Add all components together; dispense into 20mls volumes and heat 
sterilise. Store at -20ºC  
 
10 x TBE  
121 g            Tris Base  
51.3 g           Boric Acid  
3.7 g             EDTA 
Distilled Water to 1 litre  
Dissolve components, sterilise by heating.  
Store at room temperature (RT) 21 
 
Acrylamide Mix 4.5%  
420 g            Urea  
100 ml         10 x TBE 
115 ml         Acrylamide mix 40% (19:1) 
Distilled Water to 1 litre  
 
Dissolve the Urea in 400 ml of water by heating gently (1 
minute/medium in a microwave oven, do not over heat, this breaks 
down the Urea); remove from microwave and stir till the crystals 
completely dissolve; once dissolved and while stirring add 100 ml of 
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10  x TBE and then add the 115 ml of acrylamide; make up to 1 litre 
with water. Store at 4ºC as this must be used directly from chilled 
just before pouring a gel.  
NB make less, e.g. 250 ml, if you plan to pour only 2 to 3 gels.  
Each gel requires 60 ml.  
 
T 0.1E pH 8.0  
10 mM       Tris pH8  
0.1 mM      EDTA pH8  
Make from heat sterilised components.  
Store at room RT  
 
20 X SSC  
175.32 g    NaCl  
88.23 g      Trisodium citrate  
Distilled water to 1 litre  
Store at RT  
 
Acrylamide gel loading dye  
98 %           Formamide  
0.025 %     Bromophenol blue        
0.025 %     Xylene cyanol  
10 mM       EDTA pH8  
Store at RT  
 
Bind Silane A-174  
Electran Stock solution:  
40 ml of 100 % ethanol + 150 µl of Bind Silane.  
Working solution:  
40 ml of stock Bind Silane + 1 ml of 10 % acetic acid  
 
Store all solutions, including stock, at 4ºC 
 
Silver staining solutions  
 
1. Developer: Dissolve 60 g sodium carbonate (make sure it is 

anhydrous and not too old) in 2 litre of distilled water and place at 
4º C, for at least 4 hours before required.  

2. Fixer: 10 % acetic acid (200 ml glacial acetic acid added to 1.8 litre 
distilled water).  

3. Silver stain solution: 12 ml 1.01 N silver nitrate solution in 2 litre of 
distilled water; add 3 ml formaldehyde (40 % solution) and mix.  

4. Developing solution: Immediately prior to developing the gel, add 
300 µl of sodium thiosulphate solution (0.1001 N) and 3 ml of 
formaldehyde (40 % solution) to the pre-chilled sodium carbonate 
solution. 
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4.3.1 Standard units, prefixes and usage 
 
In 1960, the 11th CGPM adopted a first series of prefixes and symbols 
of prefixes to form the names and symbols of decimal multiples and 
submultiples of SI units. Over the years, the list has been extended as 
summarized in the following table. 
 
factor prefix symbol factor prefix symbol 
1024 yotta- Y 10-1 deci- d 
1021 zetta- Z 10-2 centi- c 
1018 exa- E 10-3 milli- m 
1015 peta- P 10-6 micro- μ 
1012 tera- T 10-9 nano- n 
109 giga- G 10-12 pico- p 
106 mega- M 10-15 femto- f 
103 kilo- k 10-18 atto- a 
102 hecto- h 10-21 zepto- z 
101 deca- da 10-24 yocto- y 
 
Volumes, concentrations etc 
 
The mole is the SI unit for the amount of a substance and one of the 
seven fundamental SI units. It is defined as the amount of substance 
of a system that contains as many elementary entities as there are 
atoms in 0.012 kilograms of carbon-12 (BIPM 1998, p. 97). It is 
abbreviated "mol," and the number of entities in a mole of substance is 
given by Avogadro's number (6.023 x 1023).  
 
Thus, mmol = 10-3 moles, μmol = 10-6 moles, etc 
 
Note that some authors use upper case ‘m’, thus, pMol = 10-12 moles. 
This may lead to confusion as it is conventional to use uppercase ‘M’ 
for molarity (i.e. concentration in moles per litre). 
 
Thus, 0.1 M = 0.1 moles per litre = 0.1 mol/l = 100 mM = 100 mmol/l 
etc. 
 
Volume units are fractions of a litre. The more correct symbol for litre 
is a capital ‘L’, but lower case ‘l’ is more common. Thus ml = mL = 
milliliter = 10-3 litre 
 
Note that a space should be introduced between the number and the 
symbol for units.  It is not necessary to place a stop after the symbol 
and it is not necessary to pluralise. Thus, 10ml, 10 ml. and 10 mls are 
incorrect; 10 ml is correct.  
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4.3.2 Properties of oligonucleotides (primers) 
 
You may need to calculate the molecular weight, melting temperature 
or some other property of an oligonucleotide which depends on its 
base sequence. Programs are available to help you do this. For 
example: 
 
http://www.basic.northwestern.edu/biotools/oligocalc.html 
 
Alternatively the companies from whom you purchase primers 
calculate the melting temperature and secondary structure when you 
input a sequence during on-line ordering. This gives you the 
opportunity to tailor the sequence to suit. On receiving the primers 
this same information is included in a useful table that also includes 
sequence information such as dilution suggestions. 
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4.4 Laboratory work  
 
4.4.1. DNA preparation  
 
4.4.1.1 Harvesting leaves for DNA preparations  
 
On this course we will be working with leaves of Lablab, the method 
suggested below for this genus are more or less applicable to most 
crops. There are many other variations on this method, commercial 
kits are available and methods using CTAB (Appendix 1) can also be 
tried. However the method described here is straightforward and uses 
relatively inexpensive, easily available chemicals.   
Leaves should be healthy, dry, without disease and preferably young. 
 
Frozen material: 
Large scale:  
Label a plastic tube with the accession number, (Greiner 50 ml tubes 
will be used on the course) select a few leaves 3 to 4 (10-20 g of fresh 
tissue), place into the tube and immediately drop the tube into a 
container of liquid nitrogen. 
These frozen samples can be treated on the same day, OR removed 
from the liquid nitrogen and stored at -20ºC. 
 
Small scale: 
As for large scale but choose one small leaf and place into 1.5ml 
plastic microtubes and scale down all components to suit the 1.5ml 
maximum volume of the tube. 
 
Dried material: 
As there is more degradation of DNA in drying leaves it is necessary to 
select two times the number of leaves compared to the frozen method. 
 
Select leaves and place into brown paper bags, place the leaves as flat 
as possible and try not to have them overlapping. Do not seal the 
bags. The size of the paper bag is determined by the number of leaves. 
Keep in a dry place, eg. in a larger paper bag with silica gel at the 
bottom. Change the silica gel at regular intervals. Ideally this material 
should be prepared 3/4 weeks before DNA preparations are required. 
 
4.4.1.2 Grinding leaves for DNA preparations  
Suspension of plant tissue in buffer 
Frozen material: requires a supply of liquid nitrogen and should be 
treated as follows: 
 
1.     Remove tubes of frozen leaves from the freezer and place into the 

liquid nitrogen container. 
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2.     Handling one sample at a time, empty the contents of a tube into 
a mortar along with a small volume of liquid nitrogen. Grind the 
leaves to a fine powder. 

3.     When the outer most edge of powdered material starts to melt, ie. 
begins to turn dark green, add 10 mls of extraction buffer (1 ml per 
1 g of tissue)* directly into the mortar and continue to grind until 
the whole bowl and contents begin to warm above freezing. 

4.     Add 100 µl of 20 % SDS to the extraction mixture, mix and then 
transfer the contents back into the original Greiner tube. 
Remember to add proportional volumes of SDS if the extraction 
buffer volume has exceeded 10 ml. 

5.     Proceed through steps 1 to 4 on the next sample.  
 
Once the leaves are in the the extraction buffer the DNA content is 
safe from degardation by DNase as the EDTA concentration is 
inhibitory to enzyme activity. The SDS presence disrupts the cell wall, 
leaving nucleic acids free to further extraction.  
 
Dried material: if these have been treated properly and dried slowly 
then they will grind down into a fine powder. If the leaves are slightly 
damp then it is possible to speed up the drying process prior to DNA 
extraction by placing the paper bags of leaves in a 40ºC oven for 30 
minutes. It is better to use oven drying just before DNA preparation 
and not immediately after harvesting as this heating process 
accelerates DNA degardation. 
 
1.     Grind dried leaves in a mortar to a fine powder. 
2.     Add 10 ml of extraction buffer* and continue to grind. 
3.     Add 100 µl of 20 % SDS to the extraction mixture, the same 

applies as 4 above if more than 10 ml of buffer have been required. 
4.     Mix the contents and transfer to a labelled 50 ml Greiner tube. 
5.     As for 5 above. 
 
* It may be necessary to add more extraction buffer as this depends 
on the number and size of the leaves. The rule of thumb is to start 
with 10ml then add additional 5ml volumes if required.  
 
4.4.1.3 DNA extraction  
 
Both frozen and dried leaf material can now be treated identically 
using the following method of DNA extraction. 
 
1.     Shake the tube contents briefly and place the tubes in a 37ºC 

waterbath for 5 minutes. 
2.     In the fume hood shake the tube contents briefly and add an 

equal volume of chloroform/IAA** (24:1) and shake again; 
balance tubes based on volume and centrifuge at 4000 rpm for 8 
min (this is the first stage of deproteination). 
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3.     Remove the upper aqueous phase, again do this in the fume 
hood, to a freshly labelled tube using the 5 ml Gilson pipette; try 
not to disturd the lower chloroform phase and the central green 
mass of leaf material. Repeat this for all the samples before 
proceeding. 

4.     Precipitate the nucleic acid by adding 2 volumes of 100 % 
ethanol into the decanted aqueous phase. Mix very gently by 
inverting the tube slowly. At this point it is possible to spool out 
the nucleic acid (for some crops like pea), but Lablab does not 
spool; in this case centrifuge at 4000 rpm for 10 minutes. 

5.     Pour off the ethanol carefully, (great care is needed here as the 
pellet will often start to move in which case it may be best to 
remove the last traces ot ethanol with a pipette) place the tube on 
its side and leave the pellet to dry. 

6.     Resuspend the pellet in 10 ml of TE pH8, add a further 5 ml if 
the pellet is reluctant to dissolve. 

7.     Degrade the RNA with addition of 2 µl of RNase A (100 mg/ml), 
incubate at 37ºC for 5 minutes. 

8.     In the fume hood add 5 ml of phenol*** to each sample and 5 ml 
of chloroform/IAA (24:1) and shake; this phenol/chloroform 
treatment denatures the RNase and continues the deproteination 
process. Centrifuge at 4000 rpm for 8 minutes. 

9.     Decant the upper aqueous phase (ideally it is clear and not 
cloudy) to a fresh labelled tube; precipitate the DNA with the 
addition of 2 volumes of ethanol; gently invert and you may see 
the white strands of high molecular weight DNA. Centrifuge at 
4000 rpm for 10 minutes and pour off the ethanol. The pellet will 
be either white in colour in which case the pellet will remain at 
the bottom of the tube or the pellet may be clear and more 
susceptible to movement. Once again take care when decanting 
and remove the last traces of ethanol with a pipette. Place the 
tube on its side and allow the pellet to dry. 

10.     Resuspend the pellet in 100 to 200 µl of TE pH8. If it is 
necessary to encourage resuspension do so using a P1000 blue 
tip with the end cut off, this opens the bore and prevents 
shearing of the DNA. 

11.    Spin down the tube contents with a brief centrifugation of less 
than 1 minute and transfer the DNA solution with an opened 
bore tip to a 1.5 ml microtube. 

12.    Give a final chlorform/IAA (24:1) extraction, this will remove any 
remaining traces of phenol. Make the volume to 300/400 µl with 
TE pH8 and add equal volume of chloroform/IAA (24:1), mix by 
inversion and spin at full speed for 5 minutes in micro-centrifuge. 

13.     Using an open bore P1000 blue tip, pipette off the upper 
aqueous phase to a fresh labelled tube and add 2 volumes of 100 
% ethanol, mix gently, spin at full speed for 8 minutes. 

14.     Pour or pipette off the ethanol carefully leaving the pellet intact 
add 500 µl of 70 % ethanol and spin full speed for 5 minutes. 
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15.     Remove the ethanol as in 14 above and leave the pellet to dry. 
Resuspend the pellet in 20 – 50 µl of TE pH8, or more if required, 
depends on the amount of DNA extracted. Aim for a DNA 
concentration of approximately 0.5 µg/µl. This looks viscous but 
not too fluid when the point of the tube is tapped, typically it is 
necessary to add 50 – 100 µl of TE. 

 
**      Chlorofrom is a hazardous solvent and melts plastic readily, 

take great care when handling and avoid chloroform on outside of 
tubes as it erases labels; always wear gloves when handling 
chloroform containing liquids. 

***      Phenol is also a hazardous sovent that burns and is readily 
absorbed through the skin; always wear gloves when handling 
phenol containing liquids 

 
4.4.1.4 Agarose gel assessment of DNA concentration  
 
There are two simple methods of assessing DNA concentration, one is 
to take a dilution of your DNA in water and make a 
spectrophotometric reading at 260 nm, the other is to run a sample 
on agarose gel, stain with ethidium bromide and compare the 
concentration against known standards. 
The preferred method for this course is agarose gel. This will show if 
the DNA is sheared, there is RNA remaining, will provide a DNA 
concentration and is more sensitive to weak concentrations of DNA. 
Typically 10 ng can be detected by ethidium bromide. 
 
1.     Using a 500 ml Duran bottle make up 250 mls of 0.8 % agarose 

in 1xTBE buffer, heat in a microwave oven on medium power 
until boiling and dissolved, leave the lid loose the whole time so 
that pressure cannot build up in the bottle; leave to cool t 65-80 
ºC. 

2.     Prepare the gel casting tray with the desired number of wells and 
tape the end, pour the gel, not too deep, pour until the whole 
base is just covered with molten agarose and allow the gel to set 
for 1 hour. 

3.     Take 2/3 µl of each DNA preparation to 4 µl of SDW (sterile 
distilled water) and add 5 µl of orange G loading dye. 

4.     Prepare the standards using the lambda DNA at 0.5 µg/µl in the 
same way as in 2 above. The suggestion is to use 4 standards of 
0.5, 0.25, 0.1 and 0.05 µg. 

5.     Remove the tape at the ends of the casting tray and place in the 
electrophoresis tank, pour in 1xTBE buffer and remove the comb. 

6.     Load samples and standards, segregate the samples into blocks 
of 15 or so separated by a DNA ladder; run at 100 V for 1-2 hr 
depending on the number of combs lined up in parallel. 
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7.     Remove the gel from the casting tray to a deep tray containing 5 
µl of 10 mg/ml ethidium bromide solution in 150 mls of 1xTBE 
and stain for 20/30 minutes; rinse the gel briefly with water. 

8.     Visualise under UV and photograph. 
9.     Store DNA at 4ºC. 
10.    Assess the DNA concentration of each against the standards. 
 
The photo below (figure 2.3.1) represents DNA preparations of Lablab 
purpureus from dried and frozen leaf material, run out on 0.8 % 
agarose in 1xTBE buffer; all samples were 3 µl loading. 
Lanes 1 and 2 are dried samples from the UAS collection. L is the 
100bp ladder. Lanes 3 to 27 are CPI, ILRI and UAS lines all from 
frozen leaves. Lanes 28 and 29 are the standards 0.5 and 0.05 µg of 
lambda DNA. 
 
Figure 1 

1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 201211 23 24 25 26 27 28 292221M M

 
 
The photo shows most of the frozen preparations are of high molecular 
weight and are approximately or in excess of 0.5µg/µl; many lanes are 
overloaded. Lanes 1 and 2 from dried samples appear mostly sheared 
with no apparent high molecular weight DNA. Shearing of the DNA is 
best avoided where possible but a little can be tolerated where small 
PCR products are to be generated. All of the DNA samples illustrated  
are good enough for PCR templates (in this case AFLP templates were 
generated). 
 
4.4.1.5 Preservation of DNA using FTA® paper (Whatman) 
 
Fresh leaf material is pressed onto specially treated filter paper, leaf 
disks are made and can be stored at room temperature (25ºC) for long 
periods. When required a disk is then taken through a purification 
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stage with there being sufficient DNA for PCR to be carried out 
directly. The protocol for using FTA paper, devised by Whatman, will 
be tried on this course, please see Appendix 2 for details, the protocol 
for AFLP using FTA card DNA is also included. 
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4.5 Molecular markers versus morphological markers 
 
4.5.1 Why use molecular markers?  
 
In de Vienne’s book the issue of marker types is discussed in the 
Introduction and in Capter 1. Classical or morphological markers are 
very useful, but it is rare to find very many segregating in a given 
cross, and it is unusual to find them segregating in crosses between 
breeder’s lines which are often selected for a particular overall form 
and growth habit. Molecular markers can vary extensively between 
plants with a similar morphology and physiology, provided they are 
not closely related by descent. Molecular markers have the advantage 
that they are abundant and have the potential to differ between plants 
with little or no consequence for their performance.  
 
On the previous courses, experiments examined the molecular 
diversity of Lablab and AFLP was the marker system chosen. The use 
of the AFLP marker method enabled a rapid analysis of the germplasm 
available to us and introduced a reasonably complex marker system 
that involved some basic but complex molecular techniques. 
AFLP are robust markers and can be used further in mapping studies, 
but the aim of this course is to introduce alternative marker systems 
that can be utilised in addition to AFLP. 
On this course we will be using Simple Sequence Repeat (SSR) and 
exon spanning markers (intron-directed), both of which are PCR based 
and relatively straightforward to carry out. Both of these molecular 
marker methods are popular and widely utilised in mapping studies. 
These two marker types require primers to be designed from sequence 
information either from in house sequence analyses or collected via 
database searches. This latter option is fine if your species of interest 
has an abundance of public sequence information. 
However, there is limited sequence availability in databases for Lablab 
(September 2005: about a dozen Lablab sequences from which 
primers can be designed) but we can use sequence information from 
related legumes. In fact, some of these studies have already been done 
and we can test whether or not the primers designed for other 
legumes will successfully amplify Lablab nuclear DNA. It is from these 
studies with three species in particular, the model legume Medicago 
truncatula, Glycine max and Vigna unguiculata, the latter two being 
more closely related to Lablab, that we will be testing primer 
combinations on this course. 
 
Two Lablab mapping populations have been generated at the UAS, 
they are: 
1. HA-3 x Mac-1 (GL415 x GL404) 
2. HA-3 x SR-L   (GL415 x GL553) 
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Both populations are available at the F2 generation. Preliminary 
analysis, involving the three parental lines of the crosses and also 
included Rongai, has already been carried out on a designated set of 
markers. However difficulties in obtaining polymorphic differences at 
the molecular level have been encountered during this preliminary 
marker analyses. There is yet a further set of primer combinations 
that can be tested 
 
On the practical laboratory course the procedure for testing a typical 
set of markers, that will eventually lead to their use as loci on a map, 
will be demonstrated. 
 
 
4.5.2.1 SSR markers 
 
The de Vienne course book describes SSR markers on p 29 – 31. 
Primers are designed from the non-repeat regions of genomic DNA 
that flank the specific microsatellite repeat (Fig 10, De Vienne). The 
amplification products of these markers often produce a stutter of 
bands similar to the Figure 2 below. 
 
 

 
 
 
Figure 2: A typical microsatellite (SSR) marker stutter pattern on 
PAGE (Polyacrylamide Gel Electrophoresis), the bands are from a pea 
SSR marker, the lower set of bands are 239 bp. The polymormophic 
differences among 7 Pisum lines are clear. 
 
The band stutter in each track, Figure 2, is usually attributed to 
replication slippage of the Taq polymerase during the PCR, this is 
explained and discussed by de Vienne. The leading major band in 
each track suggests that within the 7 Pisum lines there is polymorphic 
variation for this particular microsatellite repeat. 
 
4.5.2.2 How does an SSR marker create a codominant marker  
 
Using the SSR marker from Figure 2, a mapping population generated 
using the line 2 crossed with line 4 at F2 would show, ideally in a 
1:2:1 ratio: 
 

a. some individuals with the larger band series from line 2 

239 bp 
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b. some individuals with the smaller band series from line 4 
c. some individuals with both the larger and smaller band series, 

much like line 6, but the upper band series in this picture is a 
bit faint. 

 
The set of SSR markers that have been tested for this course, for use 
with Lablab, are primer pairs from Wang 7, and are listed in Appendix 
3; 32 primer pairs were tested in total, 18 designed from M. truncatula 
and 14 from G. max. Of this set 11 failed to amplify a band in the 4 
Lablab lines tested. Those primer pairs that did amplify Lablab DNA 
showed there were no obvious polymorphic differences between the 3 
Lablab parental lines and Rongai on agarose gels. Some of the 
successful primer combinations gave a multi band pattern with 
Lablab and a couple of these have been tested on PAGE and visualised 
using silver stain. There are a few polymorphic differences but these 
appear to be dominant marker types: much like those generated using 
AFLP. 
 
 The course work will continue with the primer screening techniques 
that have been used so far. 
 
4.5.3 Intron-directed markers 
 
These can also be called intron-directed PCR markers and their 
structure is illustrated in the figure below: 

 
 
 

                                       
7 Wang et al. 2004 Transfer of simple sequence repeats (SSR) markers acros the legume 
family for germplasm characterisation and evaluation. Plant genetic Resource 2 (2), 107-119 
 

exon 1 exon 2intron

primer 1 primer 2

The darkness of a region is intended to indicate the degree to which
its sequence is conserved between species or individuals.

PCR product is likely to be variable 
in sequence
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Primers are designed to regions known to be well conserved, so the 
primers will work well in a range of plants, but the region amplified is 
likely to be variable in sequence. 
 
This marker type also utilises sequence information from databases 
often from ESTs (expressed sequence tags). Primers are designed 
aiming to span an intron as above. Although the intron is missing 
from the EST, its location can be inferred by sequence comparisons to 
genomic DNA or gene models from related species. This may be 
selected sequencing of PCR products, whole genome sequence or BAC  
(bacterial amplified chromosome) end sequencing. The PCR products 
amplified from genomic DNA will contain both intron and exon 
sequence, and may be designed to contain more than one intron. A 
gene model is annotated sequence usually from a related species. As 
intron location is generally conserved over wide evolutionary distances 
this information can be used to design primers anticipating the 
positions of introns in the target species. 
 
 
 
 

 
Figure 3 

 
Figure 3 above shows the fragment pattern on PAGE from 5 
individuals from an F2 population of Pisum sativum with an exon 
directed marker for the gene Cathepsin; parental lines are P1 and P2, 
individual 4 is a heterozygote and is clearly distinguishable from the 
homozygotes, individuals 1, 2, 3 and 5, that have the presence of 
either the P1 or P2 allelic state for this marker. 
 
A range of primers from P. sativum gene sequences were tested in the 
3 Lablab parental lines and Rongai, none of which gave amplification. 
 
In an ideal situation the intron spanning / exon directed markers also 
will be codominant. Preliminary experiments using 8 M. truncatula or 
Vigna radiata primers from Choi 8 using Lablab DNA were not 
encouraging. Of 8 primer combinations tested only 1 gave an 
amplification with Lablab DNA. 

                                       
8 Choi et al. 2004 A sequenced-based genetic map of Medicago truncatula and comparison of 
marker colinearity with M. sativa. Genetics 166: 1463 – 1502. 

P1   P2   1    2     3     4     5 

227 bp 
 
 
215 bp 
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There are many more that potentially may provide markers for Lablab 
genetic mapping studies. Some of these provided by DJ Kim 9 (2005) 
will be tested during the course. 
 
4.5.4 Allele specific PCR 
 
Allele-specific PCR is a means of scoring single alleles at a locus 
independently, and so usually corresponds to a co-dominant marker 
(unless just one f the two loci is assayed). The point about allele 
specific PCR is that with careful primer design a simple PCR allows 
the identification of a specific allele. A similar effect can be obtained 
for example with CAPs markers, but these alternative methods require 
additional processing (eg digestion of the PCR product in CAPs). 
 
One approach to allele specific amplification is to design primers 
around structural rearrangements in DNA sequences. For example in 
the amplification of a specific allele of the 5SrRNA genes in pea, a rare 
variant identifies one allele. This allele carries a length variant of the 
5SrRNA gene repeat that includes a small duplication of sequence in 
the spacer region. Although this repeat contains sequences present in 
all other 5SrRNA gene repeats, a unique junction is generated such 
that a primer specific to the rare repeat can be identified. This is a 
slightly messy 
approach, but 
illustrates the 
power of primer 
design  
(See figure: ) 
 
 
 
 
 
 
A second approach that has been used extensively in pea genetic 
diversity assessment and is the so-called RBIP (Retrotransposon 
Based  Insertion Polymorphism) marker system10; in this case three 
primers in a single PCR can detect the presence or absence of a 
retrotransposon insertion at a specific locus. (See figure below). 

                                       
9 DJ Kim 2005 Personal gift 
10 Flavell A.J., Knox M., Pearce S.R., and Ellis T.H.N. (1998) Retrotransposon-based 
insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal 
16: 643-650,  

Spacer Transcription unit

Common type

Spacer Transcription unit

Specific primer Common primer

Rare variant with tandem duplication
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Coupled with a primer design that identifies SNPs (ARMS)11 this 
procedure can be assayed in the same way as RBIP markers12. 
 
 
 

RBIP markers:

Target site / Target site duplication

Long Terminal repeat

Internal/ coding domain

empty site

occupied site

Retrotransposon

 
 
The principle of ‘ARMS’ primer design is that a single mismatch near 
the 3’ end of a primer reduces the efficiency by which polymerase is 
able to synthesize an 
extended sequence from the 
primer, but that two 
mismatches (usually) 
reduces this to an 
undetectable amount. This 
means that mismatched 
primers can be used to 
generate allele specific PCR 
products.  
(See figure).  
In the example shown primer 1 can be extended with allele 1, but not 
allele 2 as a template, while primer 2 can be extended with allele 2, 
but not allele 1 as a template. Primer 1 or 2 in conjunction with a 
common primer will generate amplification products from only one 
allele. Note that the choice of mismatched primer is critical and 

                                       
11 Newton CR, Graham A, Heptinstall LE Powell SL Summers C Kalsheker N Smith 
JC and Markham AF (1989) Analysis of any point mutation in DNA. The 
amplification refractory mutation system (ARMS). Nucleic Acids Res. 17: 2503 - 
2516 
12 Flavell A.J., Bolshakov V.N., Booth A., Jing R., Russell J., Ellis T.H.H. and Isaac 
P. (2003) A microarray-based high throughput molecular marker genotyping method 
- the Tagged Microrray (TAM) marker approach. Nucleic Acids Research 31:e115 

Allele 1

Allele 2

CCC TC GTC G ATC G A T C C C

CCC TC GTC G TC G A T C C C

G A TCG AT GAGGG C GG
A

A

C

Primer 1

G A TCG AT GAGGG C GG
A

APrimer 1

Allele 1

Allele 2

CCC TC GTC G ATC G A T C C C

CCC TC GTC G TC G A T C C C

G ACG AT GAGGG C GG A

C

Primer 2

G ACG AT GAGGG C GG APrimer 2

G

G

G

G
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should differ between the two primers to maximise fidelity. For further 
details see Newton et al (1989). 
 
4.5.5 SNP markers 
Single nucleotide polymorphisms (SNP) provide many opportunities for 
the generation of markers. Indeed several of the marker types 
discussed in this manual can be SNP assays. RFLPs for example may 
correspond to a single nucleotide difference. Current efforts in several 
labs seek to exploit oligonucleotide arrays as a way of assauing many 
SNPs in parallel. This way of exploiting SNPs requires extensive 
genome sequence information and so will not be discussed in the 
course. 
 
One easy method of detecting SNP markers is by SSCP (described 
below 4.6.3.2), this method will be demonstrated during the course. 
SNP also lend themselves to a range of high throughput automation 
methods such as fluorescent reader-based or Mass-spectrometry 10. 
 
 
4.6 Parental screen using molecular markers 
 
The following series of experiments with a set of primers from the 
sources described earlier (Wang et al 2004, Choi et al. 2004; DJ Kim 
2005), designed from M. truncatula, G. max, V. radiata, V. unguiculata, 
P.  sativum and L. purpureus, uses the standardised PCR conditions 
set out below. This regime was tested and used routinely in the 
preliminary experiments at JIC for use with Lablab DNA using primer 
sequences designed from these related legumes. 
Positive amplification with control DNA, ie. DNA of the species from 
which primers were designed, was taken as successful PCR. The four 
Lablab lines were each tested in duplicate. 
 
4.6.1 Initial primer screen with the Lablab parental lines: experimental 
procedure  
 

a. Set up the PCR for testing with Lablab lines HA-3, Mac-1, SR-L, 
Rongai each should be carried out in duplicate and use the 
appropriate DNA as positive control; also include a negative 
control, this will show primer dimer. The sequence information 
for the primer combination is given in Appendix 3. 

 
Table 1: PCR components 
 

Components x 1 (µl) Master Mix x 12 
 (µl) 

*15 ng Primer forward (7.5  ng/µl) 4 48 
*15 ng Primer reverse (7.5 ng/µl) 4 48 
200 µM each dNTP (1mM) 4 48 
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10 X PCR buffer 2 24 
1U Taq Polymerase (5U/µl) 0.2 2.4 
SDW to 18 µl 3.8 45.6 
50 ng DNA** (50 ng/µl) 2  (216 = 12 x 18 µl) 
Total PCR volume 20  

 
 
* Or use at 0.1 µM final concentration (2 µl of 1 µM in a 20 µl PCR 
volume). 
** If the DNA concentration is initially at approximately 0.5 µg/µl, 
dilute tenfold in SDW. 
 

b. The PCR cycling conditions uses a touch down regime as 
follows: 

 
94ºC/ 3 min 

(94ºC/ 30 secs; 50ºC/30 secs; 72ºC/1 min) repeat for 10 cycles 
reducing the annealing temperature by 0.5ºC /cycle 
(94ºC/ 30 secs; 45ºC/30 secs; 72ºC/1 min) repeat 30 cycles 
72ºC/ 10 min 
12ºC/ 10 min 
end 

 
c. Divide the 20 µl PCR into 2 x 10 µl, ie. take 10 µl to a fresh set 

of microtubes and store at -20 ºC for running on PAGE later, if 
agarose shows amplification 

 
d. To the other 10 µl of PCR product add 5 µl of agarose loading 

dye, orange G 
 

e. Load the whole 10 -15 µl sample onto a 1.5 % / 1 x TBE agarose 
gel, run at 100V for 1-2 hrs till the orange dye comes close to 
the end of the gel and stain with Ethidium bromide. 

 
f. Take a photo and analyse the banding patterns observed 

 
g. Make a table of results, both positive and negative, in Excel. 

Record whether or not there was amplification in the Controls 
and Lablab. 

 
h. Combine all the data from all groups into one master Excel file. 

 
 
4.6.2 Positive amplification and further testing 
 
Those primer combinations where there has been amplification with 
the Lablab lines the saved 10 µl sample can be tested further. Either 
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this can be on 3 % agarose or 4.5% PAGE with silver staining (see 
Appendices 4 and 5) for details of these techniques). 
The choice of method is dependent on band sizes obtained with Lablab 
and whether or not it is possible to resolve band size differences on 
agarose. Repeating on 3 % agarose is straightforward, follow steps 
2.5.1 steps d - h above.  
 
The preliminary experiments carried out at JIC suggested that 4.5 % 
PAGE was generally necessary. The method for visualising bands on 
silver stain gels is as follows: 
 

a. to the 10 µl of saved sample add 8 µl of the acrylamide gel 
stop/loading buffer and denature the samples at 95ºC for 3 
min, cool to 12ºC for 10 min. Either store at -20ºC or hold on 
ice and run 5-8 µl of each sample on denaturing PAGE (see 
Appendix 4)  

 
b. Visualise bands after silver staining (see Appendix 5) 

 
c. Make a hard copy of the gel and analyse the band pattern, 

record results. 
 

d. Add the results to the Excel sheet in 2.5.1 g and h above. 
 
4.6.3.1 Running the population on PAGE 
 
Once polymorphic differences are observed the specific primer 
combinations responsible can be tested on the mapping population. 
 

a. Repeat each PCR in 10 µl final volume, ie. reduce the 
component volumes in Table 1 above by half and scale up for 
the number in the population, to also include the parental lines 
each in duplicate 

  
b. Repeat the steps 2.5.2 a – d for visualising on PAGE and silver 

staining. 
 
4.6.3.2 SSCP – single strand conformation polymorphism 
 
SSCP is an alternative PAGE method that can be used to visualise 
limited sequence variation, ie. SNP, a single base pair mis-match 
between two allelic sequences. This method utilises the migration 
characteristics of single stranded DNA and conformational 
polymorphic differences in secondary structure and mobility through 
a gel matrix. This method works optimally for fragments of less than 
400 bp in length and is ideal for SNP (single nucleotide polymorphism) 
detection. 
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The method uses neutral polyacrylamide gels (non-denaturing) and 
they are run longer and at low voltage, preferably in a cold room, but 
good results can be had at 22-25ºC. Other than differing gel 
conditions, sample preparation and loading, and silver staining is the 
same as described earlier 2.5.2 steps a-d. Gel conditions for SSCP can 
be found in Appendix 6. 
 
Properties of oligonucleotides (primers) 
 
You may need to calculate the molecular weight, melting temperature 
or some other property of an oligonucleotide which depends on its 
base sequence. Programs are available to help you do this. For 
example: 
 
http://www.basic.northwestern.edu/biotools/oligocalc.html 
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5. Statistics in genetic mapping 
 
It is important to have all the scoring data in an Excel spreadsheet 
from which it can be analysed further and later converted to text files. 
 
Before using a data series in mapping it is good practice to carry out 
some preliminary analysis of the data. The most obvious tests to carry 
out are: 
1) A check that as many individuals as possible in the population 
have been scored for the marker, or at least that the majority of the 
marker scores are informative. 
 
2) A test to be sure that the markers correspond to single genetic loci.  
 
3) A test that the segregation of the marker is unbiased in the 
population. Sometimes it is necessary to accept markers with 
distorted segregation because regions of the genome may have biased 
segregation, and should not be ignored, but if segregation is distorted 
it is important to know about that. 
 
 
5.1 Segregation ratios and the χ2  Test 
 
Using the JoinMap mapping programme these calculations are 
automatically done within the programme. However with MapMaker 
this facility is not available but these calculations can be done using 
MS Excel. As we will be focusing mostly with Mapmaker on this 
course the next section describes how to carry out these calculations, 
plus there are 2 Exercises included in this section. 
 
5.1.1 Using Excel 
 
Open the file F2_data.xls found in 2005 course folder. 
 
This file is split into 3 worksheets, choose the F2_scores worksheet. 
 
The worksheet named F2_scores, contains the raw scoring data for an 
F2 population (pea, JI15xJI399), there is a summary of experimental 
details at the top left hand corner; it is advisable to put information 
here for reference. This data set contains 153 markers  (columns A 
and B), scored for the 120 individuals in the F2 population (rows 5 – 
157). The markers are scored using the appropriate codes necessary 
for the mapping programmes (see 3.4).  
 
For future reference it is good practice to keep a worksheet for the raw 
data only and to set a protection (Tools, Protection, Protect sheet, give 
a password), so that the original data remains intact and cannot be 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     55 

accidentally deleted or changed. From this master data set other 
worksheets can be opened for further analysis. 
 
Open worksheet F2_analysis this is just a copy of the master 
worksheet F2_scores from which a series of statistical analyses can be 
carried out. 
 
Exercise 1: Segregation ratios 
 
a. From the F2_analysis worksheet take a batch of the data at a time 
and replace the Bs with 1. Use the SUM feature in Excel to add up the 
scores for B for the whole batch. Remember to replace 1 back to B 
before repeating the whole process again for D. 
Repeat again for all the other data, ie. C and A. 
 
b. Calculate the segregation ratios, for the dominant markers, ie. 
those that are D:B and C:A,  a 3:1 ratio is expected. 
The three codominant markers at the bottom are expected to be 1:2:1 
for each of the homogygotes and heterozygote. 
 
Exercise 2:  χ2 Test 
 
Using the χ2 we can test statistically whether the segregation ratios for 
a single marker fit the expected ratios for dominant and codominant 
markers. 
 
The formula for calculating χ2 is below: 
 

χ2 = ∑  (O – E)2 
         E 

  
For an RI population a 1:1 ratio is expected regardless of the marker 
type. However for an F2 population a dominant marker is expected in 
a  3:1 ratio and for a codominant marker it is 1:2:1. Below are two 
worked examples. 
 
a) Markers from an RI population 

 
The observed scores from an RI population of 100 individuals, for a 
particular marker, are A = 52, B = 37, and missing scores = 11. 
The expected ratio is (52 + 37)/2 = 44.5. 
 
The χ2 will be: 
 [((52 - 44.5)2/44.5) + ((37- 44.5)2)/44.5] = 2.53 
 
If the ratio is exactly 1:1 a  χ2 of 0 will be obtained; the value in this 
case is 2.53 and with 1 degree of freedom is less than the 3.84 at 
the 5% level of significance (Table, Appendix 7, p = 0.05); this 
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marker data therefore has a segregation ratio that fits the expected 
at p = 0.05. 
 

b) Markers from an F2 population: codominant 
 

The observed score from an F2 population of 120 individuals is: 
A = 22; H = 57; B = 30; missing scores = 11. There are 109 
individuals with scoring information, so the expected ratios are 
27.25 : 54.5 : 27.25. How close do the observed data come to this? 
 
The χ2 will be: 
 

[((22 – 27.25)2/27.25) + ((57- 54.5)2)/54.5 +((30 – 27.25)2/27.25)] 
= [1.01 + 0.11 + 0.28] = 1.4 

 
At p = 0.05 and with two degrees of freedom this value of 1.4 is 
below 5.9 (Appendix Table 7) and the score for this marker fits a 
1:2:1 ratio. 
 
 

c) Markers from an F2 population: dominant 
 

Using the expected ratio information given above for dominant 
markers work out the χ2 value for the following three markers:  
 
i) A = 28 and C = 89 
ii) B = 19 and D = 101 
iii) B  =21 and D = 97 
 
Are the χ2 values significant at the p = 0.05 level? 
 
Would you use these markers in a mapping analysis? 

 
 
5.2 LOD scores 
 
A LOD score is a similar type of test to a χ2, but it has a slightly 
different philosophy. The  χ2 checks whether the observed data is 
significantly different from the expected value in a frequency 
distribution. A LOD score measures the support for a given statement 
against a null hypothesis given the data. This looks at the issue from 
a different angle. In practice LOD scores are usually used when 
thinking about linkage rather than monogenic segregation. LOD 
means the log of the odds ratio. 
 
For example, in a recombinant inbred population we may observe that 
for two markers the fraction of lines that do not have the parental 
configuration of alleles is R. If the population size is N then there are 
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RN lines that have recombined the parental alleles and (1-R)N lines 
that have the parental configuration. We can let x equal RN and y 
equal (1-R)N. 
 
We have two hypotheses: One, the null hypothesis that the loci are 
unlinked, and the alternative that they are linked with an intensity 
that gives a proportion R of recombinant inbred lines (RILs) that have 
recombined the parental alleles. The form of words is a bit 
complicated because R is not the recombination frequency, see later 
and don’t worry. 
 
If the two markers are unlinked, then the odds (Ou) of getting exactly 
x RILs that have recombined the parental alleles and exactly y RILs 
that have not recombined the Parental alleles is: 
 
Ou = (0.5x)(0.5y) 
 
If the markers are linked with the intensity proposed above we have 
the the odds (Ol) 
 
 Ol = (Rx)[(1-R)y] 
 
The odds ratio is Ol/Ou and the LOD score is Log10(Ol/Ou) 
 
You can also calculate a χ2 for such linkage, and it is an informative 
exercise to plot the χ2 against the LOD score for a range of linkage 
intensities. There is some nicety in the statistics, but the two tests tell 
you more or less the same thing. LOD scores are fashionable because 
in human genetics most linkage values are calculated from 
(statistically) small families, so it is difficult to get significant tests. In 
multiple tests it is legitimate simply to add the LOD scores, and that’s 
easy to do. 
Note that the LOD score is not the likelihood of linkage, because there 
are many more ways of being unlinked than linked. 
 
In de Vienne’s book this is discussed in box 2.1. You will notice that 
his likelihood estimation includes a binomial coefficient. This is 
omitted above, because the same binomial coefficient applies to Ol 
and Ou, and they cancel when the odds ratio is used.  
 
 
5.3 Basic Statistics and R 
 
5.3.1 Introduction 
 
R is free software. It can be used as an overpowered calculator, to 
carry out many standard statistical analysis, and to develop 
applications carrying out complex analyses in specific subject areas. 
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Many of these applications, and much other useful information are 
freely available from the Comprehensive R Archive network (CRAN) 
web site http://cran.r-project.org/. In particular, the Guide “An 
Introduction to R” is available under the documentation section and 
can be used to supplement the outline given here. 
 
R is one among many excellent statistical packages, for example S,  
Splus, SAS, SPSS, STATA, to go through just one letter of the 
alphabet. Compared with the alternatives, it has its own set of 
strengths and weaknesses. The major strength is that it is free. This 
has led to an expanding user base and to the development of more 
and better applications. As a result R is increasingly used in larger 
commercial and academic establishments where cost is less of a 
concern: knowledge of R is now a useful and transferable skill to 
acquire. For many users, the major disadvantage of R is that 
commands need to be typed at a prompt, rather than selected from a 
menu. However, most commands are short, and as we shall see, much 
repetitive typing can be avoided. 
 
The intention of this guide is to help the novice user get started. It will 
show you how to get data into R, carry out simple analyses, produce 
graphs, and save results. It is hoped that this will allow users to dip 
directly into the more complete and thorough guides such as “An 
Introduction to R” as required. This guide is a long way off being 
complete and many of the definitions and descriptions provided here 
are not wholly accurate. The hope is that the guide will allow you to 
carry out useful analyses as quickly as possible and provide a base 
from which additional knowledge can be acquired without too much 
extra effort. 
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5.3.2 Starting R 
 
For this course, R has already been installed on your computer. For 
future use, it can be downloaded from http://www.r-project.org/ or 
from the CRAN web site mentioned above. Installation is 
straightforward, but if you are concerned, or have never installed 
software before, it would be best to get assistance from your IT 
department or from a more computer literate friend or colleague. 
 
To start R, select R from the Windows Start menu. Precise details may 
vary slightly with installation. On my machine, I select “R.2.1.1 
Patched.”  You should then see the screen shown below. All the usual 
Windows conventions about maximizing and minimizing, copying 
(Cntrl C) and pasting (Cntrl V) apply. 
 

 
 
Commands are entered into the R console window – the window 
containing all the text. There are a few conventions that must be 
followed when working in this window. These are described in the next 
section. 
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5.3.3.Basic R syntax 
 
R shows it is waiting for user input by displaying a prompt:  
 
> 
 
To enter a command, type alongside the prompt and complete by 
hitting the carriage return (Ret). 
 
For example entering 
 
> 9+1 
 
will return 
 
[1] 10 
 
You are now fully trained to use R as a calculator. The syntax is 
essentially the same as used in, for example, Excel. Thus ^2 will 
square numbers, sqrt() will take the square root and so on.  For 
example: 
 
> sqrt(log10((9+1)^2)) 
 
will return the square root of 2. 
 
[1] 1.414214  
 
Note that R is case sensitive: 
 
> sqrt(LOG10((9+1)^2)) 
Error: couldn't find function "LOG10" 
> 
 
If you make a mistake, it can be corrected by tapping the up arrow on 
the keyboard to bring back the last typed command, moving along the 
command line using the left and right arrows, deleting characters 
using the backspace or delete key, inserting correct numbers or text 
and hitting the carriage return key. 
 
Multiple hits of the up arrow will bring back successively earlier 
commands. However, there is an easier way of finding and re-entering 
commands used some time previously, which shall be introduced 
later. Note also that it is possible to cut and paste from other 
windows. So R commands listed in another document, such as this 
one, can be copied and pasted into the R console and will run (after 
hitting carriage return). 
 
Brackets 
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We have seen brackets used above in simple formulae – just as in 
Excel formulae. However, brackets are used more extensively in R: all 
commands include brackets. For example: 
 
> quit() 
will end your R session. However: 
 
> quit 
 
without the brackets returns: 
 
function (save = "default", status = 0, runLast = TRUE)  
.Internal(quit(save, status, runLast)) 
<environment: namespace:base> 
 
This is the section of computer code which is run when you type 
quit(). Unless you are an enthusiast, it is not necessary to know 
what this means. 
 
 
 
Equals symbols 
 
R has four  sets of symbols, all of which loosely mean equals, but 
which have differences in use. This can take some getting used to. 
 
The most commonly used set is 
 
<-  
 
or sometimes 
 
-> 
 
These symbols are typed using the dash (or minus sign) and the left or 
right arrow. They are used to assign results from one side of the arrow 
to the side to which the arrow is pointing. 
 
For example: 
 
> my_first_result <- sqrt(log10((9+1)^2)) 
 
just returns the prompt: 
 
> 
 
But then typing  



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     62 

 
> my_first_result 
 
now returns:  
 
[1] 1.414214  
 
We have created a variable “my_first_result” and assigned the 
result of our calculation to it, using “<-“  The same result would be 
achieved by  
 
> sqrt(log10((9+1)^2))-> my_first_result 
 
The entry stored in my_first_result is now available for additional 
manipulation. For example: 
 
> my_first_result^2 
[1] 2 
 
The second “equals” symbol is the tilde ~  (above the # on most 
keyboards). This is used in R in statistical analysis to distinguish 
between x and y variables, that is to say between what is being 
analysed (eg the phenotype) and what factors and variates it is being 
analysed with (eg marker data and environmental factors or variates). 
So for example: 
 
P~G+E 
 
is R syntax to state that a variate P is to be explained by two variates 
or factors G and E.  Equivalently, we can say that P is described by 
G+E. The exact context in which this syntax is used will be given later. 
For the time being, note that 
 
P~E 
 
represents simple linear regression of P on E (or a one way analysis of 
variance if E is factor like soil type rather than a variate like altitude). 
Interactions can also be included: 
 
P~G+E+G:E 
 
includes an interaction term between G and E. This can be 
abbreviated to  
 
P~G*E 
 
Yet more complex models, for example with nested factors, can be 
described by including bracketed terms. 
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The third “equals” symbol is “=”. This is most often used within 
commands to provide information about specific parameters. For 
example we shall come across : 
 
xlab=”what you put here is used to label the x axis in a 
graph” 
 
used in commands to generate graphs. 
 
The final “equals” description is “==”. This truly means “is equal to”, 
and is used to test relationships: is A equal to B is written as 
 
A==B 
 
Related to == are: 
 
!= not equal to 
> greater than 
< less than 
>= greater than or equal to 
<= less than or equal to. 
 
These, together with “==” itself, are entered here for completeness. 
They are not generally required to carry out standard statistical 
analyses described in this guide. 
 
Continuation character. 
 
If an R command is incomplete when the carriage return is depressed, 
you are prompted with a + to continue the command on the next line: 
 
> sqrt(log10 
+ 
 
The rest of the command can be entered after the + :  
 
> sqrt(log10 
+ ((9+1)^2)) 
[1] 1.414214 
> 
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Text and numbers 
 
Text is distinguished from numbers and from R commands by the use 
of quotes. Either single quotes – ‘ text ‘ or double quotes “ text “ will 
do, but the quotes must match.  
 
 
Summary of syntax 
 
Arithmetic:     + - / *  ^ ( ) just like Excel 
 
Commands use brackets:  quit() is correct. quit() is wrong 
 
Equals     <- stores a result 
      ~ is described by 
      = options in commands 
      == logical equivalence 
 
Text      use quotes 
 
 
This introduction should provide sufficient syntax to get you going. 
Additional syntax is introduced, as required, in the discussion of 
specific commands and operations in the remainder of this document. 
 
 
5.3.4 Getting data in and out 
 
Reading data 
 
There are many ways of entering the data you wish to analyse. This 
guide describes only one. It is straightforward and can be used for 
most datasets. 
 
Firstly we need some example data: results from a yield trial in which 
the slightly obsessive plant breeder has named all his varieties after 
statistical packages. 
 
  yield height SNP1 SNP2 
stata 94.2   37  1 NA 
sass  93.7   37  1 1 
R  115.1  19  2 1  
genstat 90.1   32  1 1 
Splus 91.2   33  1 1 
S  99.2   27  1 2 
SPSS  77.1   24  1 2 
minitab 95.5   39  2 2 
BMDP      87.2   36  1 2 
mstat  119.   27  2 2 
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Note that the first row has four fields – the column titles – and that 
successive rows have five fields – the data.  The fields are separated by 
spaces and tables: for the methods we shall use to import data, R is 
not fussy about which, or about how many, you use. Exact alignment 
of the columns is not required: here the title row and the last row are 
misaligned. Finally note that the first entry for each row of data is a 
unique identifier for that row. Here, this identifier is text field, but it 
could be a number. 
 
Files in this format can easily be set up by exporting data as a text file 
from Excel, or by cutting and pasting from Excel into Notepad or 
Wordpad. The most important thing to remember is to get the number 
of fields correct on each line. Note that this means there should be no 
spaces within column headings of text fields. If spaces are required, 
either enter the name within quotes (eg “SNP 1”) or substitute the 
space with an underscore (eg SNP_1).  
 
Finally, note the code “NA”  for SNP2, entry stata. This is the special 
code to denote a missing values. Missing values cannot be left as 
blanks for our method of data input: R would treat them as part of the 
field separator. 
 
 
On my computer the data printed above are stored in the text file:  
 
C:\Documents and Settings\x9901006\My 
Documents\India\Rdemo1.txt 
 
To get the data into R, we first need to change the working directory or 
folder to  
point at the location of the file. The simplest way of doing this is to 
click on File at the top of the R window. Select “Change dir…”, and 
then browse until you find the correct directory – exactly as you would 
with any other Windows package. There is a command line method of 
doing this too, which needn’t concern us.  To check that R is indeed 
pointing at the correct directory: 
 
> getwd() 
[1] "C:/Documents and Settings/x9901006/My 
Documents/India" 
> 
 
Note the directory is not displayed in the standard MS Windows 
manner: the separator delimiting subdirectories is a “/” and not a “\”.  
R was originally developed for the UNIX operating system, where “/” is 
used as the separator for  subdirectories. This is not a problem unless 
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we wish to enter directory names at the command line, in which case 
we must remember to use / and not \. 
 
 
 
To read in the datafile, use the command read.table: 
 
> dataset1<-read.table("Rdemo1.txt") 
> 
 
This  reads the data into a special R structure called a data frame, the 
details of which need not concern us. Note that the file name must be 
enclosed in quotes. The data can be displayed by typing 
 
> dataset1 
 
which returns 
 
        yield height SNP1 SNP2 
stata      94.2     37    1   NA 
sass       93.7     37    1    1 
R         115.1     19    2    1 
genstat    90.1     32    1    1 
Splus      91.2     33    1    1 
S          99.2     27    1    2 
SPSS       77.1     24    1    2 
minitab    95.5     39    2    2 
BMDP       87.2     36    1    2 
mstat     119.0     27    2    2 
 
 
Displaying data 
 
To display specific variables, we enter them by name as follows: 
 
> dataset1$height 
 [1] 37 37 19 32 33 27 24 39 36 27 
> 
 
To avoid the tedium of entereing dataset1$ in front of every variable, 
we can use attach() 
 
> height 
Error: Object "height" not found 
> attach(dataset1) 
> height 
 [1] 37 37 19 32 33 27 24 39 36 27 
> detach() 
> height 
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Error: Object "height" not found 
> 
 
Note the use of detach() to remove the link between the data frame 
and R. This can be useful to load data from multiple source files and 
switch between them. 
 
 
Methods for displaying a selected set of variables are not very 
intuitive. The command subset() achieves this, but not very 
elegantly: 
 
> subset(data1,select=c(SNP1,SNP2)) 
        SNP1 SNP2 
stata 1    1   NA 
sass       1    1 
R          2    1 
genstat    1    1 
Splus      1    1 
S          1    2 
SPSS       1    2 
minitab    2    2 
BMDP       1    2 
mstat      2    2 
> 
 
This syntax of this command is fairly intuitive apart from 
c(SNP1,SNP2). c(…,…,…,) is a method of concatenating data into a 
single entity and is used quite extensively. It can also be used as a 
method of entering small amounts of data directly into R.  
 
 
Once data have been read into R, the vectors which contain each 
variable can be manipulated in the same manner as individual 
numbers: 
 
harvest_index<-yield/height 
> harvest_index 
 [1] 2.545946 2.532432 6.057895 2.815625 2.763636 
3.674074 3.212500 2.448718 
 [9] 2.422222 4.407407 
> 
 
 
Exporting data and results 
 
There are two simple methods of doing this. The simplest is to cut and 
paste from R to Word or Excel, exactly as you would for any other 
Windows application.  
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The second is to click on File, then select Save to File, then enter a file 
name – again as under most Windows applications. The complete set 
of commands and their responses is then available for subsequent 
editing and processing in the software of your choice. 
 
 
5.3.5 Summary statistics  
 
Time spent in reconnaissance is never wasted’ – Napoleon (attrib). 
 
It is always worthwhile to spend time scanning and summarising new 
datasets before starting formal statistical analysis. Simple methods 
such as studying the range, the distribution and the relationships 
between variables can often reveal unexpected structure or the 
presence of errors in a dataset. 
 
 
Summaries of single variates 
 
In R, the simplest method of generating a summary of data is: 
 
> summary(data1) 
    yield             height           SNP1           
SNP2       
 Min.   : 77.10   Min.   :19.00   Min.   :1.00   Min.   
:1.000   
 1st Qu.: 90.38   1st Qu.:27.00   1st Qu.:1.00   1st 
Qu.:1.000   
 Median : 93.95   Median :32.50   Median :1.00   Median 
:2.000   
 Mean   : 96.23   Mean   :31.10   Mean   :1.30   Mean   
:1.556   
 3rd Qu.: 98.28   3rd Qu.:36.75   3rd Qu.:1.75   3rd 
Qu.:2.000   
 Max.   :119.00   Max.   :39.00   Max.   :2.00   Max.   
:2.000   
                                                 NA's   
:1.000   
> 
 
The output shows: 
 
Min.   :   the minimum value 
1st Qu.:   the first quantile 
Median :   the median 
Mean   :   the sample average 
3rd Qu.:   the third quantile 
Max.   :   the maximum value. 
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The first quantile, the median and the third quantile give the values of 
the observations,  ¼, ½, and ¾ of the way down a sorted list of each 
variable.  These values, together with the minimum, maximum and 
average, give a simple assessment of the distribution of the traits. Of 
course, for the SNP data – SNP1 and SNP2 -  this summary is a bit 
pointless, although the mean-1 is the allele frequency. The results for 
just a single variable can be given by  
 
> summary(height) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  19.00   27.00   32.50   31.10   36.75   39.00  
> 
 
or for a selected set of variables by combing summary with subset: 
 
> summary(subset(data1,select=c(yield,height))) 
    yield           height      
 Min.   : 77.10   Min.   :19.00   
 1st Qu.: 90.38   1st Qu.:27.00   
 Median : 93.95   Median :32.50   
 Mean   : 96.23   Mean   :31.10   
 3rd Qu.: 98.28   3rd Qu.:36.75   
 Max.   :119.00   Max.   :39.00   
> 
A graphical equivalent of summary is the box plot, or box-and-whisker 
plot: 
 
> boxplot(yield.2,height) 
> 
 
This command does not return a result in the R console. It opens up a 
graphics window displaying the graph shown below. We shall see later 
how to add titles to this and to other graphs, and how to save graphs 
as files. 
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The central bold line is the mean. The boxes show, approximately, the 
first and third quantiles. The lines extending from the boxes to the 
horizontal bars then show the distance to the maximum and 
minimum observations. However, any data viewed as outliers are 
plotted separately – as has happened here for yield. These plots must 
not be used a statistical test for outliers: in the example here there are 
far too little data (10 observations), to declare that two observations 
are aberrant. 
 
The summary statistics given collectively by summary are also 
available as separate commands: listed below: 
 
mean(x) 
median(x) 
quantile(x) 
minimum(x) 
maximum(x) 
 
To run these commands, x should be substituted by the required 
variate name. If two variate names are given, the summary is over 
both variates: 
 
> mean(height,yield) 
[1] 32.5 
> 
 
Another quirk of R is shown below: 
 
> mean(SNP2) 
[1] NA 
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> 
 
R does not necessarily ignore missing values. Because SNP2 has one 
missing value (remember the NA for the first data point), R does not 
believe it can therefore calculate an average. The rather irritating and 
longwinded way to cope with this is as follows: 
 
> mean(SNP2,na.rm=T) 
[1] 1.555556 
> 
 
Here, the additional logical variable na.rm ( not available, remove)  is 
set to the value T (for true): in English, remove the NA values before 
calculating the mean. A number of other commands also require this 
option. If a command returns NA, it is worth trying this option. 
 
One dangerous exception to the default behaviour of R is the 
command length, which counts the number of entries in a vector: 
 
> length(SNP2) 
[1] 10 
 
The value of 10 is returned: the count has included the missing value. 
The work around for this is shown below: 
 
> length(SNP2) 
[1] 10 
> is.na(SNP2) 
 [1]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE 
> !is.na(SNP2) 
 [1] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  
TRUE  TRUE 
> sum(!is.na(SNP2)) 
[1] 9 
> 
 
is.na() is the command to return the logicial value TRUE or FALSE 
depending on whether each value of a variate exists or not. 
 
!is.na() switches this around to return TRUE if the value is NA (ie 
does not exist). 
 
For arithmetic purposes, the logical TRUE has a value of 1 and FALSE 
has a value of 0,  sum() returns the sum or total, so 
sum(!is.na(SNP2)) returns the value of 9. 
 
 
Some other useful summary commands are listed below: 
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sum(x,na.rm=T)  returns the total 
var(x,na,rm=T)  returns the variance 
sd(x,na.rm=T)  returns the standard deviation. 
 
These commands have all been listed including the na.rm=T option. If 
the dataset is complete this option need not be included. 
 
A simple way of viewing the distribution of a variable, and perhaps 
more informative than any set of summary statistics is to plot it: 
 
> hist(height) 
> 
 

 
 
 
sorting data 
 
Sorting of data and inspection of high and low values is also of great 
assistance in detecting erroneous data. In R this is carried out using 
the command sort: 
 
> sort(yield) 
 [1]  77.1  87.2  90.1  91.2  93.7  94.2  95.5  99.2 
115.1 119.0 
> 
 
More generally, it is usual to sort a bock of data with respect to one or 
more columns. Routinely, this may be more easily achieved in Excel. 
In R, the command: 
 
> yield[order(SNP1,SNP2)] 
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 [1]  93.7  90.1  91.2  99.2  77.1  87.2  94.2 115.1  
95.5 119.0 
> 
 
gives a sorted list of yields.  This is explained below:  
 
First:  
 
> order(SNP1,SNP2) 
 [1]  2  4  5  6  7  9  1  3  8 10 
 
 
 
 
 
returns the order of the data after sorting first by SNP1 then by SNP2. 
Thus records two and four have the lowest ranking, corresponding to 
the genotypes 1,1. Records eight and ten come last, with the genotype 
2,2. Missing data (NA) is ordered after data which exists, so record one 
(1,NA) is ranked after record nine (1,2) but before record three (2,1).  
 
Additional syntax is also introduced with the square brackets [ ]. 
These are used to reference or index specific elements of a variable or 
factor. Thus 
 
> yield[5] 
[1] 91.2 
 
returns the fifth entry of yield, while 
 
> yield[c(5,9)] 
[1] 91.2 87.2 
 
returns the fifth and ninth elements. So 
 
> yield[order(SNP1,SNP2)] 
 [1]  93.7  90.1  91.2  99.2  77.1  87.2  94.2 115.1  
95.5 119.0 
 
returns yield in order specified by order(SNP1,SNP2). 
 
 
Relationships between variates. 
 
The correlation coefficient ranges from zero to one and measures the 
strength of the relationship between two variables: 
 
> cor(yield,height) 
[1] -0.3913837 
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We can enter the data frame name and generate a table of correlation 
coefficients in a single command. There are some traps for the unwary 
however:  
 
 
> cor(data1) 
Error in cor(data1) : missing observations in cov/cor 
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> cor(data1,use="complete.obs") 
             yield      height       SNP1        SNP2 
yield   1.00000000 -0.39403716  0.7602782 -0.07668775 
height -0.39403716  1.00000000 -0.2386212  0.02780055 
SNP1    0.76027819 -0.23862117  1.0000000  0.15811388 
SNP2   -0.07668775  0.02780055  0.1581139  1.00000000 
 
 
 
> cor(data1,use="pairwise.complete.obs") 
             yield      height       SNP1        SNP2 
yield   1.00000000 -0.39138365  0.7532037 -0.07668775 
height -0.39138365  1.00000000 -0.2896914  0.02780055 
SNP1    0.75320367 -0.28969140  1.0000000  0.15811388 
SNP2   -0.07668775  0.02780055  0.1581139  1.00000000 
> 
 
 
The first attempt fails because we failed to take into account the 
missing observation in SNP2. The second method uses “complete 
observations”, that is to say only records with no missing data for 
any field. This is the default method for some commercial statistical 
software systems. In the example here, the first record of data is 
discarded. The third method does not discard complete records. It 
excludes from the analysis only those pairs of observations in which 
at least one of the pair is NA. In this example, correlations among 
yield, weight and SNP1 will be based on 10 paired observations, while 
correlations involving SNP2 will be based on 9. This option can be 
particularly useful with extensive sets of genotype data: even if marker 
calling rates are high, with multiple markers it may be rare for a 
single individual or line to have no missing data.  
 
In passing, we note that the calculation of a correlation coefficient is 
not a particularly sensible or conventional way to study the 
relationship between two binary variables such as SNP1 and SNP2. 
More conventional would be to tabulate the data in a  2 x 2 
contingency table. However, for SNP data, the squared correlation 
coefficient is one of the standardised measures of linkage 
disequilibrium between two loci, so the example given here has some 
justification (although a 2 x 2 table of observations would still be more 
informative and is demonstrated later on). 
 
Correlation coefficients are a simple way of quantifying relationships 
between two variables. However, it is often better to visualise the data 
in a scatter plot: 
 
> plot(height,yield) 
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> 
 

 
 
A particularly useful extension to this, which makes one forgive many 
of the quirks of R is: 
 
> pairs(data1) 
> 
 

 
 
In the example shown here, only the plots for yield and height are of 
any practical use, but the ability to generate multiple scatter plots like 
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this in a single command is of great use in surveying patterns across 
large multivariate datasets. Trying doing this in Excel with 10 
variables (requiring 45 plots). 
 
5.3.6 Basic statistical analysis 
 
5.3.6.1 The t-test 
 
The t-test is a simple and robust method to test if the difference in 
means between two samples, or the difference between the mean of a 
sample and a known constant, is statistically significant. In other 
words, does the difference look too large to have occurred as a result 
of bad luck in selecting the samples for analysis. 
 
The test statistic is 
 
 t  =           difference 
  standard error of difference 
 
For large sample sizes, a value of t > 2 will only occur by chance in 
about 5% of experiment. A value > 2 is therefore judged to be 
improbably large: the difference in means is declared to be statistically 
significant at the 5% level.  In practice, R automatically calculates this 
probability more precisely.  
 
The t-test assumes that the sampling error of the difference being 
tested is normally distributed. In real data sets, this condition is often 
met. Firstly, the trait being measured is itself often normally 
distributed, and secondly, even if the trait is has a non-normal 
distribution, mean trait values will follow close to normal distributions 
provided the sample size is moderately large ( greater than about 10).  
 
For example, the plot below shows the distribution of 1000 numbers. 
Each number was generated by taking the mean of 10 uniformly 
distributed random numbers.  It is clear that although the original 
random numbers were very non-normal, the mean of a sample of 10 
such numbers is pretty close to normal. In fact, in the early days of 
computing, normally distributed random numbers were often 
generated in this way. The tendency for the distribution of means to 
be normally distributed is called the Central Limit Theorem. It 
explains the popularity of the normal distribution in statistics and 
also the tendency for many traits in nature to be roughly normally 
distributed – for example if variation in a phenotype results from 
variation at multiple genes, the phenotype itself will often inevitably be 
normally distributed. 
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This histogram, and the random numbers from which it was built 
were generated in R, using the following two commands, which are 
presented below without explanation, but which show how much R 
can achieve with only a few commands. 
 
> m1<-matrix(runif(10000),1000) 
> hist(apply(m1,1,mean), 
+ main="Distibution of mean of 10 random numbers", 
+ xlab="mean of 10") 
 
 
The t-test is very simply invoked in R. To test the difference in means 
between yield and height: 
 
> t.test(yield,height) 
 
        Welch Two Sample t-test 
 
data:  yield and height  
t = 14.5809, df = 13.649, p-value = 1.037e-09 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 55.5265 74.7335  
sample estimates: 
mean of x mean of y  
    96.23     31.10  
 
> 
 
The output provides a value for t, a p-value to test the significance of 
the difference in means, and the means themselves. In addition. 95% 
confidence intervals are provided. These refer to the difference 
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between the two means. Statisticians can get quite hot under the 
collar about what, exactly, 95% confidence intervals actually are. We 
can state that over a long lifetime of calculating 95 % confidence 
intervals for parameter estimates, they will have included the true 
parameter value in 95 % of cases. It is best not to worry too much 
about this. 
 
Note that the degrees of freedom (df) is 13.649 and not, as is usual a 
whole number. This is because the default setting for R is to assume 
that, whether or not the means of the two groups being tested are 
different, the variances themselves are different. In accounting for this 
we end up with fractional degrees of freedom. This is the Welch 
variant of the t-test – stated in the first line of the output. 
 
To test whether the variances in the two groups are similar, we can 
use a variance ratio test, or F test – dividing one variance by the other 
and estimating whether the deviation from the expected value of 1 is 
attributable to chance or is indicative of something else, 
 
> var.test(yield,height) 
 
        F test to compare two variances 
 
data:  yield and height  
F = 3.5938, num df = 9, denom df = 9, p-value = 0.07035 
alternative hypothesis: true ratio of variances is not 
equal to 1  
95 percent confidence interval: 
  0.8926393 14.4684590  
sample estimates: 
ratio of variances  
          3.593761  
 
>   
 
 
The F-ratio of 3.59, with 9 and 9 degrees of freedom is not significant 
(p-value 0.07). Note that if  var.test(height,yield) was called, The 
F-ratio would be 0.278 (1/3.59) but the p-value would be unchanged. 
 
 
Since the variances are not significantly different (ie they are 
homogeneous), t.test can be called in a form to take this into account: 
 
> t.test(yield,height,var.equal=T) 
 
        Two Sample t-test 
 
data:  yield and height  
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t = 14.5809, df = 18, p-value = 2.069e-11 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 55.74562 74.51438  
sample estimates: 
mean of x mean of y  
    96.23     31.10  
 
>  
 
This is the more usual form for the t test – as given in most text 
books. It is a more powerful test than Welch’s variant, provided the 
variances are homogeneous. Note that the degrees of freedom is now 
integral. 
 
The examples so far have been comparing  yield with height. This has 
been for illustrative purposes only: not only does it make no biological 
sense, it is on shaky ground statistically too – the measurements are 
paired in the sense that each variety has been measured for both 
height and yield.  There is therefore a chance that the measurements 
are correlated – growing conditions for one variety will affect both 
traits. A simple method to deal with this is analyse the differences 
between yield and weight for each individual. The mean difference is 
expected to be zero. The estimated mean difference and its standard 
error can be calculated and used to construct a t-test.  This procedure 
is automated within R:  
 
> t.test(height,yield,paired=T) 
 
        Paired t-test 
 
data:  height and yield  
t = -12.6765, df = 9, p-value = 4.82e-07 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -76.75259 -53.50741  
sample estimates: 
mean of the differences  
                 -65.13  
 
 
In this t-test for paired data, the test itself does not directly compare 
two means. An estimated mean is compared with an expected value 
(zero in this case) which is known without error. This is termed a one-
sample t-test rather than the more typical two-sample test. In R it can 
be called explicitly by supplying a value for the known constant rather 
than the name of a second variable: 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     81 

 
> t.test(yield,mu=31.10) 
 
        One Sample t-test 
 
data:  yield  
t = 16.4852, df = 9, p-value = 4.956e-08 
alternative hypothesis: true mean is not equal to 31.1  
95 percent confidence interval: 
  87.29265 105.16735  
sample estimates: 
mean of x  
    96.23  
 
The value of t has risen. This is because, although the difference 
between the values being tested has not changed, the standard error 
of the difference is less: the only source of error variation is from yield, 
we are falsely ignoring the error in the estimation of mean height. 
 
A more biologically interesting comparison is whether the SNPs have a 
direct effect on yield. The problem here is that data for the two groups 
to be compared (yields for genotype 1 and yields for genotype 2) are no 
longer in separate variables. To tell R that data to be analysed are in 
one variate but are described by data in another, we use the tilde 
operator (~) introduced in the section on syntax: 
 
> t.test(yield~SNP1,var.equal=T) 
 
        Two Sample t-test 
 
data:  yield by SNP1  
t = -3.2387, df = 8, p-value = 0.0119 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -33.351652  -5.610252  
sample estimates: 
mean in group 1 mean in group 2  
       90.38571       109.86667  
 
> 
 
In spite of only three observations for genotype 2, the difference in 
means significant. SNP1 could lie in or close to a QTL for yield, or the 
significant result could be due to something we don’t know about 
concerning the origins of the varieties under test. Disentangling trait-
marker associations due to the presence of a closely linked QTL from 
other spurious causes of association is the challenge of association 
genetics. 
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For completeness, we note that variances are homogeneous within the 
two genotype results, and that SNP2 showed no significant 
association. 
 
 
5.3.6.2 Linear Regression 
 
We have already come across the command to correlate two traits: 
cor(). To fit a straight line to a data set we use the R command lm() – 
for linear model. Suppose we want to study the effect of height on 
yield: 
 
> lm(yield~height) 
 
Call: 
lm(formula = yield ~ height) 
 
Coefficients: 
(Intercept)       height   
    119.305       -0.742   
 
> 
 
The output is somewhat sparse. A feature of R, in contrast to many 
statistical packages is that by default it does not treat you to multiple 
pages of output from which you may only wish to extract a single 
figure. Here the output gives you the best fitting straight line: Yield =  
119.305 – (0.742 x height). More output is available but we need to be 
explicit that we wish R to produce it. First we shall rerun the analysis, 
but save the results: 
 
> yield_height_regression<-lm(yield~height) 
> 
 
No output is generated. We can produce some using summary(): 
 
> summary(yield_height_regression) 
 
Call: 
lm(formula = yield ~ height) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-24.3979  -4.9509   0.8878   4.4355  19.7280  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 119.3048    19.5654   6.098  0.00029 *** 
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height       -0.7420     0.6168  -1.203  0.26338     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1  
 
Residual standard error: 12.19 on 8 degrees of freedom 
Multiple R-Squared: 0.1532,     Adjusted R-squared: 
0.04733  
F-statistic: 1.447 on 1 and 8 DF,  p-value: 0.2634  
 
> 
 
The most interesting part of the output is given at the end: the F-
statistic and p-value for the significance of the regression – not 
significant in this example. The Multiple R-Squared is the proportion 
of the total sum of squares accounted for by the regression. It is also 
the square of the correlation coefficient between yield and height. The 
Adjusted R-squared is the proportion reduction in variance after 
fitting the regression. Both these figures give an indication of how 
effective the regression has been in accounting for the observed 
variation: a significant regression does not imply that a relationship is 
particularly important. Equally, with very small experiments, large 
proportions of variation may be accounted for, but the regression is 
still non-significant. This is generally an indication that you should 
have designed a larger experiment. 
 
A more conventional display of the regression analysis is given as: 
 
> anova(yield_height_regression) 
Analysis of Variance Table 
 
Response: yield 
          Df  Sum Sq Mean Sq F value Pr(>F) 
height     1  215.19  215.19  1.4471 0.2634 
Residuals  8 1189.61  148.70                
> 
 
This uses the anova() command. To R, anova is the name given to a 
form of tabular output. Formally, the analysis of variance itself is just 
a particular type of multiple regression analysis, and that is exactly 
how R treats it, as we shall see shortly. 
 
We can look at a plot of the data with our fitted line a follows: 
 
> plot(height,yield) 
> abline(yield_height_regression) 
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When using plot, give the name of the variate you want plotted on the 
x axis first. The additional command, abline(), adds the best fitting 
straight line. The fit is poor: it is not surprising the result is non-
significant.  
 
Finally, we look at how to extract residual values and fitted values 
from a regression. Large residual values for particular observations 
are often of use in searching for errors in data. Also, identification of 
the individuals or varieties responsible for large residuals may 
sometimes suggest some other factor which needs to be considered in 
the analysis.  Fitted values and residuals are extracted as: 
 
> fitted(yield_height_regression) 
        1         2         3         4         5         6         7         
8  
 91.85247  91.85247 105.20765  95.56224  94.82029  99.27201 101.49788  
90.36856  
        9        10  
 92.59442  99.27201  
 
 
> resid(yield_height_regression) 
          1           2           3           4           5           
6  
  2.3475313   1.8475313   9.8923510  -5.4622410  -3.6202865  -
0.0720133  
          7           8           9          10  
-24.3978767   5.1314403  -5.3944231  19.7279867  
> 
 
These could be saved to another variable, or plotted, in the usual 
manner. A plot of residuals against fitted values is often informative. If 
large residuals tend to be associated with large fitted values, for 
example, this indicates that the error variances are not homogenous 
and we treat our results with more caution. Residuals increasing with 
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the fitted values is often an indication that transforming the data to 
logarithms before analysis may be warranted. 
 
 
5.3.6.3 Multiple regression 
 
Multiple regression in R requires little more than simple linear 
regression. The lm() command is still used. All that is required is to 
specify a more complex model using the syntax described in the Basic 
R Syntax section of this guide: 
 
> lm(yield~height+SNP2+SNP1) 
 
Call: 
lm(formula = yield ~ height + SNP2 + SNP1) 
 
Coefficients: 
(Intercept)       height         SNP2         SNP1   
    90.5966      -0.4235      -4.7109      19.5607 
 
 
Thus yield is predicted as: 
 
90.59  -(0.42x height) –(4.72xSNP2)  +(19.56xSNP1) 
 
The effect of SNP1 is large compared to the mean. 
 
Note this form of analysis if acceptable for SNPs or other binary 
markers provided the markers are coded numerically. 0 and 1 are 
ideal codes, but 0 can sometimes be confused with a missing value, 
especially if data are to be analysed in packages other than R. 1, 2 
coding is also acceptable. Numeric coding with differences between 
alleles greater than one can make the analysis difficult to interpret 
and should be avoided. Numeric coding cannot be used at all for 
multiallelic markers, or for haplotype analyses, since it implies that 
alleles coded with a higher number are worth more than those with a 
lower number. We shall see how to account for this problem shortly. 
 
Note the order in which the variates are supplied to lm does not affect 
the estimates. 
 
> (lm(yield~SNP1+height+SNP2)) 
 
Call: 
lm(formula = yield ~ SNP1 + height + SNP2) 
 
Coefficients: 
(Intercept)         SNP1       height         SNP2   
    90.5966      19.5607      -0.4235      -4.7109   
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However, this is not the case for estimates of significance: 
 
> anova(lm(yield~height+SNP1+SNP2)) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value  Pr(>F)   
height     1 217.41  217.41  2.2842 0.19109   
SNP1       1 659.08  659.08  6.9248 0.04645 * 
SNP2       1  47.86   47.86  0.5028 0.50994   
Residuals  5 475.88   95.18                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1  
 
 
> anova(lm(yield~SNP1+height+SNP2)) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value  Pr(>F)   
SNP1       1 809.36  809.36  8.5038 0.03316 * 
height     1  67.12   67.12  0.7052 0.43933   
SNP2       1  47.86   47.86  0.5028 0.50994   
Residuals  5 475.88   95.18                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1  
> 
 
 
In the first anova table, the sum of squares for SNP1 is 659.08. In the 
second analysis, the sum of squares for SNP1 is 809.36. The sum of 
squares for SNP2 and the residual sum of squares is identical in both 
analyses. In fact, the sum of squares for (SNP1 + height) is also 
identical in the two analyses. In unbalanced designs, such as this, 
where combinations of SNP1, SNP2 and height are not all equally 
represented, the results from the analysis of variance depend on the 
order in which the terms are represented in the model. However, there 
is an easy way to interpret this table. Taking output from the last 
analysis a line at a time: 
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> anova(lm(yield~SNP1+height+SNP2)) 
 
The effect for SNP1 is fitted first, and is found to be statistically 
significant: 
 
          Df Sum Sq Mean Sq F value  Pr(>F)   
SNP1       1 809.36  809.36  8.5038 0.03316 * 
 
 
After fitting the SNP1 effect, height is fitted next: 
 
height     1  67.12   67.12  0.7052 0.43933   
 
The p-value of 0.44 for height is the significance for height, after 
accounting for any effect of SNP1. Finally, the effect of SNP2, after 
fitting both SNP1 and height effects is non-significant: 
 
SNP2       1  47.86   47.86  0.5028 0.50994   
 
 
This explains why the p-value for SNP2 is identical in both analyses. 
In both cases it is assessed the first fitting SNP1 and height effects. 
Whether these two effects are fitted first as height and then as SNP1 
or vice-versa makes no difference: the total variation the two effects 
account for remains the same. 
 
The significance of SNP1 from the first analysis: 
 
          Df Sum Sq Mean Sq F value  Pr(>F)   
SNP1       1 659.08  659.08  6.9248 0.04645 * 
 
is testing the significance of SNP1 after accounting for variation in 
height, and this is slightly different to the significance assessed in the 
second analysis where SNP1 is the first term to be fitted. 
 
In designed experiments – where different combinations of treatments 
and factors are usually equally represented, or balanced, the order in 
which terms are fitted usually makes no difference – the terms are 
said to be orthogonal. Balance not only has the property of making the 
terms orthogonal, it also makes the arithmetic very much easier. This 
was very important before the advent of readily available computers. 
However, the requirement for balance, solely from the point of view of 
data analysis, is now no longer required and many contemporary 
experimental designs (for example alpha-designs) are not balanced 
and would be impossible to analyse without a computer. A readable 
account of a contemporary approach to experimental design is given 
in Mead: “The Design of Experiments.” 
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In this example, in  whatever order the effects are fitted, SNP1 is the 
only term to be significant. Selecting the order in which terms are 
fitted, and selecting which terms to include in the final model and 
which to excluded is something of an art, which we shall not develop 
here. There are formal methods to assist in this process. These too are 
not covered here, but are available within R. Generally, with genetic 
analysis, it is usual to account for variation attributable to causes 
other than genes or markers first, and then fit the genetic effects. In 
the example here, where the evidence suggests that only SNP1 is likely 
to be a genuine effect, it makes sense to test this by fitting the SNP1 
effect last – after all other explanations of variation in yield have had 
their shot: 
 
> anova(lm(yield~height+SNP2+ SNP1)) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value  Pr(>F)   
height     1 217.41  217.41  2.2842 0.19109   
SNP2       1   6.05    6.05  0.0636 0.81091   
SNP1       1 700.88  700.88  7.3640 0.04209 * 
Residuals  5 475.88   95.18                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1 
 
 
SNP1 is still statistically significant. Non-significant terms can be 
dropped from the model to leave: 
 
 > anova(lm(yield~SNP1)) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value Pr(>F)   
SNP1       1 796.97  796.97  10.489 0.0119 * 
Residuals  8 607.84   75.98                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1 
 
Two things are of note from this analysis. Firstly, the p-value is 
identical to that we saw earlier when testing the effect of SNP1 on 
yield in a t-test.  For a regression analysis on a single variate with only 
two values or classes, the two tests are equivalent. In fact 
 
 t^2  = F 
 
In this case 
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 -3.2387 ^2 = 10.49818. 
 
The second item of note is that the total degrees of freedom in this 
final analysis (9) is one more than from the analyses containing all 
parameters (8). This is because of the missing value in SNP2. For any 
model which includes SNP2, all data for the variety containing the 
missing value is excluded. There is no easy way around this. It is of 
concern only if we are comparing models containing SNP2 to those 
without. In this case, because there is no hint that anything to do 
with SNP2 is significant, the effect on the analysis is minimal. 
 
Note that resid(), fitted() and summary() work  for multiple 
regression exactly as for simple linear regression. 
 
 
5.3.6.4 The analysis of variance 
 
In the t-test, we test if the difference between two treatment means is 
statistically significant.  This is a special case of the Analysis of 
Variance in which we test if differences among multiple treatments are 
jointly statistically significant. We could analyse multiple treatments 
by carrying out multiple t tests, but with many tests, there is an 
increased risk that at least one test will be declared significant by 
chance alone – the so called problem of multiple testing. In addition 
the interpretation of results becomes increasingly complex. (There is, 
in fact an R command that automates this procedure and includes an 
adjustment for multiple testing: pairwise.t.test). The omnibus test 
for significance of all means, considered together, that the Analysis of 
Variance offers is therefore of great value. 
 
The principal of the Analysis of Variance is that, in the absence of any 
genuine difference among means, the variability among those means 
can be predicted from the variability from observation to observation 
within each treatment. This argument is little more than saying that 
the variance of a mean is just the variance among the observations 
that contribute to that mean divided by the number of observations 
contributing to the mean: 
 

nVxxV /=  
 
The test for statistically significant differences among the means is 
therefore a variance ratio, or F test: the variance among treatment 
means is divided by the expected variance calculated within 
treatments. This is an oversimplification: differences in the number of 
observations within treatments must also be taken into account and 
with more complicated experimental designs the analysis is also more 
complicated,  but the basic principal remains the same.  
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To illustrate the analysis of variance in R, we shall test whether there 
are statistically significant differences among haplotype frequencies in 
our small set of test data. Haplotypes for the two SNPs in our sample 
are given below. 
 
Variety SNP1 SNP2 haplotype 
stata 1 NA NA 
sass  1 1 11 
R  2 1 21 
genstat 1 1 11 
Splus 1 1 11 
S  1 2 12 
SPSS  1 2 12 
minitab 2 2 22 
BMDP      1 2 12 
mstat 2 2 22 
 
Haplotypes can be coded in various ways. The one adopted above is 
quite common for small numbers of SNPs.  For haplotypes involving 
large numbers of SNPs, an interesting alternative is to code SNP 
alleles as 0 and 1, so that the haplotype is a binary number: 
10010001 for example. This can be converted to a normal, base 10 
number – 1+16+128 = 145 for 10010001. To avoid having haplotypes 
coded as 0, 1 is added to all numbers, so in the example the haplotype 
would be coded as 146. This has the advantage of taking up less 
space while retaining all the information about individual SNP alleles. 
 
To generate our haplotype numbers, we could proceed as: 
 
haplotype <- (SNP1*10+SNP2) 
 
However, the haplotype would then be a number ranging from 11 to 
22. The analysis would then fit a linear regression of yield on 
haplotype, which isn’t what we want. We need to fix haplotype as a 
categorical variable or a factor. 
 
> haplotype<-factor((SNP1*10+SNP2)) 
> haplotype 
 [1] <NA> 11   21   11   11   12   12   22   12   22   
Levels: 11 12 21 22 
> 
 
Note that the haplotype for the first entry is NA – since we don’t know 
what SNP2 is for this variety, we cannot know what the haplotype is. 
Some care needs to be exercised in coding haplotypes by combining 
two fields in this manner. For example, combing the data as 
(SNP1+SNP2) will seemingly work but will generate a factor with three 
levels with the haplotypes “12” and ”21”. This warning applies equally 
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whether coding is carried out here or in some other package such as 
Excel.  
 
The basic analysis of variance is now very straightforward: 
 
> anova(lm(yield~haplotype)) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value Pr(>F) 
haplotype  3 872.48  290.83  2.7554 0.1517 
Residuals  5 527.74  105.55                
> 
 
In spite of the significant effect of SNP1 on yield that we detected 
earlier, there is no significant haplotype effect. Note that this does not 
mean that  tests for association using haplotypes should be dismissed 
as having less power than single locus effects. Firstly, there are 
instances where the association directly attributable to ahaplotype 
(perhaps in linkage disequilibrium with another, undetected or 
ungenotyped causative genetic variant). Secondly, when testing many 
single SNPs for association, the risk of detecting at least one 
significant result by chance is increased – the problem of multiple 
testing. To overcome this, it is usual to increase the stringency 
required to declare statistical significance at any one test. One 
commonly used method is the Bonferroni correction: the p-value for 
significance is reduced from 0.05 to 0.05/(the number of independent 
tests). Methods for correcting for multiple testing and methods for 
analysing haplotypes or sets of multiple closely linked SNPs are active 
research topics. 
 
To get more information from our analysis of variance, we can use all 
the methods introduced earlier for linear and multiple regressions: as 
stated before, the analysis of variance is just a special case of multiple 
regression. For example: 
 
> summary(lm(yield~haplotype)) 
 
Call: 
lm(formula = yield ~ haplotype) 
 
Residuals: 
         2          3          4          5          6          
7          8          9         10  
 2.033e+00 -6.203e-16 -1.567e+00 -4.667e-01  1.137e+01 -
1.073e+01 -1.175e+01 -6.333e-01  1.175e+01  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
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(Intercept)   91.667      5.931  15.454 2.06e-05 *** 
haplotype12   -3.833      8.388  -0.457    0.667     
haplotype21   23.433     11.863   1.975    0.105     
haplotype22   15.583      9.379   1.662    0.157     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1  
 
Residual standard error: 10.27 on 5 degrees of freedom 
Multiple R-Squared: 0.6231,     Adjusted R-squared: 0.397  
F-statistic: 2.755 on 3 and 5 DF,  p-value: 0.1517  
 
> 
 
Here, the estimate for the intercept is the mean of the first haplotype: 
11.  The estimates for haplotypes  12, 21 and 22 are then the 
difference between the effect for 11 and the effect for the other three 
haplotypes. The mean effect for haplotype 12 is 91.667 – 3.833 = 
87.834. This is identical to the simple mean of the three data entries 
with this haplotype, as it should be in this case. 
 
We complete our survey of the Analysis of Variance with an example 
from a two-way analysis of variance: 
 
> anova(lm(yield~factor(SNP1)*factor(SNP2))) 
Analysis of Variance Table 
 
Response: yield 
                          Df Sum Sq Mean Sq F value  
Pr(>F)   
factor(SNP1)               1 809.36  809.36  7.6682 
0.03940 * 
factor(SNP2)               1  55.68   55.68  0.5275 
0.50022   
factor(SNP1):factor(SNP2)  1   7.45    7.45  0.0705 
0.80114   
Residuals                  5 527.74  105.55    
 
No new R commands are required to carry out this analysis. The test 
for an interaction between SNP1 and SNP2 is essentially a test for a 
haplotype effect over and above any single locus effects detected by 
fitting the SNP1 and SNP2 main effects. This is a sensible analysis to 
carry out (apart from the ridiculously small size of the data set). 
However, with very large numbers of SNPs, there are a large number 
of pairwise interactions (300 with 25 SNPs for example), let alone any 
higher order interactions, and a direct analysis of haplotypes may be a 
better approach. 
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5.3.6.5 Categorical data – the chi-squared test 
 
Suppose we wish to test if there is an association between SNP1 and 
SNP2. Such an association might arise because of the way the 
varieties included in the experiment have been selected, or because 
SNP1 and SNP2 are in linkage disequilibrium – they are so closely 
linked that insufficient meioses have occurred between the two to 
remove the original association generated when the SNPs were formed 
by mutation. 
The standard method of analysis of such data is the contingency chi-
squared test.  
 
First we need to format our data into a table: 
 
> table(SNP1,SNP2) 
    SNP2 
SNP1 1 2 
   1 3 3 
   2 1 2 
 
The row and column headings here are confusing, so we shall change 
them: 
 
> SNPtable <- table(SNP1,SNP2) 
> rownames(SNPtable) <-c("allele1","allele2") 
> colnames(SNPtable) <-c("allele1","allele2") 
> SNPtable 
         SNP2 
SNP1      allele1 allele2 
  allele1       3       3 
  allele2       1       2 
> 
 
Note the data could also have been summarised by haplotype as:  
 
> table(haplotype) 
haplotype 
11 12 21 22  
 3  3  1  2  
> 
 
From this table, we can see that the allele frequency of allele 1 at 
SNP1 is 6/ 9 or 0.6667 and that the allele frequency of allele 1 at 
SNP2 is 4/9 or 0.4444.  If these SNPs are behaving independently of 
each other, the allele carried by a variety at SNP1 will be independent 
of the allele carried by the same individual at SNP2. In this case, the 
predicted frequency of SNP1 allele1 , SNP2 allele 1 individuals (ie the 
frequency of 11 haplotypes) will be 0.4444 x 0.6667  or 0.2963. The 
predicted number of 11 haplotypes will be 0.2963 x 9 or 2.6667. This 
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same exercise can be carried out for each of the other three haplotype 
classes. If deviations between observed and expected numbers are 
sufficiently large, we draw the conclusion that genotypes at SNP1 and 
SNP2 are not independent of each other. The statistical test is a chi-
squared with 1 degree of freedom, calculated as 
 

∑ −
E

EO 2)(    

O represents the observed numbers and E the expected. 
 
This  chi-squared test is simply carried out as : 
 
> chisq.test(table(SNP1,SNP2)) 
 
        Pearson's Chi-squared test with Yates' continuity 
correction 
 
data:  table(SNP1, SNP2)  
X-squared = 0.0563, df = 1, p-value = 0.8125 
 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(table(SNP1, SNP2))  
> 
 
The results is not significant – p-value of 0.8125.  The warning 
message is given because some cells have expected counts less than 
5. Under this threshold, there is a chance that the chi-squared test 
will give misleading results. Note it is the expected count that matters, 
not the observed - which can legitimately be zero and often is when we 
are considering closely linked SNPs. That is to say we may observe 
only three or possibly only two of the four possible haplotypes. We can 
extract and examine the expected values without the need for the 
hand calculations described above: 
 
> chisq.test(SNPtable)$expected 
         SNP2 
SNP1       allele1  allele2 
  allele1 2.666667 3.333333 
  allele2 1.333333 1.666667 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(SNPtable)  
 
Observed counts can be extracted in the same manner: 
 
> chisq.test(SNPtable)$observed 
         SNP2 
SNP1      allele1 allele2 
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  allele1       3       3 
  allele2       1       2 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(SNPtable) 
 
The expected count in all cells is less than five. In the days when 
these tests were calculated by hand, there was an approximate 
correction, Yates’s correction, which could be used to take into 
account the potential failure of the test statistic to follow a chi-
squared distribution when the expected numbers were low. It is 
common now to derive the distribution of the test statistic empirically, 
by repeated randomisation or permutation of the observed data, 
followed by recalculation of test statistic. The proportion of times the 
randomised test statistic is greater than or equal to the observed test 
statistic is then the empirical p-value. Here the randomisation 
procedure is very simple: the data for SNP2 are randomised over 
subjects, while the data for SNP1 are held constant. For a hi-squared 
test, R automates this procedure:  
 
> chisq.test(SNPtable,simulate=T,B=1000000) 
 
        Pearson's Chi-squared test with simulated p-value 
(based on 1e+06 
        replicates) 
 
data:  SNPtable  
X-squared = 0.225, df = NA, p-value = 1 
 
 
The value of B, the number of randomisations can be set by the user. 
The default value is 2000. Here, after 1 million randomisations, no 
empirical chi-sq was smaller than the observed value, so the empirical 
p-value is 1! 
 
An alternative test to the chi squared for contingency tables with 
small expected numbers is Fisher’s exact test. This compares the 
probability of observing the actual 2x2 table, calculated from the 
multinomial distribution, with the cumulated probability of observing 
other, less likely, tables. This probability is also calculated from a 
multinomial distribution with the same marginal frequencies of effects 
(here the overall allele frequencies at SNP1 and SNP2). In R: 
 
> fisher.test(SNPtable) 
 
        Fisher's Exact Test for Count Data 
 
data:  SNPtable  
p-value = 1 
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alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
   0.06060903 156.52286969  
sample estimates: 
odds ratio  
  1.852496  
 
> 
 
Again, the p-value is 1. The odds ratio is an approximation to relative 
risk, which has some nice statistical properties, and is much favoured 
in medical statistics and in epidemiology. It need not concern us.  
 
The contingency chi-squared test will easily accommodate larger 
tables – a 10 x 10 table for example. In the context of genetic markers, 
this could be used to test for association between pairs of 
microsatellites with multiple alleles. Fisher’s exact test is 
computationally hard to calculate, even on a computer, for large 
contingency chi-squared tables (eg a 10 x 10 table) so empirial 
methods are often favoured.  The calculations for a contrived 3 x 2 
table is shown below: 
 
 
 
> (table(SNP1,haplotype)) 
    haplotype 
SNP1 11 12 21 22 
   1  3  3  0  0 
   2  0  0  1  2 
> 
 
> chisq.test(table(SNP1,haplotype)) 
 
        Pearson's Chi-squared test 
 
data:  table(SNP1, haplotype)  
X-squared = 9, df = 3, p-value = 0.02929 
 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(table(SNP1, haplotype))  
> 
 
> chisq.test(table(SNP1,haplotype),simulate=T) 
 
        Pearson's Chi-squared test with simulated p-value 
(based on 2000 
        replicates) 
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data:  table(SNP1, haplotype)  
X-squared = 9, df = NA, p-value = 0.0004998 
 
 
> fisher.test(table(SNP1,haplotype)) 
 
        Fisher's Exact Test for Count Data 
 
data:  table(SNP1, haplotype)  
p-value = 0.03571 
alternative hypothesis: two.sided  
 
> 
 
 
The discrepancy in p-value between Fisher’s exact test and the chi-
squared test with empirical p-value requires explanation. A simulation 
(outside R) of 1,000,000 tables showed that the observed test statistic 
was equalled in 35477 cases, but was never exceeded. If p-value is 
defined as the number of times the observed test is exceeded, the p-
value is zero. If p-value is defined, following  convention, as the 
number of times the observed test statistic is equalled or exceeded, 
the p-value is 0.035 – in line with the result from Fisher’s exact test. 
Thus the simulated p-value and the exact p-value use different 
definitions. This must be regarded as a bug rather than a feature. In 
practice, therefore, if results from chisq.test with and without the 
simulate option are greatly different, caution is advised. Use Fisher’s 
exact test where possible. Generally, we would expect empirical p-
values to be higher (less significant) than the parametric values. 
 
 
5.4 Graphs 
 
Graphical methods were introduced in context in the sections on 
summary statistics and on basic statistical analysis. The following 
methods have been used: 
 

hist()  produces a histogram 
plot()  produces a scatter graph 
abline() adds a line of best fit to a scatter graph 
boxplot() produces a box-and-whisker plot. 
pairs() produces a matix of scatter plots.. 

 
To show what R is capable of in skilled hands, type, 
 
> demo(graphics) 
 
The output below is just one of a series of examples. Methods for 
producing these plots are beyond the scope of this guide, however. 
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The simplest and quickest way to export graphs is to copy and paste. 
Click on the top of the graphical window to active it. Then copy the 
graph using control C (hold down the control key and then type C). 
Nothing will appear to happen. However, Control V will paste the 
graph into any appropriate Windows application: Word, Powerpoint or 
Paint for example. The graph can also be copied by selecting “File”, 
then “Copy to the clipboard”, then “as a bitmap” using the Windows 
menu system available at the top left of the R window. This same 
menu also allows you to save graphical files in pdf, jpeg or bitmap 
format. 
 
Although R generates graphs very quickly and simply, the labelling 
and formatting are often not ideal. To alter graph titles, include the 
options: 
 
main=”Main title” 
sub=”subtitle” 
xlab=”x-label” 
ylab=”y-label” 
 
For example 
 
> plot(yield,height,main="Data set 1",sub="example 
scatterplot",ylab="height in cm",xlab="weight in kilos") 
> 
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5.5 Probability distributions 
 
In this section we briefly describe how to use R to look up the p-value 
associated with the most commonly used test statistic and how to look 
up test statistics associated with p-values. This can also be done 
using functions in Excel. However, it may be convenient to do this 
from time to time in R. Also, although Excel is accurate over most of 
the range of possible p-values or test statistics, it is inaccurate at 
extreme values. Most of the time this doesn’t matter. It can make a 
difference however, if a very large number of tests has been carried 
out and we are required to adjust for multiple testing. This occurs 
regularly in gene expression microarray experiments, for example.  
 
Firstly the p-value associated with chi-squared. 
 
> pchisq(3.84,1,lower.tail=F) 
 [1] 0.05004352 
 
The parameters given to pchisq, in order, are: 
3.84   value of the test statistic. 
1   the degrees of freedom 
lower.tail If set to T (the default) the result is the cumulative 

distribution up to the value of the test statistic – 0.95 in the 
example. For significance testing we require the area of the upper 
tail: 1-0.95 and so set lower.tail=F. 
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To calculate a chi squared from a p-value we use the command 
qchisq: 
 
> qchisq(0.05,1,lower.tail=F) 
[1] 3.841459 
 
The syntax is identical to that for pchisq(), so unfortunately we are 
required to include lower.tail=F. 
 
Examples for the F distribution are shown below. 
 
> pf(3.84,1,1000,lower.tail=F) 
[1] 0.05032099 
 
> qf(0.05,1,1000,lower.tail=F) 
[1] 3.850775 
 
The examples here are for 1 degree of freedom for the numerator and 
1000 degrees of freedom for the denominator. The results are identical 
to those for a chi-squared test with 1 df.  In fact, a chi-squared test 
with n degrees of freedom is identical to an F test with n degrees of 
freedom and a very large number of degrees of freedom (ideally 
infinite) in the denominator. 
 
Values for probabilities associated with a normal distribution are : 
 
> pnorm(1.96,lower.tail=F) 
[1] 0.02499790 
 
This  probability is for a standardised normal distribution: with a 
mean of zero and a variance on 1. The probability is for a single tail of 
the distribution. Generally, we would require the result for a two tailed 
test – the probability of values higher than 1.96 and lower than -1.96. 
This probability is just double that for a single tail: 0.05 in this case. 
Again, this is the same value as for chi-squared with 1 degree of 
freedom. If a variate has a standardised normal distribution, the 
variate squared has a chi-squared distribution with 1 degree of 
freedom: 1.962 = -1.962 = 3.84. 
 
To derive the normal deviate associated with a specific probability: 
 
> pnorm(1.96,lower.tail=F) 
[1] 0.02499790 
 
or 
 
> pnorm(-1.96) 
[1] 0.02499790 
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As ever, care is required to ensure specification of the correct tail. 
 
Probabilities associated with normally distributed variables with 
different means and variances are produced by specifying the mean 
and variance. 
 
 pnorm(q,mean=x,sd=y) with the inverse function: 
qnorm(p,mean=x,sd=y)  
 
lower.tail=F can be added if required. The values for mean and 
standard deviation are now user specified (substitute for x and y in 
pnorm and qnorm). The default values are 0 and 1. 
 
Finally, the t-test: 
 
> pt(1.96,1000,lower.tail=F) 
[1] 0.02513659 
 
> pt(-1.96,1000) 
[1] 0.02513659 
 
We usually carry out a two sided t test – so we require the sum of the 
lower and upper tail probabilities: equal to two times the single tailed 
probability. The inverse function follows the usual format and 
nomenclature: 
 
> qt(0.025,10000,lower.tail=F) 
[1] 1.960201 
 
 
5.6 Miscellany 
 
Included here are some useful commands which have not so far been 
described. 
 
help(command) 
 
This opens a new window and provides help on the command. 
help(lm)for example, will give help on the linear modelling command 
that we have used extensively. The help is written in a terse and 
technical style however, which may be hard to understand. 
Nevertheless, it is useful to see what options are available with each 
command – for many of the commands used in this guide more are 
available than have been described. Often, sufficient of the output 
from help makes sense to be able to get a command working by trial 
and error. At the bottom of the output, there are often examples of the 
command’s use: again not always easy to follow. The default argument 
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to help is help: help() is the same as help(help) and provides 
information about the help command itself. 
 
 
history(x) 
 
This opens up a window with a list of the most recently issued x 
commands. The default number is 25. These can be copied back into 
the R window and re-executed.  The window with the output can be 
saved from the File menu to keep a record of commands issued during 
the R session. 
 
ls()  or equivalently objects() 
 
Lists all the variables available in the current R session. This 
command can also be executed from the menu, selecting first “Misc”, 
then “List objects”. 
 
To remove those that are no longer required: 
 
rm(height,yield) 
 
would remove the variables height and yield. 
 
rm(list=ls(all.names=TRUE)) 
 
would remove all variables,  although this can be more easily achieved 
from the windows menu by selecting “Misc” then “Remove all objects”  
random numbers 
 
 
5.7 Saving work in progress  
 
Work can be saved during a session by selecting “Save Workspace…” 
from the File menu and then following the prompts for a file name and 
location. The file extension for R is .Rdata . On resuming R, “Load 
Workspace…” can be selected to restore data and variables. You are 
also prompted to save you data when you exit R. 
 
 
5.8 Exiting R 
 
Either the R window can be closed, you can select “exit” from the File 
menu, or you can issue quit() from the command line. 
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5.9 Learn more 
 
Much useful information and documentation is available on the R web 
site:  
http://www.r-project.org/, including the R manual “An Introduction 
to R.”  
 
Note, the manuals, including “An introduction to R”, are available 
directly from the Help menu from with R. 
 
The book Introductory Statistics with R, Springer, 2002, ISBN 0-387-
95475-9 is an excellent introduction both to R and to statistical 
analysis, with many simple examples. 
 
Packages 
 
Many are available from the Comprehensive R Archive network (CRAN) 
web site http://cran.r-project.org/. After downloading, these are 
easily installed from within R. Some of these are highly pertinent to 
plant genetics. An example, of which we have no direct experience is  
 
qtl: Tools for analyzing QTL experiments 
Analysis of experimental crosses to identify genes (called quantitative 
trait loci, QTLs) contributing to variation in quantitative traits.  
Version: 1.00-17 
Date: 7 Sep 2005 
Author: Karl W Broman and Hao Wu, with ideas from Gary 

Churchill and Saunak Sen and contributions from Brian 
Yandell 

Maintainer: Karl W Broman 
License: GPL version 2 or later 
 
 
These packages generally come  with their own manual, often detailed. 
That for the qtl package, for example, runs to 96 pages. Although the 
CRAN website is the first place to search for suitable packages, they 
are also found elsewhere and are often referred to in methodological 
publications or the methods sections of paper: programming in R is an 
expanding industry. 
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It is worth mentioning that  our guide to the syntax and structures 
used in R has been very superficial. We have mentioned the data 
frame and little else. Knowledge of other structures – arrays, matrices, 
lists – should be acquired at some stage. They are explained in “An 
Introduction to R” but this book is not a page turner. 
 
R’s graphics capabilities are extensive, and have not been explored in 
detail. 
 
 
5.10 List of commands described in this guide 
 
 
General 
 
attach attaches a dataset to R for subsequent analyses 
colnames adds coumn names to a table 
detach attaches a dataset to R for subsequent analyses 
demo  demonstration a command (not available for most 
commands) 
getwr  returns the path to the working directory 
help  returns help on a command 
history lists previously issued commands 
is.na() 
length returns the number of entries in a variate 
ls  lists all active data tructures and variates 
order  returns the order or a variate for use in a subsequent sort 
quit  exit R   
read.table reads in data 
rm  delete data structures and variates from R 
rownames adds row names to a table 
sort  sorts data 
subset selected a subset of data for subsequent analysis 
table  defines a table: used for input into contingency chi sq 
tests. 
 
 
 
Graphical 
 
abline  add the best fitting straight line to a scattergram 
boxplot produce a Boax-and-whisker plot 
hist  plot a histogram 
pairs  plot multiple scattergrams in a matrix format 
plot  produce a scattergram 
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Statistics 
 
cor  returns the correlation coefficient 
mean  returns the mean of a variate 
median returns the median of a variate 
minimum returns the minimum of a variate 
maximum returns the amximum of a variate 
quantile returns the quantiles of a variate 
sd  returns the standard deviationof a variate 
sum  returns the sum of a variate 
summary summarise data 
var  returns the mean of a variate 
 
anova  return an anova table from a linear model 
chisq.test carry out a contingency chi-squared test 
fisher.test carry out a Fisher’s exact test 
fitted  returns the fitted values from a linear model 
lm  define and execute a linear model 
resid  returns the residuals from a linear model 
t.test  one and two sample t-test 
var.test compare two variances by an F test 
 
 
pchisq returns the p-value of a chi-squared statistic 
qchisq returns a chi-squared statistic for a given probability 
pf  returns the p-value of a F (variance ratio) statistic 
qf  returns a F (variance ratio) statistic for a given probability 
pnorm returns the p-value for a normally distributed variate  
qnorm returns a normality distributed variate for a given 
probability 
pt  returns the p-value of a  t-test 
qt  returns the t-test statistic for a given probability 
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6. Construction of genetic maps 
 
6.1 Data files from Excel 
 
Before copying files for mapping we can do some more editing. A copy 
of the marker names and scores can be seen in worksheet F2_MM.  
 
From this worksheet we can remove unwanted data, eg. those 
individuals that have few/no scores or have χ2 values that do not fit 
the expected ratios. In this population, individuals 30 and 35 can be 
removed as they have no scores for any of the markers. The 
population size is now 118 and the number of markers is 153. 
 
Editing of the marker titles also must be carried out, MapMaker is 
very fussy. Marker (locus) names for MM must be 8 or less characters 
and must start with * followed by a letter, eg. *T105p; must be of 
alphabetic or numeric character and not include \ or / or +; 
underscore is acceptable; all file titles must also be 8 or less 
characters; zero scores are - . Joinmap is less fussy but file titles must 
be 8 or less characters. 
 
The mapping programs MapMaker (MM) and JoinMap (JM) both use 
text files from which the scoring data is read, conveniently the files are 
identical except for the header lines. 
 
 
Exercise 3 File conversion: Excel to.txt 
 
The next series of steps takes you through converting the Excel file to 
.txt. Proceed through the instructions below and make two .txt files 
for use with MapMaker and JoinMap. 
 

1. Select the whole data set and COPY it, open a new Excel 
workbook and PASTE the sheet. 

2. File, save as, choose CSV (Comma delimited) *.csv option 
3. Then close the Excel workbook 
4. Go to My Computer and open the .csv file in WORD 
5. The commas need removing: go to Edit, Replace: put ,,, in the 

FIND box and put 5 spaces in the Replace box; then repeat this 
procedure and replace , with nothing 

6. File, save as .txt file 
7. Put in the approprite headings for either MapMaker or JoinMap, 

and call them either F2_MM.txt or F2_JM.txt, see below: 
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MapMaker  
data type f2 intercross 
118 153 0 
*T56p 
DDDDDDDDDBDBDDDDDDDDDBDBBDBDDBDBBDBBDDDDDBDDDDDBDDDDBDBDDDDDDDDBDBDDDDDDBDBD
DDDBDBDDBDDBDBDBDDDDDDDDDDDDDBDDDDDDDDDDDD 
*T57p   
DBDDBBDDDBDDDDDBDDDBDBBDBDDDBDDDDDBDDDDDDBDDBDDBDDDBDDDDBBDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDBDDDDBBBDBDBDBDDBDDDD 
*T58p   
DBDBDBDBDDBDDDDDDDDDBDBBBDBDBDDDDDBDDDDDDDDBBDBDBDBBBDDDDDDDBDDBBDDDBDDDBBDD
BDBBBDBDBBDBDDBDBDDBDDBDDDBDDDDDDDDDDDDDDD 
 

For MM the first line has the generation and cross type. The second 
line has three numbers each separated by a single space; the first 
number (118) indicate the the population size, ie. the number of 
progeny for which there is data within the file; the second value (153) 
indicates the number of marker loci; the third value indicates the 
number of quantitative trait loci (QTL), in this case 0. 
 
 
JoinMap 
name = 15x399 
popt = F2 
nloc = 153 
nind = 118 
*T56p 
DDDDDDDDDBDBDDDDDDDDDBDBBDBDDBDBBDBBDDDDDBDDDDDBDDDDBDBDDDDDDDDBDBDDDDDDBDBD
DDDBDBDDBDDBDBDBDDDDDDDDDDDDDBDDDDDDDDDDDD 
*T57p   
DBDDBBDDDBDDDDDBDDDBDBBDBDDDBDDDDDBDDDDDDBDDBDDBDDDBDDDDBBDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDBDDDDBBBDBDBDBDDBDDDD 
*T58p   
DBDBDBDBDDBDDDDDDDDDBDBBBDBDBDDDDDBDDDDDDDDBBDBDBDBBBDDDDDDDBDDBBDDDBDDDBBDD
BDBBBDBDBBDBDDBDBDDBDDBDDDBDDDDDDDDDDDDDDD 

 
Similarly for JM but the format is slightly different and there is no 
need for a QTL number.  
 

8. Now the files are ready to input to the mapping programmes. 
Make a copy of the ....MM.txt file in the Mapmaker folder on the 
C:\ drive.  

 
Note. JoinMap will not be actively used during the course as this is 
not free software, however it will be demonstrated during the course. 
There is now currently a windows version v3 available. The flow chart 
below gives a brief outline: 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     108 

6.2 Mapmaker (MM) Tutorial 
You can find mapmaker at: 
http://www.broad.mit.edu/ftp/distribution/software/mapmaker3 
 
MapMaker13, unlike JoinMap7, is interactive and the operator has 
complete control over obtaining the ‘best’ marker order. It becomes 
difficult and extremely time consuming to deal with large data sets, of 
greater than 100 loci. However, Mapmaker provides good tables for 
analysis of two point data and of genotypes, both of which are 
extremely useful and informative. We will use the F2 data set from pea 
with the full set of 153 markers to construct a map. 
  
Exercise 4: Running Mapmaker 
 
The next series of commands is lengthy but will gradually build up a 
map. It is useful to have access to a printer and to some of the 
outputs from the programme as it proceeds. 
 
Where to find the program: go to My Computer and select the C:\ 
drive, and the Mapmaker folder. 
All the programs needed for the commands are within this folder. You 
will see there are many different types of files.  

Select the MAPMAKER 3.pif  icon, this starts the programme running.  
 
Input the following commands: 
 

1> prepare data F2_MM.txt  some text follows 
2> load data F2_MM 
3> photo F2  makes file F2.out for session output 
4> seq all   consider all marker loci 
5> group   Min LOD 3, max distance 50 

 
At this point MM splits the data into groups of linked loci based on 
‘two-point’, or pairwise, linkage analysis based on a minimum LOD of 
3 and a maximum distance of 50 (the default) and uses recombination 
frequency data. 
 

                                       
13 LANDER, E.S., P. GREEN, J. ABRAHAMSON, A. BARLOW, M. J. DALY, et al., 1987 MAPMAKER: 
an interactive computer package for constructing primary genetic linkage maps of 
experimental and natural populations. Genomics 1: 174-181 
7 Van Ooijen JW, and RE Voorrips 2001. Joinmap® 3.0 Software for the calculation of genetic linkage 
maps. Plant Research International, Wageningen, The Netherlands. 
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You see below, from the F2.out file that MM has created 12 linkage 
groups with one marker in an unlinked group using the default 
criterion. 

 
 
5> group 
Linkage Groups at min LOD 3.00, max Distance 50.0 
 
group1= T56p S55p T173p  
------- 
group2= T57p S48p T89m T126m T72m T185m  
------- 
group3= T58p T192m  
------- 
group4= T59p T78p T82p S19p S28p S31p S47p T21m T24m T60m T9m T11m T13m S18m 
S29m S41m S51m S52m T121m T174m T176m T201m T189m T195m S60m S70m S77m S83m 
S86m S99m CAG4m T64p T68p T70p T182p S68p S88p S95p S97p S98p CAG5p  
------- 
group5= T200p T77p S35p T87m S4m T40m T170m S75m S85m T187p S80p  
------- 
group6= T76p S7p S8p T108m T110m S10m S17m S46m T181m T188m S73m S79m S91m 
T124p T163p T199p S58p S89p S93p S100p S102p B1_PDR1  
------- 
group7= T109p T28m T140m Catheps  
------- 
group8= T111p S1p S5p S30p S32p S42p T12m S22m S26m S34m S39m S44m S50m 
T168m T169m T194m S64m S69m S104m T74p T166p T179p T197p S59p S103p CAG7p  
------- 
group9= S9p S12p S53m S84m S74p S94p  
------- 
group10= S21p S27p S36p S38p S54p S2m S20m S49m T165m T183m S67m S78m S105m 
T66p T67p T73p T171p T202p S82p CAG1p  
------- 
group11= S45p T162m S90m T127p T159p T167p T198p S76p S107p  
------- 
group12= S3m S65p  
------- 
unlinked= T158pm  

 
Perhaps you want to be less stringent and so reduce the number of 
linkage groups then use the commands as follows: 
 

6> seq all 
7> default linkage criteria 2 50 
8> group  

 
With the LOD reduced to 2 the number of linkage groups is reduced to 
7 with one marker unlinked, see below. 

 
8> group 
Linkage Groups at min LOD 2.00, max Distance 50.0 
 
group1= T56p S9p S12p S55p S53m S84m T173p S74p S94p  
------- 
group2= T57p S48p T89m T126m T72m T185m  
------- 
group3= T58p T192m  
------- 
group4= T59p T76p T78p T82p S7p S8p S19p S28p S31p S45p S47p T21m T24m T60m 
T9m T11m T13m T108m T110m S10m S17m S18m S29m S41m S46m S51m S52m T121m 
T162m T174m T176m T181m T201m T188m T189m T195m S60m S70m S73m S77m S79m 
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S83m S86m S90m S91m S99m CAG4m T124p T127p T64p T159p T68p T70p T163p T167p 
T182p T198p T199p S58p S68p S76p S88p S89p S93p S95p S97p S98p S100p S102p 
S107p CAG5p B1_PDR1  
------- 
group5= T200p T77p S21p S27p S35p S36p S38p S54p T87m S2m S3m S4m S20m S49m 
T40m T165m T170m T183m S67m S75m S78m S85m S105m T66p T67p T73p T171p T187p 
T202p S65p S80p S82p CAG1p  
------- 
group6= T109p T28m T140m Catheps  
------- 
group7= T111p S1p S5p S30p S32p S42p T12m S22m S26m S34m S39m S44m S50m 
T168m T169m T194m S64m S69m S104m T74p T166p T179p T197p S59p S103p CAG7p  
------- 
unlinked= T158pm 

 
Coincidentally pea has seven linkage groups but the LOD is low. 
Group 4, for example, has many markers that may not in fact be 
linked. To have confidence in the linkages it is better practice to have 
many linkage groups with fewer markers that can be linked together 
at a later stage. Smaller groups are also more manageable within 
MapMaker as you will see further on in this tutorial. So it is better to 
use minimum LOD scores of 3 or greater. 
 
Choose the following: 

9> seq all 
10> default linkage criteria 4 50 
11> group 

 
11> group 
Linkage Groups at min LOD 4.00, max Distance 50.0 
 
group1= T56p S55p T173p  
------- 
group2= T57p S48p T89m T126m T72m T185m  
------- 
group3= T58p T192m  
------- 
group4= T59p T78p T82p S19p S28p S31p S47p T21m T24m T60m T9m T11m T13m S18m 
S29m S41m S51m S52m T121m T174m T176m T201m T189m T195m S60m S70m S77m S83m 
S86m S99m CAG4m T64p T68p T70p T182p S68p S88p S95p S97p S98p CAG5p  
------- 
group5= T200p T77p S35p T87m S4m T40m T170m S75m S85m T187p S80p  
------- 
group6= T76p S7p S8p S10m S17m S46m T181m T188m S73m S79m S91m T124p T163p 
S58p S89p S93p S100p S102p B1_PDR1  
------- 
group7= T109p T28m T140m Catheps  
------- 
group8= T111p S1p S5p S42p T12m S22m S26m S34m S39m S44m S50m T168m T169m 
T194m S64m S69m S104m T74p T166p T179p T197p S59p S103p  
------- 
group9= S9p S12p S53m S84m S74p S94p  
------- 
group10= S21p S27p S36p S38p S54p S2m S20m T165m T183m S78m S105m T66p T67p 
T73p T171p T202p S82p CAG1p  
------- 
group11= S30p S32p CAG7p  
------- 
group12= S45p T162m S90m T127p T159p T167p T198p S76p S107p  
------- 
group13= T108m T110m  
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------- 
group14= S49m S67m  
------- 
unlinked= S3m T199p S65p T158pm 
 

It may be more useful to have the units in recombination frequencies 
rather than distance (cM). These can be adopted by changing the 
units as follows: 
 

12> units rf 
13> default linkage criteria 4 0.32 
14> group 

 
14> group 
Linkage Groups at min LOD 4.00, max Distance 0.316 
 
group1= T56p S55p T173p  
------- 
group2= T57p S48p T89m T126m T72m T185m  
------- 
group3= T58p T192m  
------- 
group4= T59p T78p T82p S19p S28p S31p S47p T21m T24m T60m T9m T11m T13m S18m 
S29m S41m S51m S52m T121m T174m T176m T201m T189m T195m S60m S70m S77m S83m 
S86m S99m CAG4m T64p T68p T70p T182p S68p S88p S95p S97p S98p CAG5p  
------- 
group5= T200p T77p S35p T87m S4m T40m T170m S75m S85m T187p S80p  
------- 
group6= T76p S7p S8p S10m S17m S46m T181m T188m S73m S79m S91m T124p T163p 
S58p S89p S93p S100p S102p B1_PDR1  
------- 
group7= T109p T28m T140m Catheps  
------- 
group8= T111p S1p S5p S42p T12m S22m S26m S34m S39m S44m S50m T168m T169m 
T194m S64m S69m S104m T74p T166p T179p T197p S59p S103p  
------- 
group9= S9p S12p S53m S84m S74p S94p  
------- 
group10= S21p S27p S36p S38p S54p S2m S20m T165m T183m S78m S105m T66p T67p 
T73p T171p T202p S82p CAG1p  
------- 
group11= S30p S32p CAG7p  
------- 
group12= S45p T162m S90m T127p T159p T167p T198p S76p S107p  
------- 
group13= T108m T110m  
------- 
group14= S49m S67m  
------- 
unlinked= S3m T199p S65p T158pm 
 

The groupings at 11> and 14> are the same, for MapMaker a 
maximum distance of 50 is equivalent to a maximum recombination 
frequency of 0.316. 
 
Having decided on the final groupings number we can start to analyse 
the data further and construct a map and in so doing look at the 
recombination frequency and genotype data as we proceed. 
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Starting systematically with the group 1 that has 3 markers and that 
can be handled quickly and easily by Mapmaker: 
 

15> seq group 1 
16> LOD Table 

 
16> Lod table 
 
Bottom number is LOD score, top number is recombination fraction: 
 
         T56p         
               S55p      
 
S55p     0.187  
          6.16 
 
T173p    0.018 0.177  
         22.91  6.59 

 
The table of pairwise recombination frequencies suggest that markers 
T56p and T173p have the closest linkage (0.018), T56p and T55p are 
the furthest apart (0.187) of the 3 markers, so the order could be T56p 
T173p T55p. The matching LOD scores, all greater than 3, also 
suggest we can have confidence in these recombination frequency 
values.  
What will Mapmaker do? 
With 3 markers we get three maps: 
 

17>  print names off  marker names to a number 
18> error detection on  see manual 
19> seq {1 33 121)  {means all combinations} 
20> map  

 
 
20> map 
Map:  1                      Apriori 
  Markers          Distance   Prob  Candidate Errors 
    1  T56p        0.014 rf 
  121  T173p       0.176 rf   1.0%  [#107 D-B-- 1.73] [#85 B-D-D 1.12]   
   33  S55p       ---------- 
                    23.2 cM   3 markers   log-likelihood= -50.90 
===================================================================== 
Map: 2                       Apriori 
  Markers          Distance   Prob  Candidate Errors 
  121  T173p       0.009 rf 
    1  T56p        0.179 rf   1.0%  [#85 D-B-D 2.37][#107 B-D-- 1.75]  
   33  S55p       ---------- 
                    23.1 cM   3 markers   log-likelihood= -51.00 
===================================================================== 
Map:  3                      Apriori 
  Markers          Distance   Prob  Candidate Errors 
  121  T173p       0.142 rf 
   33  S55p        0.151 rf   1.0%  [#9 D-B-D 1.23][#11 D-B-D 1.23] 15 more 
    1  T56p       ---------- 
                    34.7 cM   3 markers   log-likelihood= -65.63 
===================================================================== 
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From this data, map 3 is the longest and also has 17 cases of 
genotype switch (double crossover events). Map1 or 2 on the other 
hand are about the same length and both have only two cases of 
possible double crossover. Looking back at the recombination 
frequencies the best order was T56p T173p T55p which is map 1 
above. 
 
 

21> seq 1 121 33  this tells MM the fixed sequence 
22> units cm   centimorgans 
23> map 

 
 
23> map 
===================================================================== 
Map:                        Apriori 
  Markers          Distance   Prob  Candidate Errors 
    1  T56p          1.4 cM 
  121  T173p        21.8 cM   1.0%  [#107 D-B-- 1.73][#85 B-D-D 1.12]   
   33  S55p       ---------- 
                    23.2 cM   3 markers   log-likelihood= -50.90 
====================================================================== 
 

24> genotypes 
 
 
24> genotypes 
===================================================================== 
Genotypes:  
                  00000000000000000000000000000000000000000000000000 
                  00000000011111111112222222222333333333344444444445 
                  12345678901234567890123456789012345678901234567890 
                  -------------------------------------------------- 
 T56p             DDDDDDDDDBDBDDDDDDDDDBDBBDBDDBDBBDBBDDDDDBDDDDDBDD 
           1.4 cM                                                    
 T173p       1.0% DDDDDDDDDBDBDDDDDDDDDBDBBDBDDBDBBDBBDDDDDBDDDDDBDD 
          21.8 cM                                                    
 S55p             DDDDDDDDBBBBDDDD-DDDD-DDBDDDDDDBDDDBDBDDDDDDDDDB-D 
                  -------------------------------------------------- 
           #Recs: 00000000000000000000000000000000000000000000000000 
 
                  00000000000000000000000000000000000000000000000001 
                  55555555566666666667777777777888888888899999999990 
                  12345678901234567890123456789012345678901234567890 
                  -------------------------------------------------- 
 T56p             DDBDBDDDDDDDDBDBDDDDDDBDBDDDDBDBDDBDDBDBDBDDDDDDDD 
           1.4 cM                                   |                
 T173p       1.0% DDBDBDDDDDDDDBDBDDDDDDBDBDDDDBDBDDDDDBDBDBDDDDDDDD 
          21.8 cM                                   |                
 S55p             DDDDBDDDDDDDDBDBDDDDDDDDBBDDDBDBBDDDDBDBDBBDDDD-BD 
                  -------------------------------------------------- 
           #Recs: 00000000000000000000000000000000000000000000000000 
 
                  111111111111111111 
                  000000000111111111 
                  123456789012345678 
                  ------------------ 
 T56p             DDDDDBDDDDDDDDDDDD 
           1.4 cM       |            
 T173p       1.0% DDDDDBBDDDDDDDDDDD 
          21.8 cM       |            
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 S55p             DB-D-B-DDDDDDDDDDB 
                  ------------------ 
           #Recs: 000000000000000000 
 
===================================================================== 

 
The output from the Genotypes command shows the individuals 
genotypes and crossover positions. This information was also given as 
probable candidate errors from the Map output (see 22> map). 
These scorings are almost certainly worth back checking to the 
original scores to check for typing/scoring error in the original data 
set for the particular individuals. This is a necessary part of the data 
checking process. 
 
We have mapped group1, now we will move on to group2 that has 6 
markers. This number of markers is too many for Mapmaker to 
handle simply as we have done for group1. For four or more markers 
the following set of commands should be used, also it best to work 
with print names off as we will be input lists of numbers:  
 

25> print names off 
26> seq all 
27> group 

 
27> group 
Linkage Groups at min LOD 3.00, max Distance 0.316 
 
group1= 1 33 121  
------- 
group2= 2 31 43 67 70 81  
------- 
group3= 3 84  
------- 

group4= 4 8 9 18 21 23 30 34 35 37 38 39 41 51 55 58 63 64 66 76 
77 80 83 86 87 
91 94 97 100 103 106 109 113 114 123 132 137 141 142 143 149  
------- etc..... 

 
28> error detection on 
29> seq {2 31 43 67 70} {tells MM to look at combinations} 
30> compare 

 
30> compare 
 
Best 20 orders: 
1:    67 70 2 31 43   Like:  0.00  
2:    67 2 70 31 43   Like: -0.03  
3:    67 70 2 43 31   Like: -0.15  
4:    67 2 70 43 31   Like: -0.31  
5:    67 70 31 43 2   Like: -1.50  
6:    2 67 70 31 43   Like: -1.57  
7:    67 70 31 2 43   Like: -1.64  
8:    67 70 43 2 31   Like: -2.18  
9:    67 70 43 31 2   Like: -2.19  
10:   67 2 31 70 43   Like: -2.23  
11:   2 67 70 43 31   Like: -2.35  
12:   2 67 31 70 43   Like: -2.42  
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13:   67 31 70 2 43   Like: -2.52  
14:   67 31 70 43 2   Like: -2.66  
15:   43 31 2 67 70   Like: -3.37  
16:   31 43 2 67 70   Like: -3.42  
17:   43 31 67 2 70   Like: -3.88  
18:   67 31 2 70 43   Like: -4.23  
19:   31 43 67 2 70   Like: -4.29  
20:   2 43 31 67 70   Like: -4.77  
order1 is set 

 
31> seq order1  best suggested order from MM 
32> map 

32> map 
=================================================================== 
Map:                        Apriori 
  Markers          Distance   Prob  Candidate Errors 
   67  T126m       0.198 rf 
   70  T72m        0.053 rf   1.0%  [#66 A-C-D 1.05]   
    2  T57p        0.194 rf   1.0%  - 
   31  S48p        0.074 rf   1.0%  - 
   43  T89m       ---------- 
                    63.3 cM   5 markers   log-likelihood= -124.04 
=================================================================== 
 

33> seq 67 70 2 31 43  this is the fixed order 
34> try 81 

 
34> try 81 
 
        81       
       ------- 
      |-23.07 | 
67    |       | 
      |-25.39 | 
70    |       | 
      | -4.91 | 
2     |       | 
      | -0.14 | 
31    |       | 
      |  0.00 | 
43    |       | 
      | -0.15 | 
      |-------| 
INF   |-24.70 | 
       ------- 
BEST  -129.44  

 
The output is suggesting the best position for 81 9T185m) is between 
marker 31 (S48p) and 43 (T89m), so try this: 
 

35> seq 67 70 2 31 81 43 
36> map 

36> map 
===================================================================== 
Map:                        Apriori 
  Markers          Distance   Prob  Candidate Errors 
   67  T126m       0.198 rf 
   70  T72m        0.049 rf   1.0%  [#66 A-C-D 1.07]   
    2  T57p        0.193 rf   1.0%  - 
   31  S48p        0.063 rf   1.0%  - 
   81  T185m       0.018 rf   1.0%  [#117D-C-A 2.21][#106D-C-A 1.55] 1 more 
   43  T89m       ---------- 
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                    63.2 cM   6 markers   log-likelihood= -129.44 
===================================================================== 

 
37> lod table 

 
37> lod table 
Bottom number is LOD score, top number is recombination fraction: 
 
      67    70    2     31    81     
 
70   0.206  
      6.62 
 
2    0.167 0.049  
      3.30  5.02 
 
31   0.300 0.142 0.177  
      1.80  4.83  7.66 
 
81   0.400 0.281 0.049 0.048  
      0.57  3.38  4.40  5.80 
 
43   0.389 0.288 0.049 0.048 0.025  
      0.78  3.44  4.85  6.42 24.20 

 
From the recombination frequency data this suggested order from MM 
does seem to be reasonable. Look at the genotypes: 
 

38> genotypes 
 
38> genotypes 
 
Genotypes: 
                  00000000000000000000000000000000000000000000000000 
                  00000000011111111112222222222333333333344444444445 
                  12345678901234567890123456789012345678901234567890 
                  -------------------------------------------------- 
 T126m            CCCACCAACCCCACCCCCACCCCCCACCCCACCCCAACCCACCCCCCCCA 
          25.2 cM       X                       X                    
 T72m        1.0% CCCACCCACCCAACCCCCACCCCCCAACCCCCCCCAACCCACCCCCCCCA 
           5.1 cM                                                    
 T57p        1.0% DBDDBBDDDBDDDDDBDDDBDBBDBDDDBDDDDDBDDDDDDBDDBDDBDD 
          24.4 cM                                                    
 S48p        1.0% DBDDBBDDDBDDDBDBBBDBDBBDBDDBBDDDBBBDDDBDDDDDDDDBDD 
           6.7 cM       XX                  X   X    XX   X          
 T185m       1.0% CCAACCCCACAAACACCCACACCACAC-CCCACCCCCCCACCACCCCCCA 
           1.8 cM       XX                  X   X    XX   X          
 T89m             CCAACCCCACAAACACCCACACCACACCCCCACCCCCCCACCACCCCCCA 
                  -------------------------------------------------- 
           #Recs: 00000032000000000000000000200030000220002000000000 
 
                  00000000000000000000000000000000000000000000000001 
                  55555555566666666667777777777888888888899999999990 
                  12345678901234567890123456789012345678901234567890 
                  -------------------------------------------------- 
 T126m            ACA---ACCCCAACAAACCCCCAAACAACCCCCACAC-CA------CCAA 
          25.2 cM       X    XX  |X     XXX  X     X                 
 T72m        1.0% ACAACCCCCAACCAACCCCCAACCCAACCACCCCAACACACCCCAACCAA 
           5.1 cM       O        |                                   
 T57p        1.0% DBDDDDBBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDBDD 
          24.4 cM            O    O                OO                
 S48p        1.0% DDDDDDBBDDDBDDDDBDDBDDDDDDDDDDBDDBBDDDDDDBDDDDDBDD 
           6.7 cM    X        XX      |XXXX  X       X X X    X      
 T185m       1.0% -CACCCCCC-ACCCAACCACACCCCAACCACCACCCCCCCCCCACACCAA 
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           1.8 cM    X        XX      |XXXX  X       X X X    X      
 T89m             ACACCCCCCAACCCAACCACCCCCCAACCACCACCCCCCCCCCACACCAA 
                  -------------------------------------------------- 
           #Recs: 00020030000332013000123330030000032202020000200000 
 
                  111111111111111111 
                  000000000111111111 
                  123456789012345678 
                  ------------------ 
 T126m            AACCCCCACA-ACCC-AC 
          25.2 cM                    
 T72m        1.0% AACCCCCACACACCCAAC 
           5.1 cM                    
 T57p        1.0% DDBBBDBDBDBDDBDDDD 
          24.4 cM                    
 S48p        1.0% DDBBBDDDDDBDDBDDDD 
           6.7 cM XX   |          |  
 T185m       1.0% CCCCCCCAC-CACC-ACA 
           1.8 cM XX   |          |  
 T89m             CCCCCACACCCACCAAAA 
                  ------------------ 
           #Recs: 220000000000000010 
 

 
The symbols within the genotype output are:  

X = a crossover 
0  = two crossovers on one interval 
|  =  suggests a possible candidate error: given when error 
detection is on 
“?” = an obligate recombinate which cannot be placed: also an 
indication of typing/scoring error 

 
Exercise 5 marker order and map length 
 
As an exercise for this group2 try placing 81, or any other marker, 
elsewhere in the list to see what happens. 
 
Exercise 6 mapping some other linkage groups 
 
Proceed through the other groups from the output at 14> above and 
map the groups as described. At any one time when using the > Try 
command only ever input two markers. 
 
  
 

39>  
40>  
41>  

 
 
6.3 Use of Mapchart with MM: 
 
Mapchart, now incorporated as an integral part of Joinmap 3.0, is 
available free. Given a file of map order, marker name and distance, it 
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will draw the linkage groups. This can either be data from Mapmaker 
or earlier versions of Joinmap. 
 
A text file format can be input to Mapchart and linkage groups drawn 
up. See below an example of the file format for the top and bottom of 
two linkage groups from the RI population for the cross JI15 x JI1194, 
as input to Mapchart. 
 
Group 1(15x1194) 
Tps1/254+              0.0 
cDNA169                0.6 
spm158-                2.0 
Tps1/115-              2.0 
. 
. 
. 
cDNA148t              72.8 
Tps1/253+             74.4 
cDNA267               79.4 
pRSR547/7             81.5 
 
 
Group 2(15x1194) 
spm148+                0.0 
Tps1/106-              9.2 
Tps1/258-              9.2 
cDNA277               18.0 
. 
. 
. 
. 
Tps1/183-            114.7 
a                    116.3 
cDNA24               123.2 
Tps1/66+             124.7 

 
 
From Mapchart the linkage groups can be copied to MS Powerpoint for 
editing: replacing groups with linkage group titles etc. 
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Tps1/2540.0  
cDNA160.6  
spm158 Tps1/115
Tps1/1182.0  

Tps1/2473.4  
Tps1/219 Tps1/1634.3  
spm1525.3  
Tps1/2078.8  
Tps1/193 Tps1/26113.8  
Tps1/27516.6  
ps1/211+ 22.8  
Tps1/124 spm16925.9  
spm15726.8  
spm11730.9  
spm12236.0  
Tps1/256 Tps1/257
Tps1/249 spm17438.9  

pRSR46/43.5  
Tps1/24645.2  
DRP47.1   
spm146 Tps1/10052.3  
spm175-58.4  
Tps1/204 Tps1/188
Tps1/19964.7  

Tps1/11766.6  
cDNA14872.8  
Tps1/25374.4  
cDNA2679.4  
pRSR547/81.5  

  LG I 

spm1480.0  

Tps1/106 Tps1/2589.2  
cDNA2718.0  
spm12019.7  
cDNA2822.7  
Tps1/11624.6  
sb28.3  
spm15432.4  

Tps1/259 Tps1/7944.
Tps1/23446.6  
cDNA10151.9  

spm13564.9  
spm12868.2  
Tps1/6769.7  
Tps1/24572.4  
spm119-92.3  
Tps1/23595.3  
spm19898.1  
spm194- Tps1/26799.6  
Tps1/213102.5  
Tps1/202104.2  
Tps1/73105.7  
Tps1/231+110.7  
leg112.7  
Tps1/272-113.3  
Tps1/183114.7  
a116.3  
cDNA2123.2  
Tps1/66124.7   

 LG II        
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You can also just use EXCEL to plot genetic maps manually. There 
are advantages and disadvantages to both. 
 
 
 
 
 
7. Comparative genetic maps 
Comparative genetic maps come in two basic forms. The first relates 
different maps within the same species, while the second seeks to 
compare genetic maps of different species. 
 
7.1 Intraspecific comparisons 
Comparisons of genetic maps within a species rely on the collection of 
data from the same genetic locus in different crosses. Ideally the use 
of a common parent in different crosses will simplify matters and 
ensure that for many loci the segregation is monitored for the same 
allele, but this information is not always available and the resulting 
difficulty is relatively simply overcome, for example by choosing the 
same DNA sequence for marker generation. This may simply be the 
use of the same primer combination in a PCR assay or the use of the 
same hybridisation probe for RFLP analysis. This does not guarantee 
that the same locus will be identified: there may be two or more loci 
that carry very similar DNA sequences, and different loci may be 
polymorphic in different crosses. The collation of data from several loci 
will help to confirm the inference. 
 
In the collation of marker data from different crosses, with one parent 
in common, the degree of polymorphism for the markers in question is 
important. Consider three inbred lines A, B and C and the two crosses 
A x B and B x C. If the average frequency by which a given marker 
distinguishes any two lines is p, then the chance that it will 
distinguish the parents of both crosses is p2. Thus for comparative 
mapping within a species the choice of parents and marker system is 
critical. 
 
Microsatellite markers (4.4.2) are often selected as markers of choice 
for intra specific comparisons. There are essentially two reasons for 
this (i) the markers are generally co-dominant and (ii) microsatellite 
markers are highly polymorphic. Microsatellite markers have the 
disadvantage that they are often14 derived from intergenic DNA 
sequences. In part this explains their high level of polymorphism, but 
unfortunately has the consequence that the primer binding sites are 

                                       
14 A minority of microsatellite markers are found in coding sequences. 
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also highly variable. This means that the primers have a limited 
taxonomic range of usefulness, and are often restricted to individual 
species. The variation in primer binding sites also provides an 
explanation for the frequency of null alleles for microsatellites in 
highly diverse material. 
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7.2 Interspecific comparisons 
 
For inter-specific genetic map comparisons it is important that the 
markers used can be identified easily and unambiguously in all the 
species being compared.  
 
Genes are the obvious choice of DNA sequences from which to derive 
genetic markers that can be compared across species. Gene 
phylogenies can be determined and their topology investigated with 
respect to species phylogenies. Sequence comparison using reciprocal 
BLAST analysis makes it possible to determine the most likely 
counterparts in the species being compared. This is not a trivial 
problem and the behaviour of DNA sequences in reciprocal BLAST 
analysis, together with their relative positions in genetic maps can be 
used in arguments about orthology15. There is a variety of marker 
methods that can be used to identify corresponding genes in different 
species. RFLPs were the first to be used, and remain an important 
source of evidence, but this method is much more demanding than 
PCR based approaches discussed below. Comparative RFLP maps 
were the basis for the determination of patterns of synteny among 
cereals16. 
 
PCR markers that have been designed based on gene sequences have 
been discussed in sections 4.4.4 and 4.4.5, so these methods, and 
their multiple variants, will not be discussed further. 
 
There are multiple web-based information resources available that 
provide information of primers that work well in selected species 
groups, and the way to access these will be discussed in the course.  
 
There are some features of the genome that may be of interest: the 
position of centromeres and telomeres for example, however these are 
more likely to be structures asked about rather than defining 
comparative genetic maps. These can be genetic markers, or identified 
by genetic markers but their location is determined with respect to a 
genetic map, leaving the problem of the identification of common 
markers.  
 
It is worth bearing in mind that there are non-genetic approaches to 
studying genome synteny. One is the comparison of extended genome 
sequence deposited in public databases; another is the use of 
cytogenetic methods such as the in situ hybridisation of BAC clones to 
chromosome spreads. These can have very fine resolution: for example 
stretched fibre in situ hybridisation has a resolution of about a 
kilobase. However this approach simply provides information about 
                                       
15 see glossary 
16 Devos, K. M. & Gale, M. D. (2000) Plant Cell 12, 637–646. 
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the similarity between genomes. In the context of the present course 
we want to find out whether related traits are under equivalent control 
in different species. This can provide access to a wealth of genetic 
markers and basic understanding of the underlying biological 
processes. 
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8. Looking at data and mapping exercises 
 
8.1. Interpretation of mapping data 
It is easy to forget that genetic maps are an interpretation rather than 
a representation of data. Marker data is collected and can be 
scrutinised in great detail to be sure there are no mistakes. The 
mapping programmes are a defined operation performed in the data so 
they seem a necessary consequence. A genetic map looks like a clear 
and simple representation of the data, but this suggestion is 
misleading. There is a great deal of interpretation hidden in the 
construction of a genetic map. This is illustrated by Isidore et al 
(2004)17 
 
8.1.1 Map length 
Recombination is a consequence of events that happen at meiosis, 
and the segregation of chromosomes into gametes followed by their 
(random) association in zygotes gives us the pattern of segregation of 
alleles among progeny. It was discussed above how markers (of 
whatever type) are an assay for the parent-of-origin of a genetic locus 
that tracks a chomosomal segment. There are many ways the assay 
can be misleading and we should be aware of this when examining the 
data. 
Map length is a simple clue to how good a genetic 
map actually is at representing these meiotic events 
for a given population. The figure below illustrates 
the consequence of crossing over for gametes. The 
cytogenetic event that corresponds to a crossover is 
called a chiasma, plural chiasmata (see inset 
picture from J.S. Parker) 

A

B

C

a

b

c

A a

B

C

b
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One crossover
(4 strand stage)
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C
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a
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c

a
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B

A

gamete segregation

Recombination: At  the cytogenetic level: 

 
                                       
17 Isidore et al (2003) Toward a Marker-Dense Meiotic Map of the Potato Genome: 
Lessons From Linkage Group I Genetics 165: 2107–2116 

Number of chiasmata
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It is clear that after 1 crossover 50% of the gametes are recombinant. 
If a crossover happens in 1/N meioses then 2 out of 4N gametes will 
be recombinant. If we think about a chromosome where only one 
crossover occurs18 but there are many different genetic markers 
positioned along the chromosome then the chance that there is a 
crossover between any two markers will be small, but there will 
always be one crossover between the extreme ends of the 
chromosome. The alleles of markers at the two extreme ends will be in 
the parental configuration 50% of the time and in the recombinant 
configuration in the other 50%. The recombination fraction between 
them is 0.5, and the map length is 50 cM.  Work out what happens for 
two crossovers and if you are keen try more. You will see that the 
genetic map length corresponding to a chromosome with x crossovers 
is 50x centiMorgans.  
If you know the cytogenetics if your population you know how long the 
genetic map should be. Usually genetic maps are longer than they 
should be and there while it is possible that the estimate of chiasma 
number is too low, it is likely that the marker data propose too many 
recombination events. This may be because of simple errors, but the 
Isidore et al (2003) paper clearly shows that this may not be the only 
reason.  We will return to this point later, but for the moment the 
issue is what this means for the interpretation of that data from which 
a genetic map is constructed. 
 
If a marker corresponds to a mis-score then it either proposes two 
additional recombination events or it may not be noticed because it 
(erroneously) extends a region of one parental genotype: 
 
Suppose we have the code below describing the scores for an 
individual (note this diagram is on its side compared to the diagrams 
in section 6. 
 
Marker number 1 2 3 4 5 6 7 8 9  
Allele score  A A A A A A C C C 
 
(1) Mis-score proposing no extra recombination events: 
 
Marker number 1 2 3 4 5 6 7 8 9  
Allele score  A A A A A C C C C 
 

                                       
18 In general crossovers are necessary for proper chromosome disjunction so it is 
usual for a chromosome to have at least one crossover. Usually there are more 
because an average of one would suggest some with zero and hence non-disjunction. 
An average of one crossover per chromosome arm is not far from the truth. 
Famously, in Drosophila males there is no crossing over: it is not clear (at least to 
me) how proper disjunction is achieved. 
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(2)  Mis-score proposing two extra recombination events: 
 
Marker number 1 2 3 4 5 6 7 8 9  
Allele score  A A C A A A C C C 
 
The mis-scores of the type shown in (1) should be fairly rare, so if we 
ignore them we can ask firly simple questions about mis-score rates 
and their consequences for map length. We will slightly exaggerate the 
effect on map length by ignoring (1) above. 
 
Suppose there is a population of N gametes and we have the scores for 
m markers in a single linkage group19. Let’s further suppose that 
there is an average of c crossovers per gamete (ie 2c crossovers per 
bivalent). This means that if we read the allele codes for each 
individual in turn we will count i instances where the scores change.  
There is a total of i = c N of these. For 100 gametes and a fictitious 
chromosome with an average of one crossover per gamete (two per 
bivalent, one per arm) i = 100. 
If the average distance between genetic markers is 5 centiMorgans (a 
low density map), then we know that there are 21 markers (20 
intervals of 5 cM = 100 cM the length of a linkage group for a 
chromosome with an average of two chiasmata).  
If the fraction marker scores in error is e then we have 2emN extra 
recombination events proposed by the data. To double the length of a 
chromosome 2emN = c N, in this case e = c/2eM, in this case  ~ 2.4%. 
Marker scores an error rate of 2.4% are not great, but also not that 
bad given the number of operations AND the possibility that some of 
these ‘errors’ are inevitable.  
 
Two things are clear: 

1.2.1.1 Small error rates per marker score contribute greatly to 
excess map length. 

1.2.1.2 Excess map length due to misscore increases with marker 
density. If map length increases with marker number that is a 
teltale sign of misscores. 

 
8.1.2 Length distribution of non-recombined segments 
Another way of looking at the validity of marker data is to examine the 
distribution of alleles. Often this is achieved by ‘graphical genotyping’ 
or ‘colormapping’. These are intuitive methods, and have the virtue of 
focussing attention on the meaning of marker scores. This can also be 
examined analytically. Given the identity of the course sponsors it 
seems appropriate to deviate a little from standard approaches to 
consider the length distribution of non-recombined segments. 
 

                                       
19 linkage groups and chromosomes: see section 2.6 
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Linkage maps are usually represented as linear arrays of markers 
spaced by genetic distances. An alternative representation is to 
display sequences of marker intervals (or recombination bins) where 
there may or may not be an odd number of exchanges. This unusual 
representation has some useful properties that derive from being a 
sequence of two classes of object.  
 
An interval can be designated ‘a’ for an odd number of exchanges or 
‘b’ for zero or an even number of exchanges. Thus a single linkage 
group could be designated by a string such as ‘aaabaaaabaa’ where 
there are two recombination events at the intervals marked ‘b’. While 
this is less intuitive than designating allele codes as in section 3.4, it 
has the advantage that the spacing between different interval types, 
and the statistics of this class of arrangement have been described by 
Mood (1940)20, and in a slightly different context by Southern ()21. An 
isolated marker with where the allele is different from all surrounding 
alleles will be represented by ‘bb’, or where the number of ‘a’s is 0.    
 
The expectation (E) of the number of runs (r) of ‘a’s of length N is given 
as: 
  
EraN = paNpb[(X-N-1)pb +2] 
 
where pa is frequency ‘a’, pb frequency of ‘b’ and X is the total number 
of ‘a’s and ‘b’s. 
 
For a linkage group with M markers and an average of k crossovers it 
follows that the average value of N is M/(k+1). X is the total number of 
intervals summed over all individuals in the whole population. 
Typically this will be about 100 individuals, so X is typically much 
larger than N. EraN/X is the proportion (or frequency P) of runs (r) of 
type ‘a’ of length N, and where X is much larger than N we can say: 
 
P = paNpb2 
so: 
 
log(P) = 2 log (pb) + N log (pa) 
 
This means that a plot of the log of the frequency of a given run length 
plotted against run length (N) has a slope of log (pa) and an intercept 
of 2 log (pb) = 2 log (1-pa).  
 
A plot of this type is shown in the figure below. The scatter of points 
represents the observed distribution of lengths of non-recombinant 
intervals and the two lines plot the expected distribution for a linkage 
                                       
20 Mood A.M (1940) The distribution theory of runs. Annals Math Stat 11: 367-392 
21 Southern EM (1975) J.Long range periodicities in mouse satellite DNA. Molec. 
Biol. 94:51-69 
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group with this number of intervals where the map length is 100 or 
150 cM respectively. We know from comparing genetic maps of several 
populations, and from cytogenetic observations, that the length of this 
linkage group should be about 100cM and certainly less than 150 cM.  
 
 

log(P)

N

-4

-3

-1

0

0 10 20 30 40 50

150 cM

100 cM

 
 
It is clear from the plot that there is an excess of the N=0 class, ie 
where there are recombination events in adjacent intervals, ie a 
‘singlet’ or where an individual marker has a score different from its 
neighbours. In fact, for this data set, there seem to be about 10-fold 
more of these than expected, this is a strong indication of error. 
Interestingly the N=1 class is also significantly in excess. This is where 
two adjacent markers differ from those on either side, and is not 
expected from simple errors. The existence of this class suggests that 
something like the observations of Isidore et al (2003) [see section 
8.1.1] is responsible for this excess. 
 
8.1.3 Local order 
 
The order of markers on a map can be related to the data set very 
simply by colouring the data scores in some simple scheme, and 
arranging the scores in the order of the markers along a linkage 
group. This has the grand name of a ‘graphical genotype’. In the figure 
below an idealised data set is shown where the data is scored 
according to the scheme in section 3.4. In this case for the upper 
panel (1) the A scores are yellow, the B scores blue and the H scores 
green. In the lower panel (2) the data are exactly the same but with 
the condition that the score C is either B or H. The C scores are green 
and correspond to dominant markers score in coupling.  
The corresponding linkage maps are illustrated as maps 1 and 2. 
There is some difference in the estimates of recombination distance 
because of the ambiguity from the dominant marker scores. Note that 
these can be either larger or smaller than the case for codominant 
scores. 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     129 

The relative order of the two central markers is dependent on a very 
small number of individuals – four in the case of the codominant 
markers and just two for the dominant markers. A very small amount 
of mis-scoring could change the deduced relative order of these two 
markers, that is especially so for the dominant markers, even though 
the distance between these two markers appears greater. 

10 cM

1

2

1 2

1 and 2 are idealised data sets; 1 scores 
the data as codominant markers and 2 as 
the corresponding scores for dominant 
markers in coupling.
Marker data is in the order of the markers 
in the maps.

6.6

2.1

25.3

6.6

21.5

6.6

6.6

25.3

6.6

14.8

 
 
This is a general property of close markers flanked by longer intervals. 
In QTL analysis, having the central 6.6 cM segment the wrong way 
round could distort the analysis and suggest that there are 2 QTL 
when in fact there is only one. An even distribution of markers may be 
more advantageous than maximising the marker number. 
 
8.2. Recombination and segregation. 
Genetic markers can be helpful in to specific tasks that are relevant to 
breeding: (i) fixing genotypes in early generations; and (ii) identifying 
recombinants that minimise linkage drag. This is de Vienne’s 
‘management of recombinations’. 
 
8.2.1 Fixing genotypes in early generations  
In an F2 population we expect 1 in 4 individuals to be homozygous for 
a single recessive allele. In practice breeding will often require the 
selection of genotypes that are homozygous for recessive alleles at 
multiple loci.  This is de Vienne’s accumulation of ‘favourable alleles 
as quickly as possible in a single genotype’. If we are interested in 
selecting homozygous recessives at L loci, then the population size 
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needs to be more than 4L. In fact it needs to be about three times this 
size (see box). 
 
 
 
 
If the chance of any one individual being what we want is p then: 
 
The chance that : 
one is not what we want is   1 - p 
none of N is what we want is  (1 – p)N 
at least one of N is what we want is 1 - (1 – p)N 
 
In this case we know p = 1 / 4L and we want 1 - (1 – p)N > 0.95 
   1 - (1 – p)N = 0.95 
         (1 – p)N = 0.05 
  Nlog(1 – p) = log(0.05) 
  N = log(0.05) / log(1 – p) 
 
for L= 5,   p ~ 10-3 , N ~ 3 000 
for L= 10, p ~ 10-6 , N ~ 3 000 000  
 
 
This means that finding an individual homozygous recessive at a 
significant number of loci requires huge population sizes. This is no 
surprise to a breeder, but what is of interest is that it may be possible, 
using molecular markers, to find individuals homozygous at a few loci 
that can be scored visually and then to find among these those that 
are heterozygous for the remaining desired loci.  Thus in a two step 
process genotype construction is a possibility with a mixture of mass 
screening and marker analysis of a small number of selected 
individuals. Selection is replaced by genotype construction. 
 
An interesting exercise is to consider whether there is sufficient 
recombination within a population for genotype construction. 
 
8.2.2 Identifying recombinants that minimise linkage drag. 
One problem with the strategy outlined above is that relatively few 
individuals are generated that have the desired combination of alleles. 
This means that the number of different recombination events that 
have generated the desired allelic combination is very small. 
 
What fraction of F2 homozygotes for a recessive allele carry the entire 
parental chromosome of the donor of that allele? That’s an unfair 
question, but suppose 1, 2 or 3 crossovers per meiosis and the answer 
can be derived for each case. Surprised? I was. 
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This means that if you are constructing a desired genotype form a 
wide cross (as for example in the introduction of a disease resistance 
trait) that you might well carry over a huge number of undesirable 
alleles at a range of loci not being monitored. This in turn has the 
likely consequence that a genotype constructed in this will perform 
poorly. For this reason alone it is hardly surprising that breeders 
choose to “cross the best with the best and hope for the best”. What 
markers can do to help is twofold. First of all markers can be used to 
assess the scale of the damage done by introducing a recessive allele 
from a non-adapted background. Markers can tell you how far away 
from the target locus the crossovers actually were (if there were any).  
Secondly markers can be used to search for those individuals where 
recombination events were favourably located. 
 
Deploying molecular markers does not help to generate the desired 
recombination events, but they do allow the development of a breeding 
strategy that reduces the number of plants to be examined to a 
manageable number. 
 
9. Trait mapping 
Much of what has been said above explains how trait mapping can be 
undertaken when the trait is a ‘major gene’ ie when there is a clear 
difference between the parental alleles. In this case the trait is simply 
another marker and can be mapped as such. This may seem 
unimportant – why bother if the difference is clear?  
 
A good example is bread-making quality in wheat. This turns out to be 
a property of the alleles of the high molecular weight glutenins, so 
scoring these is a good predictor of bread-making quality.  It is 
possible to select for this among F2 individuals individual even from 
half grains – but you can’t make bread from this! 
 
Having justified the idea that trait mapping might be of some value 
then there is some ‘good tricks’ to employ discussed briefly below.  
 
For example if we had a wheat recombinant inbred population where a 
major determinant of bread-making quality was segregating (and a lot 
of the variance was attributable to a single locus).  Then we could 
determine the value of this parameter for each RIL. Now we can do 
several different things one is conventional or QTL mapping (section 
10). Another is to identify the extreme types (the worst and best) we 
can then look for alleles that are more frequent in one than the other 
and thus identify markers linked to the determinant of the trait. This 
approach is useful if the difference is not large and there are multiple 
individuals of indifferent phenotype; ie that provide no information. 
The disadvantage of this approach is that there are few individuals in 
these extreme classes. Consequently we expect some differences 
between the groups by chance alone. 
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A commonly used approach is ‘bulked segregant analysis’. This is 
common enough to have its own acronym and the procedure is 
explained by the name. Suppose we cross TT x tt and want to identify 
markers linked to T using an F2. We can prepare DNA from all the tt 
individuals (and from some that are either are Tt ot TT). We can make 
mixtures (bulks) of each type – usually bulks of 10 individuals.  With 
a marker system (ideally a multiplex) we can look for markers present 
in the TT parent and T_ bulk that are absent from the tt parent and tt 
bulk.  
It is an interesting exercise to work out (roughly) how close the 
markers will be for a given number of bulks of 10. 
 
10. QTL mapping 
Approaches to QTL mapping are described in de Vienne’s book, and 
these comments will not be reiterated here. However some general 
comments on the basis of QTL mapping follow. 
 
QTL represent loci about which we know relatively little. It is probably 
easiest to think of them as weak alleles of single loci (but see section 2 
– this is a contentious issue). In the discussion below the assumption 
is made that a QTL is identified by contrasting alleles of weak effect 
and that their consequence is best measured as a quantity.  
For example leaves may be 
recognisably obovate or 
lanceolate, and these characters 
may segregate as discrete traits 
in some crosses. However, in a 
segregating population, there 
may be a range of intermediate 
leaf shapes between the two 
illustrated on the right. In this 
case it may be sensible to make 
some measurements such as the 
lengths ‘a’, ‘b’ and ‘c’ as 
illustrated. The values b/a and 
c/a give some description of leaf 
shape and represent quantitative traits.   
 
A QTL analysis would seek to explain the variation in these measures 
according to some genetic model. An important point to note is that a 
QTL analysis is not solely a measure of location of trait determinants, 
but will tell whether the growth determinants responsible for 
characteristics b/a or c/a are shared. That is, even if we are not 
particularly interested in determining a map location for these 
determinants, we might want to know whether they can vary 
independently. Perhaps this is not so important for leaf shape, but for 
characteristics such as seed aroma and susceptibility to insect 

obovate lanceolate

c

b 
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spoilage the issue may become important before launching a breeding 
strategy. 
 
One simple way of looking at QTL mapping is to consider recombinant 
inbred or double haploid lines. These are all homozygous and can be 
used in replicated trials that can be very important for quantitative 
traits. For example it may be desired to measure field yield under 
drought stress, but the season may be wet. With RILs the experiment 
can be repeated, also multiple locations or randomized block trials 
can be undertaken. These are major advantages for the measurement 
of quantitative traits. If you look at de Vienne’s book you will see that 
he points out some disadvantages that also need to be considered. 
 
That said, let us consider a QTL analysis in an RI population. For 
each inbred line there is a measure of the trait quantity (vi) and an 
associated error term. We can then, for each marker in turn, 
subdivide the population according to the two allelic states for that 
marker and ask whether there is a difference in the mean and 
variance of v for the two contrasting sub-populations. If there is 
statistical evidence for such a difference then we have evidence for the 
association of the marker and trait.  
 
You have probably noticed that this single marker approach does not 
require a genetic map! That tells us that the single marker approach is 
missing some information. 
Each assay is like one of 
the graphs in the 
illustration, but it is clear 
from the illustration that 
the way in which the 
frequency distributions 
change along the linkage 
map that there is a sense 
of position for the 
determinant of the trait. 
Probably the differences 
seen are the consequence 
of allelic differences at a single position. The order of the markers 
along a linkage group is a refinement to the model of single locus 
control, and a second approach – Interval Mapping – seeks to use the 
model of the linkage map to test where the genetic control of the trait 
determinant lies. Note that this uses information from marker scores, 
marker order and interval length. All of these may be error prone so it 
is important to be sure of the map and data scores. It is more 
important to have good coverage of the map and reliable data than to 
have large numbers of markers. These factors should be taken into 
account in assembling a data set to be analysed. 
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11. Disequilibrium and Association mapping. 
 
11.1 Introduction 
 
Linkage analysis has been very successful in plants. However, it has 
disadvantages. The accuracy with which QTL can be located depends, 
among other factors, on the number of meioses that are sampled. In 
populations of lines derived from F2s and backcrosses, unless large 
numbers of lines are grown, the number of meiosis can be quite small. 
As a result, particularly for traits of lower heritability and for smaller 
QTL effects, precision is often poor. If this problem is bad in plant 
genetics, it is dire in human genetics: in spite of massive effort, the 
number of confirmed QTL detected for complex traits (ie those which 
do not follow simple Mendelian inheritance) is very small. Recent effort 
in human genetics has, therefore, looked for alternative methods to 
locate genes. A method showing great promise is to exploit 
unobserved, historical recombinations through linkage disequilibrium 
mapping, also called association mapping. Briefly, this process relies 
on historical events, particularly mutations and population 
bottlenecks, to generate linkage disequilibrium (LD) between QTL and 
markers. Over successive generations, this LD declines at a rate 
proportional to the recombination fraction, such that in the present, 
strong marker-trait associations imply close proximity of the marker 
to a QTL. 
  
This section describes the principles, methods and pitfalls of 
association mapping in more detail. First however, we need to 
establish some principles of population genetics to understand how 
LD originates and then decays. 
 
11.2 Population genetics and linkage disequilibrium 
 
11.2.1 Hardy-Weinberg equilbrium 
 
Population genetics is the study of gene flow over time in populations. 
The founding principal of population genetics was established in 1908 
and is now known after its co-discoverers as the Hardy-Weinberg 
equilibrium. Verbally, it can be stated as follows: 
 
“The hereditary mechanism, of itself, does not change allele 
frequencies.”  
 
An equivalent statement of the law would be: 
 
“In the absence of mutation, selection and chance effects, no evolution 
will  occur within a Mendelian population”. 
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These days, this law may seem self evident. When first describing it 
Hardy wrote: “I am reluctant to intrude in a discussion concerning 
matters of which I have no expert knowledge, and I should have 
expected the very simple point which I wish to make to have been 
familiar to biologists." 
 
Mathematically, the law amounts to saying that if the frequency of an 
allele in one generation is p, then the frequency in the next generation 
is also p.  
 
In addition, for a diploid organism, if mating is also at random, 
genotype frequencies are also constant from generation to generation, 
with the values: 
 
  AA     Aa    aa 
  p2  2p(1-p) (1-p)2 
 
These genotype frequencies will not apply to a species like Lablab 
however which does not mate at random but is an inbreeder. However, 
if the rate of inbreeding is constant from generation to generation, 
genotypes frequencies will still be constant. Also, the more 
fundamental principle that allele frequencies are constant in the 
absence of any force acting to change them still applies. 
 
11.2.2 Linkage disequilbrium 
 
Now consider two biallelic loci in a randomly mating population, with 
alleles A and a at the first locus and alleles B and b at the second. Let 
the frequency of an allele be described as px, where x is one of A, a, B, 
c. There are four possible gamete types AB, Ab, aB and ab with 
frequencies pAB, pAb, paB and pab. The frequencies of alleles and 
gametes at each loci can be set out in a contingency table: 
 
 
    B     b  total 

A  pAB    pAb     pA 
a  paB    pab  1-pA 

 
total  pB  1-pB    1.0 

 
From the Hardy-Weinberg law, we know that at equilibrium, pA in one 
generation equals pA in any other generation. The equivalent of the 
Hardy-Weinberg law for two loci is that at equilibrium: 

 
pAB = pA . pB 

 
Equally, pAb = pA.(1- pB), and so on for the other gamete types.  
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In words, we can say that the frequency of a gamete type is the 
product of the frequency of the alleles carried on that gamete. This is 
called gametic phase equilibrium if the two loci are unlinked or 
linkage equilibrium (LD) if the two loci are on the same chromosome. 
Commonly, the term linkage disequilibrium is used to describe any 
sort of disequilibrium, whether the loci are linked or not. For linked 
loci, the gamete types (AB, Ab, aB, ab) are more generally referred to 
as haplotypes. 
 
We define any departure from linkage equilibrium as: 
 

 D =  pAB - pA . pB 
 
Also 
 -D = pAb -  pA.(1-pB) 
 -D = paB - (1-pA).pB) 
  D = pab  - (1-pA).(1-pB) 
 
At equilibrium, D = 0. 
 
D is called the coefficient of linkage disequilibrium. Verbally, it is the 
difference in frequency between actual gamete types and the expected 
frequency at equilibrium. Note there is no requirement for D to be 
positive. For example, a deficiency in AB gamete types would make D 
negative. 
 
In the absence of equilibrium, frequencies of alleles and gametes can 
be written as follows: 
 
        B      b  total 

A  pAB  + D pAb   - D    pA 
a  paB   - D pab   + D 1-pA 

 
total           pB      1-pB   1.0 

 
In passing, note that a single parameter, D, is all that is required to 
account for the difference between actual and expected frequencies in 
this 2 x 2 contingency table. This illustrates why a 2 x 2 contingency 
chi-squared test has only 1 degree of freedom: it is testing the 
significance of a single parameter: D in this case. 
 
Actual and equilibrium frequencies are compared side by side below. 
 
     AB      Ab   aB         ab 
At equilibrium pApB  pA(1-pB)     (1-pA)pB           (1-pA)(1-
pB) 
No-equilibrium pApB +D      pA(1-pB) –D      (1-pA)pB -D       (1-pA)(1-
pB) +D 
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11.2.3 The interpretation of D 
 
The coefficient of linkage disequilibrium, D, is hard to interpret. The 
values it can take are constrained by allele frequencies. A little trial an 
error will soon establish that certain combinations of allele frequency 
and D range will result in impossible negative haplotype frequencies. 
In fact, the maximum value of D, 0.25, is only possible at allele 
frequencies of pA = pB = 0.5. The minimum value, which also requires 
allele frequencies of 0.5 is -0.25. At other frequencies D must be 
greater than the maximum of -pApB and -(1-pA)(1-pB) and smaller than 
the minimum of  pA-pApB and pB-pApB. 
 
To make D more easy to interpret two transformations are used to 
rescale it:  
D’ and |D’| and Δ² or r2. These will be discussed after they are 
defined:  
 
D’  If D < 0,  D’ = D/ maximum {pApB, (1-pA)(1-pB)} 
 

If D > 0, D’ = D/ minimum {pA(1-pB), (1-pA)pB} 
 
 

Δ² or r2   Δ² = D2/[pApB(1-pA)(1-pB)] 
 

 

D’ ranges from -1 to +1. Generally therefore, it is the absolute value of 
D’  - |D’| that is quoted. 
 
Δ² ranges from 0 to 1. It can be shown that it is the correlation 
coefficient between the two loci if the alleles are given numeric codes. 
 
Both |D’| and Δ² have the advantage that they range from zero - 
representing perfect equilibrium to one - representing high linkage 
disequilibrium. |D’| will take a value of one when, of the four possible 
haplotypes, only three are observed. Δ² will take a value of one when, 
of the four possible haplotypes, only two are observed. In this case, 
the first locus is a perfect predictor of the second locus, and allele 
frequencies at the two loci will match. Since Δ²  is a measure of 
predictability, it is useful for deciding appropriate marker densities 
and in studying the power of association to detect QTL. Figure 1a 
shows a plot of D’ against Δ² for some simulated arbitrary values of pA, 
pB and D. Note that 
for any value of |D’|, Δ² ranges  from zero up to that value. Δ² is never 
greater than |D’|. |D’| is more likely to take high values at extreme 
allele frequencies. This effect can be seen more clearly in figure 1b, 
which plots the data from figure 1a after removing loci with allele 
frequencies less than 0.25. It can be seen that at intermediate allele 
frequencies, |D’| and Δ² measure much the same thing. 
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Figure 1

Comparison of measures of LD measures
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11.2.4 The decay of linkage disequilibrium with time 
 
Linkage disequilibrium is generally unstable: genetic recombination 
causes gamete frequencies to change towards their equilibrium 
values. Following random mating, in the absence of mutation, 
selection and chance effects  - the same conditions required for 
Hardy-Weinberg equilibrium – the value of D in the next generation is: 
 
  D1   =   D0 (1-θ) 
 
And therefore 
 
  Dt   =   D0 (1-θ)t 
 
θ is the recombination fraction between the two loci. 
t is the number of generations since the start. 
 
Linkage disequilibrium therefore decays quicker at higher 
recombination frequencies. For unlinked loci, the decay is at a rate of 
½ per generation. 
 
For close linkage and larger values of t, to a good approximation:  
 
  Dt   ~   D0 e-θt 
 
Thus recombination frequency and time are interchangeable – a 
halving of recombination fraction is compensated for by doubling the 
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number of generations. Figure 2 shows the decay in linkage 
disequilibrium over time at a series of recombination fractions. 
 

Figure 2
Decay of linkage disequilibrium with time
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Linkage disequilibrium decays very rapidly in the absence of linkage 
but persists for a very long time with very tight linkage. At θ = 0.0005 
the value is still 0.61 after 1000 generations.  
 
11.2.5 The effect of inbreeding 
 
In inbreeding species, the decay in linkage disequilibrium over time is 
reduced. In the most extreme case, if the population consists of a set 
of inbred lines with no intercrossing, there is no opportunity for 
recombination and linkage disequilibrium is fixed. If some outcrossing 
occurs however, linkage disequilibrium will decay although at a slower 
rate. The effect of inbreeding in pedigree breeding programmes is an 
interesting example. Here, because breeders are making crosses, there 
may be more recombination occurring in the domesticated crop than 
in nature. Assuming that all varieties are fully inbred, the formula for 
the rate of decay of LD 
 
  Dt   =   D0 (1-θ)t 
 
will still apply provided the definitions of θ and t are modified. t is no 
longer the generation time, but the cycle time: the time taken to 
produce a set of progeny lines from set of parents. θ is no longer the 
recombination fraction per generation, but the cumulative proportion 
of recombinants occurring from one cycle to another. This is 2r/(1+2r) 
where r is the true, generation-wise recombination rate. For closely 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     140 

linked markers (<2 cM say), 2r/(1+2r) ~ 2r. With a cycle time of eight 
years (poor by current standards but reasonably accurate historically), 
the rate of decay of LD per generation is then roughly: 
 
  Dt   ~   D0 e-rt/4 
 
LD is decaying at about a quarter of the rate found in a truly 
randomly mating population with the same generation time. Of course 
this figure will be perturbed by the overlapping generation structure 
that breeders impose but it can act as a guide: in spite of the 
inbreeding nature of the many crop plants, LD is still expected to 
decay reasonably rapidly among cultivated varieties. 
 
11.2.6 Linkage analysis and LD mapping compared 
 
Linkage analysis, in its crudest form, locates a QTL by the increase in 
signal strength observed as markers and QTL get closer. This can be 
viewed as a test for the magnitude of D between the QTL and the 
marker locus. However, to locate QTL accurately in an F2 is difficult. 
Precision depends on how well we can detect differences in 
recombination fraction between QTL and adjacent markers. For 
example, with markers on top of the QTL (θ = 0), 1 cM away (θ ~ 0.01) 
and 10cM away (θ ~ 0.1) the proportion of non-recombinant 
chromosomes is 1, 0.99  and 0.9 respectively. Detecting a difference in 
signal strength between these markers will require a large experiment 
unless the QTL is of large effect. Suppose now, that the F2 itself was 
randomly mated for 100 generations. The non recombinant 
chromosomes would be present at a frequency of 1, 0.36 and 0.0 
respectively and we would be able to locate QTL quite precisely. Of 
course, carrying out 100 rounds of random mating in an F2 is 
impractical. However, in natural populations and non-experimental 
populations of crop plants, there will have been many rounds of 
recombination historically. If something in the past also generates 
linkage disequilibrium between QTL and marker loci, then mapping 
experiments could be carried out directly in non-experimental 
populations. We need, therefore, to consider the causes of linkage 
disequilibrium.  
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11.3 Causes of linkage disequilbrium 
 
11.3.1 Mutation 
 
Consider a single polymorphism with two alleles, A and a, segregating 
in any reasonably large population. Suppose a new mutation, B -> b 
say,  occurs somewhere on a chromosome carrying the A allele. In the 
population as a whole there will be three haplotypes: 
 
AB with a frequency very close to pA 
aB with a frequency very close to 1-pA 
Ab the new mutant, carried on a single chromosome 
 
There are four possible haplotypes in total, but only these three are 
observed, so |D’| = 1. In successive generations, assuming that the 
new b mutation is not lost from the population by drift but ultimately 
rises in frequency, the missing haplotype, ab, will be created by 
recombination. This can take a very long time for closely linked 
markers. For the majority of markers available for genotyping, 
mutation must have occurred a long time ago – many generations are 
required for allele frequencies to rise from a single copy to a frequency 
which makes genotyping worthwhile. The levels of linkage 
disequilibrium attributable to mutation will therefore only be high 
among very closely linked markers (or markers and QTL).  Provided a 
sufficiently high marker density can be achieved, this situation is very 
favorable for association mapping. 
 
In humans, it is common to find values of |D’| equal to 1 among very 
closely linked markers, often accompanied by high values of Δ². This 
indicates that little or no recombination has occurred among these 
markers. The pattern of LD in crop plants is less clear – there is less 
data available. Data is beginning to accumulate however. Among wild 
populations of Arabidopsis, an extensive survey has revealed that LD 
decays quickly – within 50 kb  - even though this is an inbreeding 
species. (Nordborg et al. 2005). 
 
11.3.2 Population bottlenecks, founder effects and drift. 
 
A population bottleneck is an extreme reduction in population size. 
This might occur as a result of disease nearly wiping the population 
out, an environmental disaster or some other catastrophic event. A 
particular form of population bottleneck, a founder effect, occurs 
when a species colonizes a new niche or environment. Initially the 
population size can be extremely small – for a wild species only a few 
seeds might be carried to an island. For a crop species, only a few 
seeds or transplants may be introduced to establish the crop in a new 
country. Any restriction in population size will generate LD. An F2 can 
be regarded as an extreme case: the population is established from 
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two gametes a generation ago. As a result, levels of LD are at a 
maximum. However because linkage analysis occurs within a 
generation of the founding event, there has been little opportunity for 
LD to decay and it is hard to locate QTL accurately. Generally, the 
magnitude of LD generated by a bottleneck or founder effect is less 
extreme, but is still sufficient for association mapping. In crop plants, 
the activities of plant breeders themselves can result in population 
bottlenecks  - the advent of a new disease or desired agronomic trait 
such as reduced height may result in a period of breeding in which 
only a small number of parental lines are used, or one or two lines are 
used very extensively.  
 
In fact, any finite populations size generates some degree of LD, in the 
same way that genetic drift always causes some change in allele 
frequency, whatever the population size. For a population of constant 
size, a steady state is set up in which the expected value of Δ² is: 
 

Ε(Δ²) = 1/(1+4Neθ) 
 
Ne is the effective population size (not defined here). It is usually 
smaller than the actual populations size as a result of variability in 
true population size over generations and of variability in fertility from 
plant to plant.  
 
11.3.3 Selection. 
 
Selection on a trait will change allele frequencies at QTL determining 
the trait. In addition, allele frequencies will change at markers closely 
linked to the QTL. This is called hitchhiking. Its effect is to generate 
LD among markers around the region of selection. A region of 
increased LD, often accompanied by a reduced amount of 
polymorphism compared to other genomic regions, can be a signature 
of selection – a sign that a particular region has been subjected to 
selection pressure. Such regions have been identified in maize and 
Arabidopsis.  
 
11.3.4 Migration and population admixture 
 
If two populations, formerly isolated, are brought together, LD can be 
created. This is a result of allele frequency differences between the two 
source populations, which may have arisen through drift or through 
selection. For example: 
 
haplotype  pop 1  pop 2  combined expected
 difference 
AB   0.04   0.64     0.34     0.25      0.09 
Ab   0.16   0.16     0.16     0.25     -0.09 
aB   0.16   0.16     0.16     0.25     -0.09 
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ab   0.64   0.04     0.34     0.35      0.09 
 
In population 1, pA = 0.2 and pB = 0.8. In population 2, the 
frequencies are reversed. Within each population there is no linkage 
disequilibrium (for example paB = pa.pB = 0.2 x 0.8 = 0.16 in 
population 1). 
 
If the two populations are intermixed, without any crossing, the 
haplotype frequencies are just the average of the separate population 
frequencies. However, the allele frequencies are averaged too, such 
that pA=pB=0.5 and linkage disequilibrium is generated. In fact, D = 
0.09, |D’| = 0.36 and Δ² = 0.13. 
 
With more modest rates of migration or gene flow from one population 
to another, the generation of disequilibrium is less severe. Provided 
migrants intermate with the host population, the disequilibrium will 
decay in successive generations. 
 
Migration can be either an asset or a problem in association mapping. 
If  population admixture is known to have occurred and if markers are 
available which discriminate, even imperfectly, between the two 
parental populations, then these markers can be used to map traits 
for which the populations differ. This is “admixture mapping”. It is the 
population based equivalent of mapping in an F2: instead of two 
parental inbred lines, there are two parental populations. In human 
genetics there is considerable interest in this method, particularly in 
the USA:  Afro-Americans are known to have about 10% European 
ancestry and are therefore a suitable group in which to map traits for 
which Africans and Europeans differ. In plants, there are no 
published accounts of admixture mapping, but suitable admixed 
populations may exist, for example in crosses between Flint and Dent 
maize or between Indica and Japonica rice. 
 
Generally, migration is a problem. If we are trying to exploit linkage 
disequilibrium arising from mutation or an ancient bottleneck, recent 
migration introduces long range LD which can mask the marker-trait 
associations arising from close linkage which we wish to detect. 
 
11.3.5 Summary 
 
Linkage disequilibrium can arise from many causes. Current evidence 
shows that LD is generally higher between closely linked loci and that 
it declines with distance. However, instances of longer range LD do 
occur. There is therefore a major risk that associations between a QTL 
and a marker are not the result of close proximity but may arise from 
other causes which have not been taken into account. In practice, in 
any population, forces generating new LD and the decay of existing LD 
will both be occurring. Patterns of LD can therefore be complex. The 
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requirement for successful association mapping is to detect and 
correct for long range associations arising from recent events while 
locating close range LD arising from mutation and historical 
population bottlenecks. 
 
Fortunately, recent research has supplied methods with help in this. 
These are introduced in the next section.  
 
 
11.4 Experimental methods for association mapping 
 
11.4.1 Association mapping in experimental populations 
 
Linkage mapping and association mapping are not distinct methods. 
Both work by exploiting recombination. One relies on the detection of 
contemporary meioses in controlled crosses. The other relies on 
inferring historical meioses in uncontrolled populations.  
 
In 1995, Darvasi and Soller proposed the Advanced Intercross as a 
means of improving the precision of QTL location. Here, F2 individuals 
are intermated for several generations before mapping. The successive 
rounds of recombination result in additional decay of LD. As a result, 
the precision of QTL location is increased. This approach has been 
extended to include populations set up with multiple parents and to 
take into account multipoint marker information (Mott et al. 2000) In 
mouse for example, a population originating with eight founder inbred 
lines has been intermated for at least 60 generations. This has 
resulted in individuals composed of very small tracts of chromosomes 
originating from multiple founders, which can be traced through a 
high density microsatellite map. In crop plants, the advantage of this 
approach is that a population can be set up containing lines which 
capture the majority of the variation available in the current breeding 
pool. Mapping would therefore be of direct relevance to lines derived 
from this pool. Although it would take time before such a population 
was sufficiently developed for mapping to start - probably around five 
years - the existence of such resources, which are cheap to set up and 
increase in value each generation, would be of great benefit to future 
mapping and breeding experiments. 
 
11.4.2 Mapping in uncontrolled populations. I. The Transmission 
Disequilibrium Test 

 
The ability to map QTL in uncontrolled or non-experimental 
populations - collections of breeders lines, old landraces, samples 
from natural populations -  has great potential. Firstly, populations 
may exist in which LD decays more rapidly than in controlled crosses. 
Secondly, data sets may exist which have already been extensively 
phenotyped. This saves time and money. As we have seen, the 
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challenge is to distinguish QTL–marker associations arising from LD 
between closely linked markers from spurious background 
associations. The first and most robust method of achieving this was 
the transmission disequilibrium test, or TDT, introduced by Spielman 
et al. in 1993. 
 
The TDT is a means of detecting linkage in the presence of 
association. Neither linkage alone, nor association alone, will generate 
a positive result. At its simplest, multiple families of the form given in 
figure 3 are collected.  
 

 
 
The single progeny individual is usually selected for an extreme 
phenotype. In human genetics, for which the test was originally 
devised, this typically means they are affected by the disease under 
study. However, they can be selected for extreme values of any 
quantitative trait. Parents and progeny are genotyped, but only 
parents heterozygous for the marker under study are included in the 
analysis. From each parent, one allele must be transmitted to the 
progeny and one allele is not transmitted. Over all families, a tally is 
made of the number of transmissions and non-transmission. In the 
absence of linkage between QTL and marker, the ratio of transmission 
to non-transmission is expected to be 1:1. However, in the presence of 
linkage between the QTL and marker, this transmission ratio will be 
distorted from Mendelian expectation to an extent which depends on 
the strength of LD between the marker and QTL. This distortion is 
detected in a simple chi-squared test. The test can be regarded as a 
test for linkage which has increasing power with increasing LD. The 
power of the test also depends on how efficient selection of the 
extreme progeny has been in driving segregation at the QTL away from 
a 1:1 ratio. 
 
This elegant test is extremely robust to the effects of population 
structure. It has been used extensively in human genetics and has 
been extended to study haplotype transmissions, quantitative traits 
and the use of information from extended pedigrees. It has two serious 
disadvantages. Firstly, it is extremely susceptible to an increase in 
false positive results generated by genotype error and biased allele 
calling. Secondly, a lot of phenotyping and genotyping effort is wasted 
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since only heterozygous parents are included in the analysis and three 
individuals are genotyped for each phenotype. As a result, its use in 
human genetics has declined over the last few years. Nevertheless, at 
some stage soon, its use in plant genetics will be published: it is 
already being used in the commercial sector.  
 
Note that transmission is studied over a single generation. In plants, 
parental lines and progeny lines are usually separated by several 
generations. In this case the TDT is still a valid test, but is no longer 
completely robust: the process of pedigree breeding may introduce 
population structure. 
 
11.4.3 Mapping in uncontrolled populations. II. Genomic control 
 
Genomic control is a method of learning to live with background LD. It 
assumes that the effects which generate LD affect the whole genome 
rather than just specific regions. For example, migration or population 
admixture will generate LD between a trait and markers distributed 
over the whole genome. We can turn this process on its head. If we 
have sufficient markers distributed over the genome, we can detect 
population structure by studying the extent to which the distribution 
of the test statistic for association, estimated empirically from these 
markers, differs from the expected null distribution.  To estimate the 
empirical distribution accurately would require many markers. 
However, it turns out that all we need to do is compare the observed 
mean test statistic with its expected value: 1.0 for a 1 degree of 
freedom chi-squared test. For this, we only need about 50 markers. 
Thus, if the average chi-squared at a set of 50 genome wide control 
markers is much greater than one, population structure is indicated.  
 
Now assume that in addition to the these control markers, we also 
have one or more candidate loci which we wish to test for association 
with our trait. Our null-hypothesis is no longer that there is no 
association between trait and marker. Rather it is that there is no 
association over and above that expected as the result of population 
structure. To test this, we divide the observed chi-squared by the 
average value of chi-squared at the control markers. We can look up 
the p-value associated with the adjusted chi-squared in the usual 
manner.   
 

χ2 genomic control =        χ2observed 
    __________________________ 

  
     Σ (χ2 null markers / n) 
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The procedure is illustrated in figures 4 and 5.  
      Figure 4 

 
      Figure 5 

 
The proof that this remarkably simple adjustment is valid is difficult 
(Devlin and Roeder 1999, Bacanu et al. 2002). For quantitative traits, 
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the difference between trait means for each marker class is usually 
tested in a t-test. Provided the number of observation is reasonably 
large, if t is squared, it can be treated as a 1 degree of freedom chi-
squared and the genomic control procedure can still be carried out. 
More recent work has suggested that greater accuracy is achieved by 
treating the test statistic as an F test with 1 df in the numerator and 
degrees of freedom in the denominator equal to the number of control 
loci (Devlin et al. 2004). 
 
Genomic control is valid for any single degree of freedom test. Around 
50 control markers are required. Preferably, these should loosely 
match the test marker in allele frequency. They should also be of a 
similar type – different types of markers may respond differently to the 
various forces that shape patterns of LD. It would not be wise, for 
example, to use microsatellites as control markers for SNPs.  
 
More sophisticated versions of genomic control are also available too. 
With large numbers of candidate polymorphisms to test, the majority 
are not expected to be genuinely associated with the trait. In this case, 
procedures (invoking Bayesian statistics) and software are freely 
available to use the candidate markers as their own controls.  
 
Example of genomic control 
 
200 wheat varieties were scored for gain hardness and yield. A SNP at 
the pinb gene - a known major gene for grain hardness - was 
genotyped, together with 58 randomly distributed SSAP markers. 
Results are below: 
 
          p-value at pinb 
trait    no genomic control with genomic control 
hardness    0.000    0.000 
yield    0.723    0.865 
lodging   0.008    0.053 
 
 
Significance for grain hardness is detected with or without genomic 
control. The result for yield is relatively unaffected. The significant 
association with lodging, almost certainly a result of population 
structure, is lost after genomic control is applied. 
 
11.4.4 Mapping in uncontrolled populations. III. Structured association 
 
Structured association provides a sophisticated approach to detecting 
and controlling population structure. Again, additional markers are 
required which are randomly distributed across the genome. Just as 
for genomic control, the factors that generate population subdivision 
and structure are assumed to operate over the whole genome. In the 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     149 

short term. these factors will have generated gametic and linkage 
disequilibrium among unlinked markers and loosely linked markers 
which has not yet had a chance to decay. In the simplest case, we 
may have unwittingly sampled individuals from several populations. 
In the absence of any intermating between populations, we would 
expect linkage equilibrium within these populations, but not across 
the whole dataset. If we knew how many populations were present, 
then by trial and error we could allocate individuals to them such that 
LD within populations was minimised. We could then carry out 
separate association tests within each population and pool the results. 
This is the approach that structured association takes. First, 
individuals are allocated to populations, then association testing is 
carried out within populations. 
 
The allocation of individuals to populations must take into account 
two additional factors.  
 
Firstly, we often do not know how many populations there are. 
However, reasonable estimates can frequently be attained: the 
allocation process can be repeated for different numbers and that 
which best fits the dataset can be selected. Thus it is possible to 
estimate the population number in addition to estimating to which 
population each individual belongs. Nevertheless, deciding on 
population number can be problematic: many workers report 
difficulties, and the manual accompanying the software acknowledges 
that the process can be somewhat heuristic. 
 
Secondly, individuals from different populations have usually 
interbred, often several generations ago. The progeny of these hybrid 
individuals cannot be allocated to a single population. However, it is 
possible to estimate the proportion of ancestry attributable to each 
population, while still minimising the extend of LD within these 
populations.  
 
It is not possible to simply consider all possible partitions of 
individuals (and parts of individuals) into populations and pick the 
best. The computer program STRUCTURE uses sophisticated and 
computationally intensive methods to carry this process out. The 
software is easy to run, but care must be taken in setting the multiple 
input parameters required to run it. Running STRUCTURE will be an 
exercise for one of the practical sessions. 
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In practise, this method of allocating individuals to subpopulations 
has been enormously successful. The original paper describing the 
technique was published in 2000 and at the time of writing has been 
cited 565 (scholar.google.com). In crop plants, in addition to use in LD 
mapping, it is being used to study population subdivision within 
cultivated germplasm, processes in crop domestication, and 
relationships between landraces, wild species and modern varieties.  
 
 
11.4.4.1 Example of STRUCTURE 
 
500 old and modern European wheat varieties were sampled to study 
genetic variation within the group. As part of this study, 42 SSR 
markers were genotyped on all lines. Varieties were allocated into 10 
subpopulations. Many lines showed high membership of a single 
population but most lines did not belong exclusively to a single 
subpopulation. Figure 6 is a histogram of maximum group 
membership. This bimodal distribution shows that roughly one third 
of the lines belong predominantly, but not exclusively, to one or other 
of the 10 populations, but two thirds of lines are highly admixed.  
 
 
    Figure 6 
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For some of the 500 lines, pedigree information was available. Among 
the lines with very high group membership, 46 parent-offspring pairs 
were identified. Group membership of these lines can be summarised 
as follows: 
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            Observed    
Expected† 
parent and progeny allocated to same subpopulation  34         
5.8 
parent and progeny allocated to different subpopulations 12       
40.2 
 
† Expected numbers are calculated on the basis of the estimated size of the subpopulations. When the 

number of subpopulations is large, it is more likely that a random pair of lines will belong to different 
populations rather than to the same population. 

 
Many more parent-offspring pairs are allocated to the same population 
than expected. Predicted population membership is therefore genetic: 
it is transmitted from parent to offspring. This demonstrates that the 
method employed in STRUCTURE is working remarkably well in this 
dataset. 
 
After individuals are allocated to populations, the association test 
takes place within populations only. For categorical traits such as 
disease resistance, or grain hardness, this can be carried out with the 
companion program to STRUCTURE: STRAT. For quantitative traits, 
there is currently no specific software available. However, the test can 
be carried out by logistic regression. Here, the genotype data are 
treated as the Y variable and the X variables are the predicted 
population memberships and the phenotype. To treat the genotype as 
a numeric variable, individuals carrying a selected allele are coded 1, 
and those not carrying it are coded 0. (For non-inbred diploids, the 
coding would be 0,1,2, with 1 representing the heterozygous class.) 
 
During the model fitting process, the quantitative trait is fitted after 
the group membership effects. This process assesses the relationship 
between the quantitative trait and the marker, after adjusting the 
quantitative trait for any effects of group membership. (See the notes 
on R for the reasoning behind this approach.) The process of logistic 
regression is outlined in one of the practical sessions. 
 
11.4.4.2 Some practical considerations 
 
Association mapping in crop plants is a method whose use is 
beginning to increase. The resolving power of the method depends on 
how rapidly LD decays with distance. This will vary from species to 
species and from dataset to dataset. Patterns could be very different 
between populations of landraces, wild progenitors and modern 
cultivars. At the moment, there is very little data available in this area 
in plants: high densities of mapped markers and/or extensive 
sequence information is required to establish these patterns 
authoritatively. In human genetics, marker density is high enough, 
and decay of LD sufficiently rapid, that whole genome scans by LD 
mapping are now a reality. In crop plants, linkage analysis is 
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substantially easier than in humans and has been much more 
successful. However, the density of mapped markers in crop plants is 
quite low and genotyping costs are high. For these reasons it is hard 
to see LD mapping based whole genome scans of crop plants 
occurring in the foreseeable future.  However, there is a niche for 
these methods in saturation genotyping of existing linkage regions. 
This will provide useful replication studies of these regions, often in 
adapted germplasm, and more importantly it is likely to increase the 
precision with which QTL can be located. By similar reasoning, 
methods in association genetics are ideal for candidate gene studies. 
 
There are other advantages to using breeders lines or national 
collections of cultivars in association mapping experiments. Firstly, 
there is often a substantial collection of phenotypic data already in 
existence. Secondly, QTL discovery is carried out using germplasm of 
direct relevance to the crop, rather than in a sometimes esoteric F2 
specifically set up for that purpose. 
 
11.5 Analysis methods 
 
The standard methods of analysing data for genetic association are 
very simple: the contingency chi-squared test for categorical traits and 
the t-test for quantitative traits. The preceding section discussed 
methods to control for population structure. In this section we 
mention some other problems of analysis, which have been glossed 
over so far. 
 
11.5.1 Multiple alleles 
 
In the absence of population structure, multiple alleles can be tested 
collectively for association by using a 2 x N contingency table for 
categorical traits and by an analysis of variance for quantitative traits. 
However, if many of the alleles are rare, these methods will loose 
power. A very rare allele adds one degree of freedom to the numerator 
of the test. It has virtually no chance of contributing towards a 
statistically significant result itself, but raises the threshold of the test 
statistic required for statistical significance. The test therefore looses 
power. For this reason, rare alleles should be pooled, or empirical 
significance tests should be used instead of looking up the p-value in 
tables.  
 
A marker with multiple alleles cannot be tested in a t-test or a 2 x 2 
contingency chi-squared test and so cannot simply be used in 
structured association or genomic control. The simplest method of 
testing is to recode a marker with N alleles into N pseudo-biallelic 
markers: where for each marker in turn, a pseudo marker is 
generated in which the two states are original-allele-present and 
original-allele-absent. These pseudo-markers can then be treated by 
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standard methods. Some form of adjustment for multiple testing is 
required, however. 
 
11.5.2 Haplotype analysis 
 
Analysis of haplotypes for association has two problems. Firstly, there 
are typically more than two haplotypes and we face the same problem, 
with the same solutions, as for multiple alleles. Secondly, it is often 
difficult to decide how to define haplotypes for analysis. For example, 
with six ordered SNPs, there are 20 contiguous combinations of SNPs 
with 124 possible haplotypes in total. This begins to present a serious 
multiple testing problem. There are many possible approaches to 
haplotype analysis. Within the scope of this manual, it is not possible 
to go into detail about them all. A brief overview of the most common 
approaches is given below. For the sake of brevity, we shall assume 
that all haplotypes are made up of biallelic SNPs. 
 

1) Treat haplotypes as multiallelic single markers. 
 
2) Ignore haplotypes and analyse the SNPs jointly in an 

analysis of variance. Interactions between SNPs can also be 
tested. These test for a haplotype effect over and above any 
effect attributable to the single SNPs. A simple example is 
given in the guide to R.  

 
3) Assign evolutionary relationships to the haplotypes and take 

these into account during the analysis procedure. The more 
closely related the haplotypes, the more likely they are to 
share any QTL alleles, so the more disequilibrium they 
should display. For small numbers of SNPs, with no 
recombination, these sorts of patterns can be established by 
eye: a simple measure of the distance between two 
haplotypes is the number of mutations by which the two 
differ. Software is available which implements these types of 
analyses.  

 
4) Look at patterns of linkage disequilibrium among the SNPs to 

see if there are contiguous blocks among which little or no 
recombination has taken place. Software exists  to identify 
these blocks, but they are also often easily identified by 
creating a matrix of |D’| or Δ² in Excel and applying some 
conditional formatting. SNPs within each block are then 
analysed as an independent set. 

 
5) Reduce the number of SNPs required for inclusion in a 

haplotype analysis by selecting tagging SNPS (tSNPs). The 
strength of LD can be so high that many SNPs in a region, 
often over half, are redundant in the sense that their 
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genotype can be accurately predicted on the basis of linear 
combinations of the remaining SNPs. Equally, haplotypes are 
often adequately tagged by only a few of the SNPs they carry. 
Software exists to identify these tagging SNPs, for example 
SNPtagger 
http://www.well.ox.ac.uk/~xiayi/haplotype/index.html. The 
identification of tagging SNPs can be used to reduce the 
number of SNPs in an analysis and so potentially increase 
power. It can also be used to save on genotyping costs: if 
tagging SNPs are identified in an initial survey of variation 
there is no need to genotype all SNPs in the future. 

 
Clearly there are many possible approaches and methods, and 
research in this area is continuing. Choice, to some extent, depends 
on personal preference and familiarity. In any analysis however, it is 
recommended that the SNP by SNP analysis is included, that LD 
patterns among the SNPs are studied and that haplotype frequencies 
are estimated before any more sophisticated complex analyses is 
attempted. 
 
11.5.3 Effects of allele frequency 
 
Linkage disequilibrium generally declines with distance. However, 
even if a region is saturated with markers at a very close spacing, 
there is no guarantee that a QTL will be detected: we must also take 
into account allele frequencies at markers and QTL. If all our markers 
have allele frequencies close to 0.5, but the QTL is at a frequency of 
0.1, the power to detect association will be reduced compared to the 
optimum case where allele frequencies at markers and QTL match. 
When selecting SNPs therefore, it is wise to keep an eye on the 
distribution of allele frequencies. To cover a broad spectrum of allele 
frequencies at the QTL, it is possible that a haplotype analysis or the 
use of multiallelic markers would be advantageous. This is not certain 
however, but depends on the evolutionary history of the region.  For 
example, the high mutation rate of SSRs may make them ineffective in 
detecting ancient polymorphism at QTL. 
 
11.6 Results in practice in crop plants 
 
The first use of linkage disequilibrium to map a QTL in an 
unstructured population was in maize (Thornsberry et al. 2001). This 
group used structured association to confirm that polymorphisms in 
the dwarf8 gene were associated with flowering time in a set of 92 
maize inbred lines. 141 SSR markers were used to partition these 
lines into three subpopulations. 
 
In subsequent years, association genetics approaches have been 
carried out, or advocated, in a range of crops including potato (Simko 
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2004), grass (Skøt et al. 2005), conifers (Neale & Savolainen 2004), 
barley (Kraakman et al. 2005) and wheat (Breseghello & Sorrells 
2005). The wheat and barley papers report successful use of 
collections of cultivated varieties for mapping. 
 
All these papers have relied on structured association. No published 
work, to date, has used genomic control. Although it is difficult to 
argue with success, there may be problems in applying this method to 
crop plants, in particular to collections of cultivars. In samples of 
such lines, it is possible that the predominant cause of population 
structure is the complex interrelationship between descendant and 
ancestral lines, both of which may be present. In this case, it is less 
clear that STRUCTURE is the correct tool for the job. Under these 
circumstances, genomic control may be a more effective method. 
However, to the best of our knowledge, the only group to have used 
genomic control as a method works within a commercial company, 
and they are not publishing their results. There are clearly many 
opportunities for research and development in this exciting area of 
crop genetics. 
 
11.7 Appendix – software and resources 
 
11.7.1 Software 
 
The software for structured association is at: 
http://pritch.bsd.uchicago.edu/software.html 
 
The software for genomic control (written in R) is at: 
http://wpicr.wpic.pitt.edu/WPICCompGen/genomic_control/genomic
_control.htm 
 
Software for multiparent advanced intercross lines: 
http://www.well.ox.ac.uk/~rmott/happy.html 
 
SNPtagger: haplotype tagging software: 
http://www.well.ox.ac.uk/~xiayi/haplotype/index.html 
 
A vast array of software for genetic analysis is available from  
http://linkage.rockefeller.edu/soft/ 
 
 
11.7.2 General references available for free downloading 
 
For anyone wishing to know more about population genetics, an 
excellent text book by J Felsenstein is available at: 
http://evolution.genetics.washington.edu/pgbook/pgbook.html 
 
The Hardy paper which started it all is available on-line from: 
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http://www.esp.org/foundations/genetics/classical/hardy.pdf 
 
A good review of linkage disequilibrium in plants is: 
Flint-Garcia SA, Thornsberry JM, Buckler ES 4th. (2004) Structure of 
linkage disequilibrium in plants. Annu Rev Plant Biol. 54:357-74. 
http://www.maizegenetics.net/publications/LDinPlants.pdf 
 
A recent stunning review of the genetic structure of a model organism 
which illustrates what can be achieved with extensive molecular data 
is:  
  
Nordborg M, Hu TH, Ishino Y, Jhaveri J, Toomajian C, Zheng H, 
Bakker E2, Calabrese P, Gladstone J, Goyal R1, Jakobsson M, Kim S, 
Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, 
Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, 
Bergelson J (2005)  
The Pattern of Polymorphism in Arabidopsis thaliana. PLoS Biol 3(7): 
e196 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1135296 
 
 
Genomic control 
 
Devlin B, Roeder K (1999), Genomic control for association studies, 
Biometrics, 55:997-1004.  
 
Reich DA, Goldstein DB (2001), Detecting association in a case-control 
study while correcting for population stratification.  Genetic 
Epidemiology, 20:4-16 
 
Bacanu S-A, Devlin B, Roeder K (2002), Association studies for 
quantitative traits in structured populations, Genetic Epidemiology, 
22:78-93 
 
Devlin B, Bacanu S-A, Roeder K (2004), Genomic control in the 
extreme, Nature Genetics, 36:1129-1130 
 
 
Structured association 
 
Pritchard JK, Stephens M, Donnelly P (2000), Inference of population 
structure using multilocus genotype data, Genetics 155: 945-959 
 
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000), 
Association mapping in structured populations, American Journal of 
Human Genetics  
67:170-181 
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Falush D, Stephens M, Pritchard JK (2003) Inference of population 
structure using multilocus genotype data: linked loci and correlated 
allele frequencies. Genetics 164:1567-1587 
 
Advanced Intercross lines 
 
Darvasi A, Soller M (1995) Advanced Intercross Lines, an 
Experimental Population for Fine Genetic Mapping Genetics 
141:1199-1207 
 
Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for 
fine mapping quantitative trait loci in outbred animal stocks PNAS  
97: 12649-12654  
 
Mott R, Flint J (2002) Simultaneous Detection and Fine Mapping of 
Quantitative Trait Loci in Mice Using Heterogeneous Stocks Genetics 
160:1609-1618 
 
Admixture mapping 
 
Smith MW, O’Brein SJ (2005) Mapping by admixture linkage 
disequilibrium: advances, limitiations and guidelines. Nature Reviews 
in Genetics 6: 623-632 
Transmission disequilibrium test 
 
Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for 
linkage disequilibrium: the insulin gene region and insulin-dependent 
diabetes mellitus (IDDM) American Journal of Human Genetics 52:506-
516 
 
Applications in crop plants 
 
Breseghello F, Sorrells ME (2005) Association Mapping of Kernal Size 
and Milling Quality in Wheat (Triticum aestivum L.) Cultivars. 
Genetics [Epub ahead of print] 
 
Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA 
(2004) Linkage disequilibrium mapping of yield and yield stability in 
modern spring barley cultivars. Genetics 168:435-46. 
 
Neale DB, Savolainen O (2004) Association genetics of complex traits 
in conifers.Trends Plant Sci. 9:325-30  
 
Simko I (2004) One potato, two potato: haplotype association mapping 
in autotetraploids Trends in Plant Science 9:441-448 
 
Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson 
R, Thomas ID, Chorlton KH,  Sackville Hamilton NR (2005) An 
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association mapping approach to identify flowering time genes in 
natural populations of Lolium perenne (L.) Molecular Breeding 15:233-
245 
 
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, 
Buckler ES (2001) Dwarf8 polymorphisms associate with variation in 
flowering time. Nat Genet. 28:286-9.   
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12. Appendices 
 
Appendix 1: CTAB: An alternative method for DNA preparation  
 
Genomic DNA extraction by the CTAB (Cetyltrimethylammonium 
bromide) method from the Laboratory of Molecular Biology 
see: 
Murray, M.G. and Thompson, W.F. (1980). Rapid isolation of high 
molecular weight    plant DNA. Nucleic Acids Research. 8: 4321-4325. 
 
Required Solutions and Preparation: 
 
 2 x CTAB buffer (5 0ml) 
2 % w/v      CTAB Powder (=1 g) 
100 mM        5.0 ml 1 M Tris-HCl pH8  
20 mM          2.0 ml of 0.5 M EDTA 
1.4 M            14.0 ml of 5 M NaCl 
Make the solution up to 50 ml with water 
  
Also have avalable: 
 
Add 4 ml of 2-Mercaptoethanol to each 1ml of 2xCTAB buffer required  
Chloroform  
Isopropanol  
1 M MgCl2 and 3 M NaOAc  
70 % EtOH  
1 x TE  
3 eppendorf tubes per sample  
Set water bath to 65°C  
 
Protocol 
 
1.    Place 3 medium-large Arabidopsis rosette leaves in an eppen tube 
2.    Homogenise leaves in the eppendorf tube 
3.    Add 500 µl of 2 x CTAB/Mercaptoethanol buffer, keep on ice 

between samples 
4.    Incubate samples in 65°C water bath for 1 hour 
5.    Add 500 µl of Chloroform 
6.    Mix samples by inverting for 5 minutes at room temperature 
7.    Centrifuge for 10 minutes at room temperature (15,000 rpm) 
8.    Collect clear upper layer (400 µl) in a fresh eppendorf tube 
9.    Add 250 µl of isopropanol and invert to mix 
10.   Incubate at room temperature for at least 10 minutes 
11.   Centrifuge for 10 minutes at room temperature (15,000 rpm) 
12.   Discard supernatant (use yellow tips) 
13.   Add 320 µl of 1 x TE and put samples on ice 
14.   Ensure pellet is fully re-suspended 
15.    Add 40 µl of 1 M MgCl2 and invert to mix 
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16.    Incubate on ice for at least 10 minutes 
17.    Centrifuge for 10 minutes at 4°C (15,000 rpm) 
18.    Collect supernatant in fresh eppendorf tube 
19.    Add 40 µl of NaOAc 
20     Add 250 µl of isopropanol 
21.    Incubate for at least 15 minutes at room temperature 
22     Centrifuge for 10 minutes at room temperature (15,000 rpm) 
23.    Discard supernatant (use blue tips) 
24     Add 1 ml of 70 % Ethanol and rotate tube to rinse pellet 
25     Centrifuge for 5 minutes at room temperature (15,000 rpm) 
26.    Discard supernatant (use blue tips) 
27     Quick spin at room temperature 
28.    Discard remaining supernatant (use yellow tips) 
29.    Vacuum dry for 3 minutes 
30.    Add 50 µl of 1 x TE and leave at room temperature for 10   

minutes 
31.    Store DNA samples at 4°C. 
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An alternative DNA preparation procedure 
 
 1     Collect ca. 10-20g of fresh tissue. (Leaves are easiest.) 
 
 2     Freeze this tissue in liquid nitrogen. It is best to keep the tissue 

cold until frozen. (In the mortar use just enough liquid nitrogen to 
keep the leaves frozen without making the mortar too cold.) 

 
 
Note: Liquid nitrogen poses problems because it is very cold, can 
expand explosively and excess nitrogen can lead to asphyxiation.  
In this method the main risk arises when collecting liquid nitrogen. 
The metal pipes delivering the liquid are extremeny cold and there is 
a risk of severe frostbite, especially if skin sticks to the cold metal: 
Wear Gloves and a Face Mask 
When cooling mortars by adding liquid nitrogen there is a risk that 
the mortar may crack. These may also become extremely cold 
generating a risk of frostbite. 
If the leaves have been frozen in a plastic centrifuge bottle, beware 
tha this may contain liquid nitrogen which will expand greatly on 
warming to room temperature: ensure that any expanding gas can 
be vented from the bottle. 

 
  3     Grind the frozen tissue in liquid nitrogen to a fine powder. 

 
Wear Gloves 

 
  4     Allow to warm slightly before adding at least 1 ml of extraction 

buffer [1x EB] per 1 g of tissue and mixing thoroughly. Do this as 
the colour changes at the edge i.e. gets a little darker. Some older 
methods used 3x SSC, this buffer when mixed with ethanol 
generates an oily orecipitate that can interfere with the ability to  
pellet a DNA precipitate (but does not cause a problem wilt 
spooling the DNA precipitate)  

 
  5     Add 0.1ml of 20% SDS per 10ml to give 0.2% final w/v (of added 

buffer) and mix by grinding. 
 
 6     Transfer to an lidded centrifuge tube tube and add ca. 15ml of 

chloroform/amyl alcohol (24:1) per 10g of tissue and mix 
thoroughly. (ie about an equal volume) 

 
It is best to transfer the aqueous mixture to a centrifuge and collect 
these on ice. When you have suficient to centrifuge take these to the 
fume hood for the addition of chloroform amyl alchol: Beware 
Chloroform is carcinogenic and should never be exposed to the air 
in the lab except within a fume hood. Wear Gloves and eye 
protection.  
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 7     Centrifuge at 4K for 10mins at room temperature (Denley bench 

top centrifuge). 
 
Balance the tubes by volume, do this for both phases. 

 
 8     The interface may be thick enough to allow the upper, aqueous, 

phase to be easily decanted off. Otherwise remove the aqueous 
layer carefully with a pasteur pipette.  

 
Do this in the fume hood with a spill tray. 
Dispose of the Chloroform/isoamyl alchol waste as a chlorinated 
solvent. 
Leave chloroform contaminated glassware / plasticware to dry in the 
fume hood prior to disposal. 

 
 9     Layer 2 volumes of 100% ethanol onto the decanted aqueous 

phase. 
 
10      Spool out DNA, (or pellet the precipitate as at 7)  dry, and 

redissolve in a minimal volume (eg 0.5 - 1.0 ml) of 1xTE. 
Sometimes the DNA does not stick to the glass or plastic rod, so 
you may need to spin it. 

 
11     Phenol extract with 0.5ml phenol, then take off the top aqueous 

layer. Occassionally I have known the phenol layer to be on top. 
 
Wear Gloves and eye protection. Keep the phenol stock double 
contained. It is a good idea to collect roughly the volume you will 
need in a wide topped vessel (eg a beaker); this minimizes the risk of 
knocking over the container when distributing the phenol. 
Note where the PEG mix for swabbing small phenol burns is 
located before you start. Check that there are other people 
around. If you use phenol after norml working hours, note where 
others are working lest you should need help. 
Dispose of phenol waste in a designated container, and phenol 
contaminated plastic as a separate item for independent disposal. 

 
12      Add 2 volumes of 100% ethanol and spool out the DNA, or 

precipitate by inversion. 
 
13      Wash in 70% ethanol and dry thoroughly. 
 
14      Redissolve in TE, and store at 4ºC or frozen at -20ºC 
 
1 x EB is:     500 mM NaCl, 100 mM Tris pH 8.0,  50 mM EDTA (pH 
8.0),  10 mM β Mercapto-ethanol (stock is 14M). 
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Prepare EB in the fume hood. 
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Appendix 2: Customer Developed FTA® Protocol 
 
FTA® Technology 
FTA Cards are impregnated with a patented chemical formula that lyses cell membranes and 
denatures proteins on contact. Nucleic acids are physically entrapped, immobilised and stabilised 
for storage at room temperature. 
FTA Cards protect nucleic acids from nucleases, oxidation, UV damage and microbial and fungal 
attack. 
Infectious pathogens in samples applied to FTA Cards are rendered inactive on contact. Samples 
collected on 
FTA Cards and enclosed in a multi-barrier pouch can be shipped through the post making them an 
extremely useful tool for field collection of blood, plants or other specimens. 
Indicating FTA Cards turn from pink to white on sample application and are recommended for clear 
or colourless samples. CloneSaverTM Cards are optimised for the room temperature collection and 
storage of plasmid DNA. 
 
Handling Instructions 
• Always wear gloves when handling FTA or CloneSaver Cards to avoid contamination of the 
Cards. 
• Store unused FTA or CloneSaver Cards in a cool, dry place (avoid light and excessive 
humidity). 
• Follow universal precautions when working with 
biological samples. 
• FTA or CloneSaver Cards are non-toxic to 
humans. 
Materials Required 
• Whatman FTA Card – Indicating FTA Cards are recommended for use with clear samples. If 
applied to non-Indicating Cards, circle the application spot with a ballpoint pen or pencil. 
• Whatman FTA purification reagent (cat no. 
WB120204). 
• T 0.1 E buffer (10mM Tris-HCl, 0.1mM EDTA, pH 8.0). 
• 2.0mm diameter Harris micropunch or other 
paper punch. 
• Proteinase K (10 mg/ml). 
• Ligation buffer (ATP 1 µL + Adaptors EcoRI and Mse1 + 1 unit of T4 ligase). 
• Restriction enzymes of choice. 
• Restriction ligation buffer (BSA + Water). 
• 2.0mL micro centrifuge tube with spin basket insert (e.g. Whatman VectaSpinTM). 
• Micro centrifuge capable of speeds up to 
12,000 x g. 
• 37oC and 60oC incubator. 
• Whatman FTA Protocol BD09 “Removing a 
Sample Disc from an FTA or CloneSaver Card for Analysis”. 
The FTA Principle – Get it Right First Time, Every Time 
FTA works by lysis of cells releasing the nucleic acid within the matrix of the Card, where the 
nucleic 
acid will be entrapped among the cellulose fibres. Therefore the key step to ensure success is 
getting 
DNA-containing cells into the FTA in the presence of moisture to activate the cell-lytic and 
DNAprotective chemicals. 
Controls 
It is recommended that internal standard controls are used during each analysis, these should 
include 
the following: 
• Negative control. 
• Positive control of a known DNA standard 
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solution. 
 
 

Whatman FTA Protocol BC01 
Processing Protocol for Downstream AFLP Analysis of 
Sample DNA on an FTA® Card 
Preparing an FTA Disc for DNA Analysis 
1. Take two sample discs from the dried spot following the instructions provided in the 
protocol entitled “Removing a Sample Disc from an FTA or CloneSaver Card for Analysis”, 
protocol number BD09. For plant samples a 2.0mm disc is recommended. 
2. Place discs in the bottom of a spin basket insert. 
3. Place the spin basket into a 2.0mL micro centrifuge tube. 
4. Add 500µL FTA purification reagent to the basket. 
5. Incubate for 1 minute at room temperature. 
6. Centrifuge at 6000 x g for 30 seconds. 
7. Remove the basket and decant used reagent. 
8. Return the basket to the micro centrifuge tube and repeat Steps 4-7 twice for a total of 3 washes 
with the FTA purification reagent. 
9. Add 495µL FTA purification reagent and 5µL Proteinase K (10mg/mL) to the FTA discs in the 
basket. 
10. Incubate for 1 hour at 60°C to remove residual Histones. 
11. Centrifuge at 6000 x g for 30 seconds. 
12. Remove the basket and decant used reagent/buffer. 
13. Return the basket to the micro centrifuge tube. 
14. Add 500µl of TE-1 buffer to the tube. 
15. Centrifuge at 6000 x g for 30 seconds. 
16. Remove the basket and decant used buffer. 
17. Return the basket to the micro centrifuge tube. 
18. Repeat steps 14-17 twice for a total of 3 washes with TE-1 buffer. 
19. Transfer discs to a new tube. 
20. Ensure that all the liquid has been removed before performing analysis. 
Restriction Step 
21. Add 2 restriction enzymes to the two FTA washed discs, a frequent cutter and a rare cutter 
(e.g. EcoRI and Mse1). 
22. Add 4 units of each in restriction ligation buffer (BSA + Water) for a final volume 30µL. 
23. Incubate for 1 hour at 37°C. 
24. Mix solution by pipette. 
Adapter Ligation Step 
25. Draw off 30µL of restriction buffer leaving the discs behind. 
26. Add to a fresh tube and add 10µL of ligation buffer (ATP 1µL, Adaptors EcoRI, MSE1 and 1 
unit of T4 ligase). 
27. Incubate for 3 hours or overnight at 37°C. 
Preamplification Step 
28. As per your standard protocols. 
Selective Amplification Step 
29. As per your standard protocols. 
Technical Help 
If you experience any problems with this protocol or wish to obtain additional information please 
contact Whatman Technical Service Team on the following regional numbers. Alternatively, please 
visit www.whatman.com for additional product information and further contact details. 
India +91 22 529 7035 – ask for technical service 
For Additional Protocol Information Please Visit 
www.whatman.com 
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Appendix 3: PCR-based marker primer sequences 

Wang et al 2004 Number  Accession Origin_EST Repeat 
Size 
(bp) Sequence FORWARD 5' to 3' Sequence REVERSE 5' to 3' 

Marker type SSR 1  AL370549 Medicago AC(11) 198 CGTCCCGATATCGTCAACTT CCACCACGACACATGTTACC
 2  BF650979 Medicago AT(28) 179 TTGTGGAAGGAACAACTCTGG GAAACCGGCATGATTAAGAC
 3  BF647899 Medicago AT(34) 266 CTGTCAACAAGGGGTTAGGTG TGCATCTACACCCAAAACAA
 4  AQ842128 Medicago TA(23) 209 TCAATGCTGATGCCATTTTC TCGCGTATTATAGCACAACA
 5  AI94357 Medicago TC(25) 183 TCTCAATTCCCCAACTTGCT TCTCCTTCACCCATCTTTGC 
 6  AW256794 Medicago TC(17) 192 GTCATCGAAGGCCAAAACAC GTTTGCGAGAAACACCGATT
 7  AA660488 Medicago TC(19) 194 TTGCATTATTTTCCTTTTTGACC AACCCACAACCCAAAAATCA
 8  AW584539 Medicago ACA(8) 204 TTGATGGGCAATACATGTCG GTTGAAGGAAGGTGGTGGTG
 9  AW586959 Medicago ACA(10) 222 CGAGAATCATCGTAATTGGACA CGAAGTTCAATGGCATCAGA
 10  AW775229 Medicago AGC(8) 222 TACTGGGGTGATGCAAGACA CAATACCCAGAGGAGCAGCT
 11  BF005356 Medicago AGG(8) 193 CTTCAATTGTCACCGCCTCT CTTATCTCGTCGTCCTCATCG
 12  BF649209 Medicago CCA(7) 200 AAGAGGCGGAGAGTGAGGTT GGTAAGAGAACGAGCGAGG
 13  AW684360 Medicago CGA(8) 183 TGTCATGGCGTCTCAAACC CCTAACGCAGGAGAAGGAGA
 14  AW685679 Medicago GCC(5) 197 ACCTCACCTCACCTCCCTTT GATCATCTGGGTTTCGCAAG
 15  AI974841 Medicago TCT(11) 169 TCACCACCAAACCCCAAC TGGCAATGCTACAAGCCTAA
 16  AW688216 Medicago AGTG(9) 211 CACGAGGGATTGTTGTTTGA GGAGCAGTAGGGTTGCATCT
 17  AW127626 Medicago GTTT(7) 191 CATTTTGAAGGAAGGAAGAAGG ATTTGGAAGCGGAATGTGAA
 18  AW688861 Medicago CAACT(7) 195 TTGTTGTGTGGCTTCTTTGG AAACCAACCACCTGTGTTGA
 19  AG81 Soybean AG(13) 105 ATTTTCCAACTCGAATTGACC TCATCAATCTCGACAAAGAAT
 20  AW186493 Soybean CTT(13) 219 GCGGTGATCCGTGAGATG GCGGAAAGTAGCACCAAGAG
 21  GMENOD2B Soybean AT(17) 164 TAGGCAAAAGACTAAAAGAGTA GCATGTCATTTTGATTGA 
 22  AG48 Soybean AG(18)  CAGAAACCTGAAATCTTCACC CTTGGGTTTTTTTATGGGTTC
 23  AG50b Soybean AG(19)  ATAAATTGGAAGATGTGTTGGC TACTGATGTGGATTCTCCCA
 24  AG93 Soybean AG(17)  TCCATGCATGTATACTCCACC TCATATGCCACAGGTTTTGTT
 25  BE347343 Soybean GA(18) 244 GCGCAAGCACTGAATGTCA GCGTCACTAACACCTATAAC
 26  SoyPRP1 Soybean ATT(20) 141 CGTGCCAAATTACATCA TGATGGGAACAAGTACATAA
 27  AF186183 Soybean ATT(22) 204 GCGTATTTTGGGGGATTTTGAACA GCGTTTCTCTTCTTATTCTTT
 28  AW277661 Soybean ATT(23) 247 GCGCATGGAGCATCATCTTCATA GCGAGAAAACCCAATCTTTA
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 29  GMABAB Soybean ATT(25) 159 CAAAACATAAAAAAGGTGAGA AAGAACCACACTAATATTATT
 30  BE801128 Soybean CAA(13) 172 GCGACAGTTCTCCACTCTTC GCGCCCCTTATAGATTTGTA
 31  AW508247 Soybean CTT(10) 153 GCGCCCAATCCCAATCTCAC GCGAAGCCAATAAATGATAA
 32  AM620774 Soybean CTT(9) 152 GCGATTTCCCCTCTTACTC GCGAAAAACCAAGTTC 
Choi et al 2004         
Marker type Intron-
directed 33 DK224R AQ917190 Medicago  110 CGAAACAATAATCACAAAACAAATCAG ATCTTGTTTATATGTGTTTGT
 34 DK225L AQ917191 Medicago  270 TGTCCTTGCTTCTTATCCTTCCTTCA AGCAGCACAACAACTTACAA
 35 DK302L AQ917144 Medicago  230 GCATGGAAATAGTTTGGGTTAGTAGTTAGT CTGATAAATGCATATTTTCAA
 36 DK353L AQ917298 Medicago  330 CCATGCCATGGAAGGGTGTTT GCAAGAACCAGATACCCTTG
 37 DK369R AQ917327 Medicago  310 GGAACGTGGAGTTGTTGATGGTATTAT GATGTAAAAACCTTTACACTT

 38 DK379L AQ917338 
Vigna 
radiata  410 AGCTTGTTGAGGTGGAAGGAAGTC GTGTGTATGAGTGTCGTAAG

 39 DK413L AQ917375 Medicago  200 TGATTGACCCCTGCTTTGATGCT GTCAGGTTTGTTGTTGTTTTT
 40 DK427R AQ917398 Medicago  500 CCAAACAAGGAAAAGTGTTGGTGTCA ATGAGAAACTTTTGAAATTTA
SRS sequences of 
Lablab         
Marker type Intron-
directed 41 MET_1 AB176566 Lablab  380 TGT CTG GCT GTG GGT GTG G AGA GCT TTT GAA CTT GTA 
 42 MET_2 AB176567 Lablab  250 AAT GTC TTG CTG CGG TGG AGC TCA CTT GCA AGT ACA
 43 fril AF067417 Lablab  310 TAC AGT GCT TCC TGA ATG GG ACA AAC AAC ATA CAA GTA 
 44 5SrDNA AY583516 Lablab  380 CGT GTG TTG AGA GGG AGG G AGA ACA AGC TCG TGG GAA
 45 pDLL_1 AY049046 Lablab  250 CTT CAT GCT ACT TTT TCT TCT GGG ACA AAC ACA TTG TGC AGG
 46 pDLT_1 AY049047 Lablab  310 ATG GTG GTG TTA AAG GTG TGC  TGC AAG GTT CGT AGC AGA
         

 
The 192 primer sequences from DJ Kim (2005 largely based on Vigna unguiculata sequence are available electronically. 
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Appendix 4: PAGE – PolyAcrylamide Gel Electrophoresis - 
preparation: 
 
A 4.5% polyacrylamide stock solution can be prepared in advance and 
stored at 4ºC (see Buffer List). The glass plates need to be thoroughly 
cleaned and silanised before pouring the polyacrylamide gel. 
 
Plate preparation: 
 
Both of the plates are cleaned using detergent, rinsed with de-ionised 
water and dried with paper towels. If you are preparing plates for the 
first time22 decide on the working side, i.e. the side that will come into 
contact with the gel and keep to this by marking the outer surface 
with a diamond marker or some sticky tape. 
Repelcote silane treatment: take the larger plate to the fumehood, tip a 
small amount of Repelcote onto a paper towel and spread, working in 
even sweeps across the whole plate. Leave for a few minutes to dry. 
Give an ethanol wipe over the whole surface to evenly spread the 
silane and a second ethanol wipe to thoroughly polish the plate; give a 
final polish with a dry piece of paper towel. Rinse with de-ionised 
water and dry with paper towels. 
Bind silane treatment: prepare this solution as instructed by the 
company (See Buffer & Solutions section). The smaller of the two 
plates will be given this treatment.  Dispense 500 µl of the working 
solution into the middle of the plate and spread evenly over the whole 
surface, working in even sweeps. Allow to dry. This can be done on a 
work bench; as this is less volatile compared to the repel silane a 
fumehood is not necessary. (Note that fresh gloves need to be worn 
each time so that there is no cross contamination of silane solutions). 
Ensure spacers are clean and dry. Align to the edges of the larger 
plate and place the smaller plate on top (take care not to touch the 
working side with gloves). Square off the corners and secure both 
plates together at the sides with thermostable tape at 2 to 3 places 
down each edge. 
 
Pouring the Polyacrylamide gel and preparation for sample 
loading: 
 
Dispense 60 ml of 4.5% polyacrylamide gel mix from the chilled stock 
(see Buffer List) into a pouring bottle, add 30 µl of chilled TEMED 
(N,N,N’N’ – Tetramethyl ethylenenediamine) and 400 µl of chilled 10% 
ammonium persulphate. Mix by inverting the bottle gently.  
Open the nozzle and allow the polyacrylamide to flow slowly and 
gently between the plates; you have about 10 minutes (depends on 
ambient temperature) before the acrylamide begins to polymerise. 

                                       
22 New plates need to be seasoned - this means silanising the plates and pouring/setting polyacrylamide 
gel a couple of times before using with important reactions. 
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Place the comb into position immediately after pouring the gel; ensure 
that air bubbles are not trapped; clip the plates at the comb end: 
Choice of comb: 
a castellated well forming comb is put in place; it is removed once the 
gel has polymerised and the pre-formed wells flushed free of urea just 
before pre-running the gel and before loading samples  
a sharkstooth comb is placed into position with the straight edge in 
contact with the gel during polymerisation. This comb is inverted to 
form the wells and left in place while loading samples and running the 
gel. 
Allow the gel to polymerise for 1.5 hours. While the gel sets it is 
important to start to prepare for silver staining by making the 
DEVELOPER as follows: Dissolve 60 g sodium carbonate (make 
sure it’s anhydrous and not too old) in 2 litre distilled water and 
refrigerate at 4ºC. 
Rinse the well/comb region carefully under a flow of de-ionised water, 
and rinse away the gel on the outside of the plate. 
Remove the comb by sliding it out horizontally, continue to rinse the 
well area. 
Dry the plates and mount onto the electrophoresis unit, the longer 
plate outermost; pour 500 ml of 1 x TBE buffer (See Buffer List) into 
the top reservoir; flush out the well area using a syringe to remove any 
loose acrylamide. This is very important as acrylamide stuck along the 
edge of the smaller plate will interfere with sample loading. 
If using a sharkstooth comb place it into position so that the points of 
the comb just touch the gel, placing it level with the edge of the longer 
plate and fill the bottom reservoir with 500 ml of 1 x TBE buffer. 
 
IMPORTANT SAFETY NOTE: If you have poured a sub-standard 
polyacrylamide gel, i.e. has too many bubbles, then leave the gel 
to polymerise before discarding the acrylamide 
Sample loading: 
 
Load 3 µl of each sample (keep these on ice while loading) take care 
not to touch/move the comb. 
Run at 1500 - 1600 V for 1 to 2 hours until the darker blue 
(bromophenol blue) dye runs off. 
Unmount the gel/plates, remove the tape; using the plastic Wonder 
Wedge to separate the two plates while still hot. The gel should remain 
in complete contact with the smaller, bind silaned, plate. 
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Appendix 5: Silver staining of the gel: 
 
Make up the fixer: (10 % acetic acid) 1.8 litre distilled water and 200 
ml glacial acetic acid in 2 litre pot. Pour into a shallow tray and 
immerse the gel/plate to fix for half an hour, shaking gently. 
Meanwhile make the silver stain solution: 12 ml 1.01 N silver nitrate 
solution in 2 litre of distilled water; add 3 ml formaldehyde (40 % 
solution) and mix. 
 
Tip the fixer back into the pot (and save); wash the gel 3 times in fresh 
distilled water. Carry out the 4th rinse on a shaker for approximately 
10 minutes or until "greasiness" has gone from the gel. 
 
Pour off the rinse water and add the silver stain solution. Leave on a 
shaker for half an hour. 
 
Set up a tray containing approx 3 litre of distilled water, have a timer 
and a piece of A4 white paper in a clear plastic bag close at hand. 
Immediately prior to developing the gel add 300 µl of sodium 
thiosulphate solution (0.1001 N) and 3 ml of formaldehyde (40 % 
solution) to the pre-chilled sodium carbonate solution. Pour this 
developing solution into a tray. 
 
**THE  NEXT FEW STEPS HAVE TO BE FOLLOWED QUICKLY AND 
CAREFULLY SO MAKE SURE YOU HAVE EVERYTHING SET UP 
READY** 
 
Remove the gel from the silver stain and rest it ON the tray containing 
the 3 litres of water (do not put it into the water yet). Tip the stain 
back into its pot; it can be used for up to five more gels. Rinse 
remnants of stain from the tray with de-ionised water. 
 
Set a timer for 10 seconds. Start the timer and quickly lower the gel 
into the water. Agitate several times so that all excess silver stain is 
removed from the gel surface. When 10 seconds is up, QUICKLY drain 
the gel and place it in the developing solution. Initially, tip the tray to 
ensure developer covers the gel evenly; then as the larger fragments 
begin to develop immerse up and down holding the top end of the 
plate. This way the middle / smaller sized fragments remain in the 
developer longer.  The pre-cooling of the sodium carbonate also greatly 
slows down the rate of development. 
 
Use the piece of white paper to check for the progress of band 
development. Stop the reaction when bands near the bottom of the gel 
start to show (i.e. 70 bp marker on the Ladder), by adding the 2 litre of 
fixer saved from earlier. Agitate the gel plate vigorously until bubbling 
ceases. 
 
Soak the gel in a tray of distilled water for 10 mins and leave to dry 
overnight, standing vertically. 
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Photocopy or scan the image on the plate. Alternatively, use 
duplicating film as follows: in the dark room, under safe light, place a 
sheet of duplicating film on the bench with the grey/emulsion side 
uppermost. Position the plate so that the gel is in contact with the 
film. Turn on an anglepoise lamp held at an arm’s length above the 
film and move lamp around for 7 to 9 seconds (timing depends on how 
dark the gel is from the staining/developing). Turn off the lamp and 
develop the film as normal using developer and fixer; rinse the film in 
water, hang up and allow to air dry. 
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Appendix 6: PAGE for SSCP gels 
 
This is PAGE in non-denaturing conditions, ie. no urea and low 
voltage during gel running that extends for more than 12 hours, 
generally overnight. 
 
Glass plates are prepared exactly as for denaturing PAGE (Appendix 
4); but the gel mix is different: 
 
SSCP gel mix, components for 60 ml: 
 
MDE gel mix  15 ml  (Cambrex Bio Science, Rockland) 
10 x TBE  3.6 ml 
SDW   41.4 
 
 
Mix together then just before pouring the gel add 240 µl of 10 % APS 
and 24 µl of TEMED and pour gel immediately and insert comb. 
Polymerisation is about 1 hr. 
 
 
Denature PCR samples as normal, and place on ice. Load 5 - 8 µl for 
each sample. Run the gel for 15 -18 hr at 4 Watts, this depends on 
band sizes, and is preferrably run in a cold room or at least in an air 
conditioned room. 
 
 
To visualise bands silver staining can be carried out as normal (see 
Appendix 5).
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Appendix 7: Table of Chi-square statistics 
 
df  P = 0.05 P = 0.01 P = 0.001 
1  3.84  6.64  10.83  
2  5.99  9.21  13.82  
3  7.82  11.35  16.27  
4  9.49  13.28  18.47  
5  11.07  15.09  20.52  
6  12.59  16.81  22.46  
7  14.07  18.48  24.32  
8  15.51  20.09  26.13  
9  16.92  21.67  27.88  
10  18.31  23.21  29.59  
11  19.68  24.73  31.26  
12  21.03  26.22  32.91  
13  22.36  27.69  34.53  
14  23.69  29.14  36.12  
15  25.00  30.58  37.70  
16  26.30  32.00  39.25  
17  27.59  33.41  40.79  
18  28.87  34.81  42.31  
19  30.14  36.19  43.82  
20  31.41  37.57  45.32  
21  32.67  38.93  46.80  
22  33.92  40.29  48.27  
23  35.17  41.64  49.73  
24  36.42  42.98  51.18  
25  37.65  44.31  52.62  
26  38.89  45.64  54.05  
27  40.11  46.96  55.48  
28  41.34  48.28  56.89  
29  42.56  49.59  58.30  
30  43.77  50.89  59.70  
31  44.99  52.19  61.10  
32  46.19  53.49  62.49  
33  47.40  54.78  63.87  



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     174 

34  48.60  56.06  65.25  
35  49.80  57.34  66.62  
36  51.00  58.62  67.99  
37  52.19  59.89  69.35  
38  53.38  61.16  70.71  
39  54.57  62.43  72.06  
40  55.76  63.69  73.41  
41  56.94  64.95  74.75  
42  58.12  66.21  76.09  
43  59.30  67.46  77.42  
44  60.48  68.71  78.75  
45  61.66  69.96  80.08  
46  62.83  71.20  81.40  
47  64.00  72.44  82.72  
48  65.17  73.68  84.03  
49  66.34  74.92  85.35  
50  67.51  76.15  86.66  
51  68.67  77.39  87.97  
52  69.83  78.62  89.27  
53  70.99  79.84  90.57  
54  72.15  81.07  91.88  
55  73.31  82.29  93.17  
56  74.47  83.52  94.47  
57  75.62  84.73  95.75  
58  76.78  85.95  97.03  
59  77.93  87.17  98.34  
60  79.08  88.38  99.62  
61  80.23  89.59  100.88  
62  81.38  90.80  102.15  
63  82.53  92.01  103.46  
64  83.68  93.22  104.72  
65  84.82  94.42  105.97  
66  85.97  95.63  107.26  
67  87.11  96.83  108.54  
68  88.25  98.03  109.79  
69  89.39  99.23  111.06  
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70  90.53  100.42  112.31  
71  91.67  101.62  113.56  
72  92.81  102.82  114.84  
73  93.95  104.01  116.08  
74  95.08  105.20  117.35  
75  96.22  106.39  118.60  
76  97.35  107.58  119.85  
77  98.49  108.77  121.11  
78  99.62  109.96  122.36  
79  100.75  111.15  123.60  
80  101.88  112.33  124.84  
81  103.01  113.51  126.09  
82  104.14  114.70  127.33  
83  105.27  115.88  128.57  
84  106.40  117.06  129.80  
85  107.52  118.24  131.04  
86  108.65  119.41  132.28  
87  109.77  120.59  133.51  
88  110.90  121.77  134.74  
89  112.02  122.94  135.96  
90  113.15  124.12  137.19  
91  114.27  125.29  138.45  
92  115.39  126.46  139.66  
93  116.51  127.63  140.90  
94  117.63  128.80  142.12  
95  118.75  129.97  143.32  
96  119.87  131.14  144.55  
97  120.99  132.31  145.78  
98  122.11  133.47  146.99  
99  123.23  134.64  148.21  
100 124.34  135.81  149.48  
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Appendix 8: Flowchart to run JoinMap v3: 
 
Starting a new project with Joinmap.exe  
 
File… New Project   
 

A window opens give a filename, eg. test, 2 files are created: one 
is a folder called test.jmd; the other is the JM icon test.jmp 
 
File…..Prepare data 
 
 A window asks for the data file, i.e. the scores .txt file in JM 
format 
 It also asks for a name to a .loc file; this file will be read by JM 
from now on 
 
File ….Load data 
 
 The .loc file is loaded 
 

In the left hand information panel a yellow icon with P and a file 
name appears 
 
The right hand panel has tabs for data analysis: 
 
Data tab has the .loc file 
Locus genotype frequency gives the segregation of each marker, the 
Chi square and its significance. This is a very useful list and can be 
copied and pasted into Excel for segregation ratio analysis. Markers 
with extreme segregation distortion can be eliminated from the 
mapping data set. 
It is useful to take time to analyse all of the data before proceeding to 
the mapping; after each selection hit the Calculate button. 
 
Options…..Calculate options 
 
The window offers the chance to alter factors, eg. choice of Haldane or 
Kosambi mapping functions. 
 
LOD groupings (tree) tab and Calculate 
 

A tree of markers grouped by LOD score appears in the middle 
window, this can be extended and lengthened by clicking in the  +/-  
squares. 
Choose the groups to map by highlighting to pink, one at a time, 
deselecting once completed. 
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Population…Create groups for mapping 
  
Choose an icon highlight to pink 
 
Group….Calculate map 
 Stick diagram maps are produced as well as a log file of linkage 
data 
 
Finally after proceeding through each group, select all the Map icons 
you wish to include and select Map Join next to File in main menu. All 
linkage groups are displayed and can be printed off. 
 
 
Opening an existing project 
 
File………Open project 
 JM icon .jmp 
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Appendix 9: Demonstation of Genomic Control in association 
analysis: 
 
This exercise will guide you through the analysis of a small dataset for 
marker-trait association, adjusting for population structure by the 
method of genomic control. All analyses are carried out in R, although 
they are sufficiently simple that they could also be carried out in 
Excel. 
 
The dataset we are using is part of the Gediflux project, also used in 
the demonstration of the program STRUCTURE, and present here in 
the file “GC demo.xls”. There are 156 wheat varieties, two quantitative 
traits (protein content and endosperm texture), one categorical trait 
(grain hardness), one candidate SNP (pinb_a – as used in the 
STRUCTURE example) and 46 SSAP control markers. These SSAPs 
have been selected to have a minor allele frequency  greater than 0.1. 
Note that there is a modest amount of missing data, and that this has 
been coded “NA” in preparation for input into R. Note also that grain 
hardness and all genotype data has been coded 0/1. 
 
 
Data input and quality checking 
 
Read the data in R. Either export data from Excel to your own text file 
or use the file “gc.txt”. 
 
gcdata<-read.table("gc.txt") 
attach(gcdata) 
summary(gcdata) 
 
Remember you may need to point R at the directory containing the file 
first. 
 
It is worth summarising and plotting the trait data – use the graphical 
and summary commands available in R. Note the relationship 
between endosperm texture and grain hardness. (Hint – try boxplot). 
Note also one extreme value for protein content. Ordinarily, this would 
require checking and consideration given to removing it from the 
analyses. Here we shall include it. 
 
Test for significance of any association between pinb_a and the three 
quantitative traits using a t test and chisq test as appropriate. 
 
t.test(Protein_Content~Pinb_a) 
t.test(Endosperm_Texture~Pinb_a) 
chisq.test(hardness,Pinb_a) 
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Note that chisq.test does not require that a table is first made from 
hardness and Pinb, for example: 
 
chisq.test(table(hardness,Pinb_a)) 
 
 
However, it is worth creating and displaying this table, since it will 
explain the warning message that R provides in response to chisq.test 
statement. 
 
 
Genomic control – Endosperm texture 
 
To carry out genomic control we need to carry out each of these 
statistical tests on every SSAP marker, then calculate the average 
value. 
 
This could be done by: 
 
t.test(Endosperm_Texture~SSAP1) 
t.test(Endosperm_Texture~SSAP3) 
t.test(Endosperm_Texture~SSAP4) 
 
etc., followed by writing down the test statistic, then calculating their 
average. However, a little more advanced R can ease the workload. 
 
Try: 
 
attributes(t.test(Endosperm_Texture~SSAP4)) 
 
R works on “objects”. The results of an analysis are one sort of object. 
A dataset is another type of object. These objects have attributes and 
the command “attributes” allows us to see what they are. 
 
Note the first attribute of our t.test is “statistic”. The value associated 
with this can be displayed as: 
 
t.test(Endosperm_Texture~SSAP4)$statistic 
 
In general, object$attibute  will access the value(s) associated with 
that attribute. 
 
What this allows us to do is display the value of the t test statistic 
without the rest of the information which t.table provides. It is 
worth experimenting with some of the attributes of t.table to see 
what other information can be accessed directly. 
 
We now wish to accumulate values for each t test in turn. Try this: 
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> t_result<-t.test(Endosperm_Texture~SSAP1)$statistic 
> t_result[2]<-t.test(Endosperm_Texture~SSAP3)$statistic 
> t_result[3]<-t.test(Endosperm_Texture~SSAP4)$statistic 
> t_result 
 
The final command should display the test statistic values for each of 
the three t tests. Note that the first call is 
t_result<-t.test…… 
 
and not 
 
t_result[1]<-t.test…… 
 
The first call creates a new data structure t_result. The second call 
assumes the data structure t_result already exists and replaces the 
current value, whatever that may be, with a new value. If t_result 
does not already exist, an error is generated.  
 
Once t_result is in existence, however, t_result[x]<-value  will 
append (or replace) the xth value. Interestingly, if there are three 
values in t_result, then  
 
t_result[100]<-0 
 
will create 96 missing data values and then add 0 as the value of the 
100th entry: try it. 
 
We now wish to increment t_result automatically, without editing 
the index numbers and the SSAP names. 
 
First: 
 
attributes(gcdata) 
 
This gives row and column numbers and corresponding names to our 
data table. The rows, columns and single cells of the data table can be 
accessed directly, either using their index numbers or index names. 
For example: 
 
gcdata["93","Endosperm_Texture"] 
gcdata[6,2]  
 
should return the same value. (Note this provides a simple method  for 
changing or deleting (set to NA) individual values of our data from 
within R – for example we could remove our outlying value for protein 
content. 
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From the call to attributes(gcdata) we can see that columns 5-50 
contain the SSAP data.  
 
Verify that 
 
t.test(Endosperm_Texture~SSAP4)$statistic 
 
and 
 
t.test(gcdata[,2]~gcdata[,7])$statistic 
 
 
give the same result. Not that [,2] and [,7] refer to the entire 
second and seventh columns of gcdata.  [2,] and [7,] would refer 
to the second and seventh rows. 
 
We are now in a position to automate the reference to each column of 
SSAP data for each t test: 
 
> t_result_endo<-NA 
> for(i in 5:50) t_result_endo[i-4]<-
t.test(Endosperm_Texture~gcdata[,i])$statistic 
> t_result_endo 

 
The new command here is: “for(i in 5:50)” which will repeatedly 
execute the  subsequent statement 46 times – for all values of i from 5 
to 50 inclusively. Since the reference to columns of gcdata in the t 
test is made using “i” rather than a specified column number, the t 
test is carried out consecutively for all 46 SSAP markers. 
 
Remember that to start things off, we need to create t_result_endo[1]: 
in this case with a missing data value ”NA”. This is changed on the 
first call to t.test. Also note that the index for t_result_endo is [i-
4] and not [i] since otherwise we would create 50 entries for 
t_result_endo: the first 4 with the value NA. 
 
This may seem somewhat complicated, but in practice things are not 
too bad. One works towards the correct result through trial and error: 
mistakes are corrected by editing and re-executing commands until 
they work as expected. 
 
Finally, we need the average value of t.  However, sometimes t is 
negative and sometimes t is positive – arbitrarily depending on 
whether the SSAP allele is associated with increasing or decreasing 
the phenotype. We could avoid this difficultly by taking the absolute 
value of the t-tests, but shall avoid this difficulty by working on the 
square of t, which should be approximately distributed as a chi-
square with 1 df and is more appropriate for genomic control. 
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Provided the number of observations is reasonably large – say 50 or 
more – this is justified.  
 
mean(t_result_endo^2) 
 
All the hard work is now done. You should now be able to: 
 
Calculate t^2 for Endosperm texture and Pinb_a, and establish the 
significance. 
 
Adjust this t^2 by dividing by the mean t^2 at the control markers, 
and look up the significance. 
 
Compare the two results. Is endosperm texture associated with the 
pinb_a SNP in this dataset? Has the result been affected by population 
admixture? 
 
You can now repeat this exercise for the other quantitative trait – 
protein content. 
 
Other traits 
You can also study the association between pinb_a and grain 
hardness. For this categorical trait, the association test is a 
contingency chi-square and not a t test. 
 

1) Calculate the chi-sq between hardness and pinb_a. 
 

2) Calculate the chi-sq between hardness and each of the SAPP 
markers 

 
(Hint: chisq.test(A,B)$statistic will provide the test statistic for 
the contingency chi-squared test between A and B). 
 

3) Calculate the average chi-sq at the control markers. 
 

4) Divide the result from (!) by the results from (3). 
 

5) Test for significance before and after adjustment for genomic 
control. 
 
Advanced problems. 
  
The t-test we have carried out has assumed that the variance within 
each group is unequal (the R default), both for the candidate and for 
the control markers. Would we be better off assuming variances to be 
equal? If variances are different at the candidate locus, what is this 
telling us? 
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Appendix 10: Demonstration of STRUCTURE and its use in 
association analysis. 
 
This exercise is to show you how to get data into the computer 
program STRUCTURE, run the program and analyse the results. 
STRUCTURE is easy to run but has its pitfalls. This guide should not 
be used as a substitute for the STRUCTURE manual, which gives 
more detailed guidance. 
 
The test dataset we are using is part of the EC funded Gediflux project 
to study crop diversity in Europe. There are 113 European wheat 
varieties, one quantitative trait, two candidate polymorphisms and 42 
SSR markers. The quantitative trait is endosperm texture – an 
important component of bread making quality, The two 
polymorphisms are pinb_a – a SNP in the pin_b gene, and an 
unmapped SSAP marker. The 42 SSRs are distributed as one per 
chromosome arm (bread wheat is 2n=6x=42). We wish to test for 
association at the two candidates correcting for the effects of 
population structure if required. All data are in the spreadsheet 
“structure strat demo.xls” 
 
Running Structure 
 
Data input 
 
In Explorer, locate the file “structure.bat” and double click to run it. 
 
The file containing the SSR data for analysis is 
“data_for_structure.txt”. This was created by  cutting and pasting from 
Excel. Note, however, that the only data in the first line of the text file 
are the SSR marker names. Although columns of data in addition to 
the SSRs can remain in the datafile, they must not be given column 
names. It is sometimes convenient to leave the column of phenotypes 
and candidates in the dataset, since they may be wanted for other 
analyses. They have been unnecessarily left in here to show how they 
can be handled.  
 
Structure guides you through data input process using a Windows 
style import wizard.  
 
To start the data import window: 
 
File, New Project…  
 
Step 1 
Enter the project name and select a directory and the input file. This 
process can be a fiddle  – sometimes you have to click once to select, 



Kirkhouse Trust - John Innes Centre - UAS Bangalore 
Molecular Marker Techniques for Crop Improvement 

Course Manual November 2005 
 

     184 

and sometimes twice. Trial and error should see you through, 
however. 
 
Step 2 
Enter information about the data. If you’ve forgotten this, clicking on 
“Show data file format” may help. 
 
Ploidy 
For a collection of inbred lines enter 1 here to treat the data as 
haploid.  
 
Number of loci  
Enter 42 – the number of SSRs. We do not want the candidate SNPs 
included in the analysis. This will be sorted out in step 3. 
 
Missing data value 
Enter 0. It is extremely important to get this right – otherwise the 
missing values will be included as additional alleles with 
unpredictable results. 
 
Step 3 
This formats data input for any additional columns or rows in the file. 
 
Select the row of marker names – our file includes this. 
 
We are not using map data – we only have one marker per 
chromosome arm: they are effectively unlinked. Linkage information 
can be included in the analysis for loosely linked markers. Map 
distances between markers can included at the top of the input file. 
See the STRUCTURE manual for details. Generally, good results are 
obtained treating markers as unlinked. 
 
Phase information: irrelevant here because we are dealing with a 
haploid organism! Generally, with outbred polyploid individuals, this 
box would need ticking if the phase was known. See the manual for 
further details. 
 
Data file stores data for individuals in a single line. 
This also does not apply to haploids. With diploids, data may be 
entered on a single line as: 
 
1 1    2 2     3 3     4 4       for four loci 
 
or as: 
1 2 3 4 
1 2 3 4 
 
The second format is the default for STRUCTURE. 
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Step 4 
 
Individual ID for each individual 
We have a unique variety code as the first column of our data, so 
select this. 
 
Putative population of origin for each individual. 
With a-priori knowledge of the population of origin of each individual, 
this can be entered and included in the analysis. This can work 
extremely well if, for example, you have a set of lines of known origin, 
and a set of unknown or admixed individuals. The data from the 
known lines is effectively used as a training set to classify the 
unknown lines. Here, leave it blank. 
 
USEPOPINFO selection flag 
Used in conjunction with the previous column to identify which 
individuals to use in the training set and which are to be classified 
without prior information. See the Structure manual for more details. 
Leave blank here. 
 
Phenotype information. 
Do not select this. STRUCTURE is expecting a column describing a 
categorical trait rather than a quantitative trait.  This is more 
standard for human genetics where 2 = affected, 1 = unaffected and 0 
= unknown. These could be input into the companion program, 
STRAT. We shall analyse our quantitative trait using R. 
 
Other extra columns.  
We have one quantitative phenotype and two candidate loci, which are 
not part of the STRUCTURE analysis, so enter 3. 
 
Click on Finish, Check the details are correct, then click Proceed. 
STRUCTURE will test the format of the data and you will be prompted 
to correct any errors. 
 
If the data input is successful, a spreadsheet-like display of the input 
data should be returned. 
 
Parameter Sets 
 
Before running STRUCTURE, we need to supply some input 
parameters. This is deceptively easy. However, the default parameters 
are not necessarily suitable for all datasets. See the manual for 
further details. One approach to selecting sensible parameter sets is 
to find a good publication working on a similar dataset to your own 
and copy from there. 
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Again there is an input wizard to guide you through the process. 
Select: 
 
Parameter Set, New… 
 
Run Length 
STRUCTURE uses Monte Carlo Markov Chain (MCMC) methods. To 
run successfully, the program iterates many times. There is generally 
an initial “burn-in” period during which the program settles down, 
and then a further period in which the program runs and results are 
generated. The longer these periods are, the more reliable the results. 
In practice, the numbers selected are determined by the power of your 
computer and your patience. Generally, select a burn in and a run 
length of 100,000 at least. In this demonstration, for reasons of speed, 
select 10,000 for each box 
 
Ancestry Model 
Stick with the defaults. See manual for more details 
 
Allele frequency model 
Stick with the defaults. See manual for more details 
 
Advanced 
In addition to the defaults, select Print Q-hat. This writes the 
membership of each individual in each of the inferred populations to a 
separate file: useful for subsequent analyses. 
 
Finally, click OK and give your parameter set a name. 
 
 
Running the program  
 
We are now ready to run the program. To establish how many cryptic 
populations we have, STRUCTURE is run multiple times, varying the 
population number. Select: 
 
Project, Start a Job 
 
Select the name of your new project. In a session running 
STRUCTURE you may create several different  parameter sets (eg with 
different run times) and you would be prompted with a list here. 
 
“K” is the number of populations. We shall run from 1 to 3. 
 
To check for stability / repeatability of the STRUCTURE run, it is 
advisable to replicate each run several times,. We shall have only two 
replicates – for reasons of time. 
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Remember, when running STRUCTURE on your own data, you would 
typically use a longer burn-in, a longer run-time, test more population 
numbers, and carry out more repeat runs.  
Click Start 
Structure will take a few minutes to run. 
 
 
On completion, before inspecting the output, start another job – this will 
take longer to run, so start now to save time:  
 
Select Parameter Set, Modify current sets… 
 
Increase the burn-in and number of MCMC Reps to 100,000 and save 
the parameter set with a new name. 
 
Select Project, Start a Job as before, select the new parameter 
set name, select K from 8 to 8, 1 replication only, and run.  
 
Now return to consider the results of you runs for K = 1...3. You can do 
this while the K=8 job is running, although you might find the response 
from your computer a little sluggish. 
 
 
Select: View, Simulation Summary 
 
This presents a table of summary information from each run. The 
most important column here is the fourth: Ln P(D).  
 
Ln P(D) gives the posterior probability of the population number. 
Hopefully, you will see that this increases (gets less negative) as 
population number  increases, but that values are reasonably close 
within replicate runs. Ideally, with more time, one would continue to 
increase K to find the value at which Ln P(D) was maximised. In 
practice, this is not always possible: runs are unstable (see below), 
they take to long, or K can continue to increase to improbable values. 
Some compromise is required. The manual describes the problems of 
deciding on an appropriate value of K in more detail.  
 
In the left hand side of the screen, select one of the K = 3 runs. The 
right hand side screen should now change to display the results for 
that run. One can select various graphical displays of the results. It is 
worth exploring and experimenting with these. The “Data plot” 
options are very useful to check on the stability of the runs. In 
particular the plot of Log Likelihood against the number of iterations 
should be seen to stabilise during the burn-in and then fluctuate 
around a constant value during the run. There should be no trend 
upwards or downwards during this period (which would indicate a 
longer burn-in was required). The data plot of Ln P(D) may fluctuate 
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initially, but should settle to a constant value by the end of the run, 
with no increasing or decreasing trend.  
 
The “Bar plot” shows population membership for each individual in 
the dataset. This can be sorted by maximum population membership 
to give a cleaner display (Sort by Q). This plot is often seen in 
publications using STRUCTURE. 
 
The “Triangle plot” shows group membership for any pair of 
populations, plus the residual pooled membership for the remaining 
populations, all in a single graph. Generally, if the dataset has 
population structure, and STRUCTURE has detected it, these plots 
will show clusters of individuals in the corners of the triangle (they 
come from that particular population), with some individuals 
scattered along the sides and in the body of the triangle (they are 
admixed between two or more populations). If this pattern is not seen, 
then you should suspect that there is no population structure, or 
none has been detected. For the gediflux dataset, you might see some 
evidence of population structure in the triangle plots with K=3 (it will 
vary from run to run). We know from the values for Ln P(D) that at 
least three subpopulations are present.  However, 10,000 iterations is 
too few for this dataset, especially once K is increased much beyond 3.  
 
To look at the results from a larger population number and longer 
run-time, you have already short set off a job with K = 8  and a 
100,000 burn in and run. If this hasn’t finished yet, go for a cup of 
coffee. 
 
K=8, is possibly still too low for this dataset, and 100,000 may still be 
too few iterations, but hopefully it will give stable results. (After the 
job has finished, check to see). 
 
To exit STRUCTURE, close the program in the same way as any other 
Windows application. 
 
 
Testing for association 
 
Go to Explorer. Go to the folder where the STRUCTURE data file was 
kept. You should see that additional folders have been created, 
corresponding to the project names you entered in STRUCTURE. Each 
of these in turn will have two subdirectories, one called PlotData and 
on called Results. Within the Results folder you will find pairs of 
files of type name_q and name_f.  
 
The name_f file has full results and parameters for each STRUCTURE 
run. The name_q files gives reduced output, containing the variety 
code, and then population membership for each  individual – ideal for 
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additional statistical analysis. Locate the file for the STRUCTURE run 
with K = 8. 
 
This file can be read directly into R. R recognises that there are no 
column headers and generates it’s own – V1-V9 in this case. V2-V8 
are the population memberships for each line, and V1 is the variety 
code.  
 
In R, change to the correct directory then: 
 
struct<-read.table("run2_run_1_q") 
attach(struct) 
 
your file name will be different, but will still end  _q 
 
An interesting plot is given by: 
 
> hist(pmax(V2,V3,V4,V5,V6,V7,V8,V9)) 
> 
 
pmax (stands for parallel maximum) takes the maximum across the 
specified fields for each row of the dataset in turn. In this case this 
gives the maximum population membership for each variety in turn. 
Subject to STRUCTURE having run successfully, you should see that 
about 1/3 to 1/2 of the varieties have a maximum group membership 
>0.8: they are reasonably pure and not admixed. The remaining 
varieties do not have any strong individual group membership but are 
admixed across populations. (On the complete dataset, and with long 
run-times, this distribution looks very bimodal.) If the histogram looks 
unclear, try: 
 
hist(pmax(V2,V3,V4,V5,V6,V7,V8,V9),breaks=20) 
 
to increase the number of subdivisions in the histogram. 
 
A researcher or breeder with knowledge of the origins of the varieties 
may be able to make sense of the populations by studying which 
varieties fall into which population. 
 
Now load and attach the candidate marker and phenotype data. Use 
the spreadsheet “structure strat demo.xls” to create a file 
suitable to import into R the variety codes, the phenotype and the two 
candidate SNPs. Alternatively, use the file 
“trait_and_candidate.txt” which has already been created for this 
purpose. Remember you may need to change directory again to locate 
the file. 
 
assoc<-read.table("trait_and_candidate.txt") 
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attach(assoc) 
 
We can test for association very simply with a t test: 
 
t.test(Endosperm_Texture~SSAP10) 
t.test(Endosperm_Texture~Pinb_a) 
 
Results are not corrected for population structure effects of course. 
For this we require logistic regression. This is a statistical technique 
which is suited to the analysis of binomially distributed variables 
where, since any single observation is either “0” or “1”,  the errors 
attached to the observation cannot be treated as normally distributed. 
Each observation is treated as having a probability p of turning up as 
a 1 and a probability (1-p) of turning up as 0. These probabilities are 
then modelled directly. 
 
Informally, logistic regression fits the model: 
 
Log[p/(1-p)]  = regression parameters + noise. 
 
It is therefore similar to standard regression in which the model  
 
Y = regression parameters + normally distributed noise 
 
Log[p/(1-p)] is the log odds or logit. It is used because it has some 
statistically and mathematically convenient properties. In 
epidemiology, where logistic regression is used extensively, it can also 
often be interpreted in terms of risk. 
 
Logistic regression is a member of a family of models which have error 
distributions other than the normal, but which related to it. Together, 
these are called generalised linear models. Ordinary linear regression 
is a member of this family. 
 
Practically, in R, logistic regression is fitted using the command “glm”. 
This command has virtually identical syntax to the “lm” command for 
ordinary regression. 
 
In the current context, the benefit of logistic regression is that we can 
regard our candidate locus, suitably coded, as the binary outcome 
variable, and model this in terms of population group membership 
and of phenotype. This is the reverse of the standard procedure in 
which we model the phenotype in terms of the genotype, but this 
reversal is irrelevant to the detection of association. 
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Appendix 11: Notes on data handling and error. 
 
The effect of error 
 
We have already seen that genotype errors are often present and can 
increase map lengths. Even low error rates can have very serious 
consequences for linkage and association analyses. Moreover, not only 
to genotype errors generally reduce power, they can sometimes, 
especially in some forms of association analysis, increase the number 
of false positive discoveries.  
 
There has been little formal study of the effects of phenotype error on 
data analysis. If making an error in recording a phenotype is 
independent of the true phenotype, the effect will be to increase the 
variance, and possibly alter the mean, of the subset of data containing 
the errors. This is particularly of concern for any experiment which 
involves selection, since the error carrying data will tend to be 
concentrated in the extremes of the phenotypic distribution. This was 
studied by computer simulation by Mackay and Caligari (1999). With 
high error rates of 1%, it is actually possible that response to selection 
is reduced as intensity of selection is increased:  an unfortunate result 
for any plant breeder. Moreover, routine rejection of extreme values 
generally reduces response to selection too. The conclusion is that it is 
very important to be vigilant and guard against errors. In the context 
of mapping experiments, the effect of errors is very clearly seen in 
bulked segregation analysis – where extremes are selected prior to 
genotyping. However, in classic mapping experiments too, phenotypic 
errors will reduce power. 
 
Observed error rates. 
 
There is much anecdotal evidence about the frequency and nature of 
errors in agricultural research. For example: 
 
Numbers transposed: 17.4 entered as 71.4 
Missing plots entered as disease free rather than as missing data. 
Misplaced decimals 
Hitting the three instead of the decimal point on data entry: a mistake 
I often make. 
 
In the medical world, where errors are potentially much more 
damaging to health, their frequency has been studied. An interesting  
review in medicinal biochemistry is given at 
http://www.jr2.ox.ac.uk/bandolier/band47/b47-6.html 
 
Unfortunately, in agriculture and plant breeding, there is little or no 
quantitative data on error rates. 
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In 1999, Clifford Thomas Ltd., a publishing company, quoted me a 
maximum undetected error rate of 0.00001 per alphanumeric key for 
double entered data. I have no current quoted error rate. (Much UK 
data entry is now carried out in India!) The error rate per operator is 
therefore at least the square root of this, roughly 0.3% per punched 
key, or roughly 1% per three digit number. (This is a minimum 
estimate because for an error to be undetected, not only do both 
operators have to make an error, but they have to make the same 
error.)  With double entered data the error rate per three digit number 
will only be 0.003%. As an experiment, I once entered 2000 randomly 
distributed three digit numbers and made 11 mistakes: quite close to 
the commercially quoted rate.  
 
These figures demonstrate both the high error rates expected in the 
absence of data checking, and the effectiveness of double data entry. 
 
Good practice in data entry. 
 
Copy data by hand as little as possible. 
 
All data entered into a computer must be checked. 
 Double data entry (by different individuals) is the gold standard. 
 
 Second best: 
 After data entry, print out the data. Someone reads data out from 

the original scoring sheets, and someone else checks the 
computer version. It is preferable to use individuals other 
than the person who first entered the data for this 
process: each individual tends to make their own set of 
idiosyncratic mistakes.  

 
 Third best: 

You enter and check your own data. This is inevitable for small 
amounts of data. 

 
Data are never entered without any checking. 
 
Databases, spreadsheets and Excel. 
 
For large volumes of data, it is best to enter and store data in a 
database – Access is perfectly adequate for most projects. Bigger multi 
centre, multi-user datasets may require something like Oracle: 
expensive and beyond the scope of this course. 
 
For most Excel or some other spreadsheet is fine. Double data entry is 
still the preferred method for entry, however. Unfortunately, it is 
extremely easy to create and propagate errors within spreadsheets. An 
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interesting review from the business side, containing many horror 
stories is given by Kruch and Sheetz (2001) 
 
Standardise on names – use of capitals letters, abbreviations, spaces, 
hyphens and so on. This is particularly important if different 
individuals are entering data into the same database or spreadsheet. 
 
Although Excel is case insensitive – “VARIETY” and “variety” are 
treated as identical -  this is not the case for many programs, 
including many statistical packages. Thus you may find yourself 
analysing more varieties than you thought you had in your field trial. 
 
It is extremely easy to overwrite data unintentionally. With multi-user 
databases, this can be controlled by the way the database is set up – 
such that only a limited number of individuals are capable of 
changing or appending data.  In Excel, it is worth copy protecting your 
source data so that it cannot be changed accidentally – available from 
the “Tools/Protection” menu.  
 
Always back up your data. 
 
Another pitfall is the presence of leading and trailing spaces around 
text fields. “VARIETY “ (with a trailing space) and “VARIETY” will 
appear the same, but they are treated as different in Excel, in sorting 
and in formulae. 
 
Beware of spaces in names in EXCEL. These can lead to problems or 
unnecessary complications when exporting to other programmes. It is 
simple to use the underscore character “_” in place of spaces. This can 
easily be replaced later, in report writing. 
 
Related to problems with trailing spaces, but potentially more 
damaging: blank cells and cells containing only spaces are impossible 
to distinguish by eye in Excel. However, they are treated differently. A 
blank cell multiplied by a number will give a “0”  but a cell with a 
space will give a “#VALUE!”. If you are deriving percentages, or 
transforming data in some other way in Excel, this can give serious 
problems. If in doubt, the formula “=TRIM(cell reference)*1 will return 
“#VALUE!” on blank cells. Alternatively, you can use Excel find and 
replace, available from the edit menu, to find blank cells and replace 
them with a visible code, or to find cells containing spaces and replace 
them with a blank cell.  
 
Once final word about Excel. Don’t use “*” to denote missing data. 
They are impossible to find and replace within Excel. “*” is treated as 
a meta-character, or wild-card, which matches every cell. “NA” is a 
good alternative – especially for subsequent analysis within R.  Some 
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programs may require a user specified number to be used to represent 
missing values: -99.999 or similar is common. 
 
Finally, it is worth keeping an audit trail of changes and procedures 
you have carried out during data entry. Although tedious at the time, 
it can be very helpful and time saving later on when you are trying to 
remember what you did to your data, and why. More advanced 
databases will contain a complete audit trail – tracking all changes 
made to the data. 
 
Detecting errors 
 
However good your data entry and data handling procedures, it is 
inevitable that some errors will still get through. Even with automatic 
data capture, errors occur: recording machines go wrong, balances are 
incorrectly tared and so on. Data should always be checked for 
possible errors after entry, whatever its origins. Simple checks can 
reveal many errors. The most damaging errors  manifest themselves 
as extreme values so are relatively easy to detect: 
 
Sort each field and check: 

The largest couple of values 
The smallest couple of values 
The range 

  The expected number of records. 
 
Also check that means / variances / CVs are more or less as you 
would expect. Histograms of each trait are easy to generate and can be 
highly informative. Scattergrams of pairs of traits can also be revealing 
– in particular for data pairs which are not outliers for any single trait, 
but appear to lie outside the joint distribution of pairs of traits. 
Equally, a record with extreme values for both traits in a pair is 
unlikely to be a data input or recording error. The data may be 
aberrant, and may still ultimately require removal from the analysis, 
but the observations are probably genuine. 
 
Check any possible relationships you can think of – even if they are 
not relevant to the analyses you are planning. For example, if you 
have scores recorded over time, check that they increase or decrease 
as expected: leaf number or plant height would usually be expected to 
increase during vegetative growth for example.  Here it is important to 
distinguish between errors of measurement – heights of 26 cm 
followed by 25 cm a week later are probably indicative of slow growth 
plus difficulty in measuring plant height in the field with any 
accuracy. Plant height of 62 cm followed by 26 cm is most likely an 
error during data entry. 
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Some checks on the measuring processes themselves may also be 
possible: if samples are processed through a quality test sequentially, 
a trend in quality over the order in which the samples are processed 
may indicate drift in the measuring instrument over time.  
 
With replicated field trials, in addition to checks on the raw 
observations, one has the luxury of studying residuals from the 
analysis: i.e. the error terms after the effects of variety and replicate 
(and QTL) are subtracted from the single observation. Any good 
statistical software will generate and plot these values. 
 
Duplicate Samples 
 
Check for duplicated records. Records with multiple identical 
phenotypes might be correct of course - it depends on the nature of 
the phenotypes. Records with multiple identical genotypes might be 
correct too, but are possible duplicate samples – reflecting a mix up of 
seed or DNA, or sometimes the existence of a single variety with two 
names or accession codes.  The identification of these duplicate 
samples generally require multiple highly heterozygous markers such 
as SSRs: half a dozen SNPs is inadequate. If the varieties are all 
accessions from a single population, then the probability that of a pair 
of accessions are identical at all genotypes by chance can be 
calculated. If this probability is very low, yet these pairs are observed, 
then there is something wrong. In practice, with multiple genotypes, 
even if two samples are identical, genotype errors mean that the 
samples may differ at one or two loci. A very simple method is to 
count the number of loci at which every pair of accessions differ and 
plot a histogram of the distribution. If it looks bimodal – with one or 
more pairs having very high identity – then these are potential 
duplicates. A more sophisticated graphical method is available in the 
software GRR: http://www.sph.umich.edu/csg/abecasis/GRR/ 
 
GRR is targeted at detecting errors in human pedigrees with genotype 
data from many SSR markers. It will still pick out the potential 
duplicates in more modest plant data, however. With sufficient 
genotype data – currently a very rare luxury for most plant geneticists 
– this software will discriminate in a very appealing visual manner 
between full-sibs, half-sibs, parent-offspring relationships and 
sometimes more distant relationships too. 
  
Duplicate samples are not wasted: comparing their data allows an 
assessment of genotype error rates. 
 
 
Normalility 
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Most quantitative trait analysis assumes that the traits are normally 
distributed, or more accurately, that the errors of the trait 
measurements (after fitting QTL and other fixed effects) are normally 
distributed. Fortunately, many quantitative traits do fall reasonably 
closely into this category. Sometimes, however, we may need to 
consider transforming our raw data to a different scale of 
measurement before analysing the data. The most commonly used is 
to take logarithms of the data. A sample of 1 million log normal 
random numbers is plotted below. Note the long tail. If you data looks 
skewed, you should try analysing the logarithms of your data. Other 
transformations also exist, and there are other methods of handling 
non-normally distributed data. However, we would advise that if no 
simple transformation such as the logarithmic appears to work, you 
should take advice. 

 
Removal of probable errors. 
 
Finally, we must consider what to do with any aberrant data that is 
identified. The first thing is to check back to the original scoring 
sheets and field records (which consequently must not be thrown 
away, however engrained with mud and sweat they become). This may 
help resolve many errors. There remains the problem about what to do 
with outliers for which no obvious cause can be found. There are no 
hard and fast rules. Really aberrant data will be deleted. Sometimes, if 
the cause of the aberrant observations can be found, in can be 
included as a covariate in the analysis  - for example if excess 
pesticide was applied to one section of a field trial, possibly resulting 
in stunted growth, then an additional factor could be included in the 
analysis to account for this. Sometimes, a cause for the aberrant 
observation can be found and the most sensible course of action is to 
remove the data point. There may remain, however, a number of data 
points which are deviant enough to cause disquiet, but for which no 
obvious cause can be found. Should these be removed or kept in the 
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analysis? Empirically, most plant breeders would opt to remove them 
and many statisticians would vote to keep them. The statistican’s 
point of view is that it is all too easy to remove outlying data, giving a 
spurious sense of accuracy and reliability to the analysis of the 
remaining data, which may even then be biased towards some 
preferred result. This is illustrated in the following example. 
Generating 100,000 lots of 10 random numbers, with a mean of zero 
and a standard deviation of one, then plotting the maximum value 
from each lot of ten in a histogram, we get: 

 
This slightly skewed distribution shows that in these random samples 
of size ten, the largest value is frequency surprisingly large.  For 
example, 22% of these maxima have a value > 1.96, although only 
2.5% of single observations would be expected to be at least as large 
as this. So by concentrating on large values and eliminating them 
from the analysis, we will be throwing away much good data. There 
are formal methods for deciding whether data should be deleted or 
retained in an analysis, and there is a whole field of Robust Statistics 
which deals with methods for analysing messy data. In the end, 
however, it is a matter of judgement as to whether data should be 
retained or not. Nevertheless, the statisticians warning should be 
heeded: don’t get too overenthusiastic about removing data. A 
frequently advocated compromise is to analyse data with the problem 
observations removed and with them kept in, and see what difference 
it makes. The best solution is to take care not to introduce errors in 
the first place, and to take care to detect and correct as many as 
possible. 
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