
208 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Software Defect Prediction in Large Space Systems
through Hybrid Feature Selection and

Classification
Shomona Jacob1 and Geetha Raju2

1SSN College of Engineering, affiliated to Anna University, Chennai, Tamilnadu, India
2College of Engineering, Guindy, Anna University, Chennai, Tamilnadu, India

Abstract: Data mining and machine learning techniques have been used in several scientific applications including software
fault predictions in large space systems. State-of the-art research revealed that existing space systems succumb to enigmatic
software faults leading to critical loss of life and capital. This article presents a novel approach to solve this issue of
overlooking software faults by utilizing both features selection and classification techniques to accurately predict software
defects in aerospace systems. The main objective was to identify the preeminent feature selection and prediction technique that
enhanced the software fault prediction accuracy with the optimal set of features. The investigations affirmed that a novel
hybrid feature selection method revealed the most optimal set of predictive features although no particular predictive
technique was suitable to predict faults in all space system datasets. Besides, the exploration of data mining techniques in fault
prediction on the NASA Lunar space system software data clearly portrayed the improved fault prediction accuracy (~82% to
~98%) with the feature set selected by the proposed Hybrid Feature Selection method. Also, the random sub sampling method
revealed an improved mean Matthew’s Correlation Coefficient (MCC) and accuracy ranging from ~0.7 to ~0.9 and ~86% to
~98% respectively. This we believe generates further scope for future investigations on the most contributing space system
features for fault prediction thus enabling design of aerospace systems with minimal faults and enhanced performance.

Keywords: Classification, data mining, hybrid feature selection, NASA datasets, prediction, software defects.

Received November 21, 2013; accepted June 12, 2014

1. Introduction
Software source code defect prediction has been an
economically important field in software engineering
for more than 20 years [10]. A defective module in
software causes high repair and development cost and
reduces quality of the software [2]. The growing
demand for higher operational efficiency and safety in
defence systems has resulted in a growing interest in
fault-detection techniques [1, 3, 4, 19, 21, 23]. Hence,
this research aimed at evolving a suitable and less
complex software fault prediction framework that
could yield higher accuracy in fault prediction with
minimum number of optimal system features. Data
mining [7, 25] is the task of analyzing data from
various perspectives and consolidating/summarizing
the data into relevant and meaningful information.
Data mining techniques viz, feature selection and
classification have proved very effective in predicting
biological defects, irregularities in clinical data and
revealing significant medical facts that raised interest
in exploring such avenues for drug therapy and clinical
decision making. Feature selection [7, 9, 17] is the
method of deciding on a subset of important features
for building reliable learning models. Classification
[20] is a data analysis technique that is used to
distinguish important data classes/categories. This

paper aims at identifying the optimal and minimal set
of software features that could predict the fault-
proneness of software in aerospace systems with
improved accuracy. The performance measures used to
evaluate the proposed approach include the Matthew’s
Correlation Coefficient (MCC) [20, 21], accuracy,
sensitivity and specificity.

Software errors are usually not found until the late
stages of the development cycle, when it turns
expensive to return and fix them [2, 8, 14, 23].
Addressing these errors is highly essential failing
which, software developers build a reputation for
delivering faulty products or, create life-critical
situations when the software is part of larger systems
or devices, such as defence equipments or medical
treatment plants [3]. Hence, detecting and predicting
fault-proneness in software systems (aerospace
systems) to improve the quality of software utilized in
designing defence equipments was the rationale for
this research.

Several papers on mining software faults through
prediction techniques have been proposed in literature
[4, 15, 18]. Some of the papers discussed include
methods for fault prediction such as size and
complexity metrics, multivariate analysis, and multi-
co-linearity using Bayesian belief networks. NB [7, 22,

Software Defect Prediction in Large Space Systems through Hybrid Feature... 209

23] is widely used for building classifiers. When
developing a defect predictor, the probability of each
class is calculated, given the attributes extracted from a
module, using metrics such as Halstead and McCabe
ones etc., (i.e., metrics that are relevant to predicting
faulty modules). Menzies et al. [15] developed
predictors with Naïve Bayes (NB) classifier for fault
characteristics. They discovered more predictive power
in combined or hybrid predictors than in the mono
metrics. They found that NB was the best faulty model
predictor reported so far.

Vandecruys et al. [23] used the Ant Colony
Optimization (ACO) algorithm, and the max-min ant
system to develop the AntMiner+model that classifies
the dataset into either faulty or non-faulty modules.
This algorithm achieved a predictive accuracy that was
competitive to other methods. Predictors that were
built using the previous techniques, suffered from high
possible errors in assigning records to the correct class.
NB provides high number of incorrectly classified
modules [11]. As a result, many algorithms were built
[5, 13, 18] to overcome the significant drawbacks of
NB. One of those algorithms that demonstrated the
accuracy of NB technique was Lazy Bayes Rules
(LBR) [18] . However, LBR had high computational
overheads. A group of researchers conducted manual
software reviews to find defective modules [5]. They
found that approximately 60 percent of defects could
be detected manually. Reviews and inspections found
over 50% of the defects in artefacts, regardless of the
lifecycle phase applied.

Twala [23] worked on four publicly available
NASA datasets and stated the NB classifier to yield
more robust software fault prediction while most
ensembles with a decision tree classifier as one of its
components also achieved higher accuracy rates
according to their study. Evidence records that most of
the ensembles improved the prediction accuracy of the
baseline classifiers Decision Tree (DT), K-Neighbours
(k-NN), Naïve Bayes Classifier (NBC) and Vector
Machines Classifiers (SVM). Surprisingly, most of the
ensembles with NBC as one of its components did not
perform as good as when NBC was just a single
classifier. In addition, the overall performance of
feature selection for all the ensembles was very poor
[23]. According to the above study, it appeared that
there was currently no reasonable data to model
software fault prediction. Secondly, method-level
metrics appeared to be dominant in software fault
prediction with class-level metrics being hardly
utilised.

This paper placed focus on a recent article [23] on
NASA datasets using ensemble classifiers. We chose
this paper for three main reasons: The paper is recent
and the data is publicly available; the accuracy
reported by ensemble techniques revealed great scope
for improvement; and design of more accurate fault
prediction techniques could greatly enhance the quality

of software currently being used in defence systems.
This research focussed on three main objectives:
Utilizing feature selection techniques to identify the
optimal set of software features for fault prediction;
identify a suitable predictive technique that yields
maximum accuracy in classification; and formulate a
software fault prediction framework for space systems.
The proposed methodology and the space system
dataset utilized in this research are detailed in the
subsequent section.

The rest of the paper is organized as follows:
Section 2 describes the data mining framework and
investigations. Section 3 presents the experimental
results. Section 4 discusses the improvements claimed
by the current research findings while section 5
concludes the paper with a clear idea of possible
extensions to this work.

2. Materials and Methods
The publicly available datasets of the NASA MDP
repository was utilized for this research. NASA’s
Metrics Data Program (MDP) Repository [14, 15, 16]
is a database that stores problem, product, and metrics
data. The primary goal of this data repository is to
provide project data to the software community. In
doing so, the MDP collects artefacts from a large
NASA dataset, generates metrics on the artefacts, and
then generates reports that are made available to the
public at no cost. The main characteristics of the data
are tabulated in Table 1.

Table 1. Desciption of the NASA aerospace system datasets.
Data Set Attributes Instances Language Description

CM1 38 344 C NASA spacecraft instrument
JM1 22 9593 C Real time predictive ground system
KC3 40 200 Java Satellite-image data

MW1 38 264 C Zero-gravity experiment related to
combustion

PC1 38 759 C Flight software for earth orbiting
satellite

PC2 37 1585 C Dynamic simulator for altitude control
systems

PC3 38 1125 C Flight software for earth orbiting
satellite

PC4 37 1399 C Flight software for earth orbiting
satellite

The eight NASA datasets (CM1, JM1, MW1, KC3,
PC1, PC2, PC3 and PC4) contain static code measures
[14, 16, 23] (LOC, Halstead, MaCabe etc.,) along with
their defect rates in numeric form. The metrics are
based on product’s size, complexity and vocabulary.

2.1. Software Fault Prediction Methodology
The methodology proposed in this paper for software
defect prediction comprises of two phases: Training
phase; and validation phase. The former involves data
pre-processing, feature selection and classification of
the training data. The latter phase comprises of
validating the performance of the classifiers
investigated in this study using cross-validation and

210 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

random sampling techniques and ranking the
performance of the classifiers based on the
classification accuracy and MCC. The computational
framework for software defect prediction using data
mining techniques is portrayed in Figure 1.

 Figure 1. Proposed software fault prediction framework.

2.2. Data Pre-Processing
The data pre-processing phase [20, 21] comprised of
data cleaning and transformation for easy and efficient
processing on software tools for software prediction.
The attributes of each space system dataset were
loaded onto Excel spreadsheets and saved as Comma
Separated Version (CSV) files for execution on
WEKA data mining suite [25]. Missing values were
eliminated from further processing. This phase resulted
in the clean training data for further processing using
feature selection and classification algorithms

2.3. Hybrid Feature Selection
The authors of this research paper attempted to
investigate the feature selection capability of their
novel HFS method [20] (proposed to mine biological
data) in order to extract contributing features for
software defect prediction. This phase involved
executing the Hybrid Feature Selection (HFS) method
proposed by the authors Ramani and Jacob [19] that
attempted to automate the process of finding the
minimal and optimal set of features, by combining the
ranking feature selection algorithms with feature subset
selection methods yielding features highly correlated to
the class and least correlated to each other. Since both
the ranking (Gain Ratio Criterion) and subset selection
methods (Correlation Feature Subset) were utilized to

obtain the optimal feature set, this was termed the
Hybrid Feature Selection strategy.

The information gain ratio was calculated as the
ratio between the Information Gain (InfoG) and the
Intrinsic Value (IntrinV), according to Equation 1.

 (,) /IGRatio r f InfoG IntrinV= (1)

The attributes were then ranked in the descending
order of the gain ratio score and were used for the CFS
Subset selection method. The CFS criterion [6] is
defined as follows:

 ...1 2
2(... ...)1 2 1S K

r r rcf cf cfkCFS MAX
k r r rf f fifj fkf

+ + +
=

+ + + + +

 (2)

Where rcfi and rfifi variables were referred to as
correlations. The attributes that portrayed a high
correlation to the target class and least relevance to
each other were chosen as the best subset of attributes.

2.4. Classification
The main objective of classification [8, 12, 13, 18] is to
accurately predict the target class for each record. The
best performing classification algorithms in this study
are briefly explained in the following sub-sections.

2.4.1. Bayesian Belief Network Learning Algorithm

A Bayesian network [19, 20, 21] over a set of variables
U was a network structure Bs, a Directed Acyclic
Graph (DAG) over the set of variables U and a set of
probability tables given by [19]:

 { (()) }p u pa u u UB P = ∈ (3)

Where pa(u) was the set of parents of u in BS and the
network represented a probability distribution given
by:

 () (())u UP U p u pa u∈∏= (4)

The inference made from the Bayesian Network was to
allocate the category with the maximum probability.
The simple estimator with the K2 local search method
using Bayes Score was utilized for the execution of the
algorithm.

2.4.2. Nearest-Neighbour Algorithm

The Nearest-Neighbour Algorithm (NNA) [1, 10, 11,
13] was also investigated to build the prediction model
for NASA space system data. NNA calculates
similarities between the test sample and all the training
samples. In the current study, the distance between
vector px and py is defined as following [13]:

(,) 1 x y

x y

x y

D
p p

p p
p p

•
= −

•

In Equation 5 px.py denotes the inner product of px and
py. ||p|| denotes the module of vector p. The smaller the

.

. . .

 . . .

NASA Space System
Training Data

Data Pre-processing

Hybrid Feature Selection (HFS)

Training
Data: CM1

Training
Data: JM1

Training
Data: MW1

Training
Data: PC4

CFS Subset:
CM1

CFS Subset:
JM1

CFS Subset:
MW1

CFS Subset: PC4

Classification

Performance Evaluation
MCC

Accuracy

Best Software Fault
Detection Classifier

(5)

Software Defect Prediction in Large Space Systems through Hybrid Feature... 211

D(px.py) is, the more similar px to py is. In NNA, given
a vector pt and training set P={p1, …, pn, ..., pN}, pt will
be designated to the same class of its nearest neighbour
pn in P, i.e., the vector having the smallest D(pn, pt).
NN algorithms have three defining general
characteristics [1, 13]; a similarity function, a typical
instance selection function and a classification
function.

2.4.3. Ensemble Classifier

AdaBoost [5, 11, 21, 25], a meta-learning ensemble
classifier combines a series of ‘k’ learned models with
the aim of creating a composite model. Initially,
Adaboost assigned each training instance an equal
weight that equalled 1/number of training instances. A
number of iterations were executed wherein, instances
from the dataset were sampled by weight to form the
training set. A classifier model was derived and its
error rate was computed with the training set that later
served as the test set. The instance weights were
adjusted according to the error-rate. For each class, the
sum of the weights of each classifier that assigned
class ‘c’ to an instance ‘X’ was determined. The class
with the highest sum was considered as the category of
the instance X. The performance evaluation methods
and parameters are briefed about in the subsequent
section.

2.4.4. Jack-knife Cross-Validation Method

In Jack-knife cross-validation [21], each one of the
statistical samples in the training dataset was in turn
singled out as a test sample and the predictor was
trained by the remaining samples. The following
indexes were adopted to test our proposed predictors.

FNTNFPTP

TNTP
ACC +++

+
=ℜ (6)

 () ()

() () () ()MCC

TP TN FP FN

TP FN TN FP TP FP TN FN

× − ×
=ℜ

+ × + × + × +

 (7)

SEN

TP

TP FN
=ℜ +

 (8)

SPE

TN

TN FP
=ℜ +

 (9)

WhereℜMCC reflected the Mathews Correlation
Coefficient; ℜACC reflected the accuracy, i.e., the rate
of correctly predicted records, ℜSEN reflected the
sensitivity, i.e., the rate of defective records correctly
predicted; ℜSPE reflected the specificity, i.e., the rate of
non-defective records that were correctly predicted.
TP, TN, FP and FN denoted the number of true
positives, true negatives, false positives and false
negatives, respectively.

3. Experimental Results
The performance of the HFS and classification
algorithms was evaluated on the WEKA machine-
learning toolkit [25]. The results are discussed in two
sections. The first section reveals the results of the
HFS method while the latter section describes the
performance of the classification algorithms.

3.1. HFS Method
The HFS method was executed on all the eight NASA
datasets and was found to reduce the feature set size to
nearly one-third of the original data set. However, the
ten-fold cross-validation technique was used to
evaluate the predictor performance on the JM1 dataset
in view of the massive size of the data. The
performance of the proposed HFS algorithm was
further evaluated as described in the ensuing section.
The feature set size and the description of the NASA
datasets are tabulated in Table 2.

Table 2. Feature set of NASA datasets pre- and post- feature selection.

Dataset Entire Feature
Set (EFS) Size

HFS Feature
Set Size HFS Selected Features

CM1 38 8 Loc_Comments, Cyclomatic_Density, Loc_Executable, Halstead_Content,Num_Unique_Operands,
Num_Unique_Operators,Percent_Comments, Loc_Total

JM1 22 7 Loc_Blank,Loc_Code_And_Comment,Loc_Comments,Cyclomatic_Complexity,Halstead_Content,Halstead_Volume,Loc_Tot

KC3 40 4 Loc_Blank,Branch_Count,Loc_Code_And_Comment
Normalized_Cylomatic_Complexity

MW1 38 8 Loc_Blank,Loc_Comments,Edge_Count, Halstead_Content, Modified_Condition_Count,Node_Count,
Num_Unique_Operands, Number_Of_Lines

PC1 38 10
Loc_Blank,Loc_Code_And_Comment,Loc_Comments,Cyclomatic_Density, Loc_Executable, Parameter_Count, Halstead_Content,
Node_Count,
Normalized_Cylomatic_Complexity, Num_Unique_Operands

PC2 37 5 Loc_Comments,Cyclomatic_Density,Halstead_Content, Modified_Condition_Count,Percent_Comments
PC3 38 7 Loc_Blank,Loc_Code_And_Comment,Loc_C,Per_Comments, Halstead_Content, Halstead_Length, Num_Unique_Operands,
PC4 37 4 Loc_Code_And_Comment,Condition_Count,Essential_Complexity, Percent_Comments

3.2. Performance of Prediction Algorithms
A comparison of seven classification algorithms (BN-
Bayesian Network; NB-Naïve Bayes; AD-Adaboost;
NN-Nearest-Neighbour; RF-Random Forest; RT-

Random Tree; J48-Decision Tree) was performed on
the NASA datasets. The comparative results of the
predictor performances before and after feature
selection are tabulated in Table 3.

212 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Table 3. Comparison of predictor performance on NASA datasets

The tabulated results clearly reveal the improvement

in software defect prediction accuracy on the space
system datasets even in the presence of the reduced
feature set, with the feature set being reduced to nearly
one–third of the original feature set size.

Moreover, in terms of computational complexity,
the nearest neighbor algorithm proved to be executing
in minimum time closely followed by the Bayesian
approaches. In order to prove the unbiased nature of
the results and to better reflect the strength of the
chosen feature set and the predictive power of the
formulated fault prediction framework, the calculations
were also done on many randomly sampled balanced
sets and the results on the trials reported as mean
accuracy and MCC in Table 5 and the optimal
predictor performance is graphically portrayed in
Figure 2.

Figure 2. Optimal Predictor Performance on the NASA Datasets

1 Entire Feature Set
2 Hybrid Feature Selection Feature Set

The comparative results of the decision tree
predictor performances’ are tabulated in Table 4.

Table 4. Comparison of decision tree predictors’ performance on
NASA datasets.

Dataset Feature
Selection Measures RF RT J48

CM1
EFS Accuracy 86.3 82 82.3

MCC 0.05 0.193 0.109

HFS Accuracy 86.9 82 85.5
MCC 0.072 0.176 -0.05

JM1
EFS Accuracy 80.7 76.1 79.9

MCC 0.269 0.207 0.211

HFS Accuracy 80.2 75.1 81.9
MCC 0.26 0.177 0.166

KC3
EFS Accuracy 82.5 77 77.5

MCC 0.262 0.204 0.212

HFS Accuracy 81.5 77 85
MCC 0.295 0.204 0.449

MW1
EFS Accuracy 87.9 85.6 88.6

MCC 0.154 0.216 0.212

HFS Accuracy 87.5 84.1 90
MCC 0.176 0.039 0.455

PC1
EFS Accuracy 90.9 88.5 90.1

MCC 0.184 0.195 0.199

HFS Accuracy 91.4 88.9 90.5
MCC 0.31 0.24 0.226

PC2
EFS Accuracy 98.9 98.1 99

MCC -0.0 -0.01 0

HFS Accuracy 98.9 97.9 99
MCC -0.00 -0.01 0

PC3
EFS Accuracy 87.6 84 85.4

MCC 0.275 0.27 0.2

HFS Accuracy 87.8 85.2 87.6
MCC 0.295 0.308 0

PC4
EFS Accuracy 90.6 87.6 88.6

MCC 0.543 0.434 0.465

HFS Accuracy 89.3 88.8 88.8
MCC 0.503 0.493 0.36

The classifiers were chosen based on their

performance on the original dataset.

Table 5. Predictor performance on randomly sampled HFS datasets.

Dataset Classifier Mean
Accuracy

Mean
MCC

Mean
Sensitivity

Mean
Specificity

CM1 BN 86.367 0.73 0.8637 0.766
JM1 BN 86.983 0.72 0.869 0.505
KC3 J48 91.5 0.83 0.915 0.789
MW1 J48 96.28 0.93 0.962 0.705
PC1 NN 98.23 0.97 0.982 0.92
PC2 BN 98.9 0.96 0.989 0.352
PC3 RT 97.58 0.95 0.975 0.892
PC4 RF 98.13 0.96 0.981 0.925

4. Discussions
Precise prediction of software faults in space systems
is very valuable to engineers, especially those dealing
with software development processes. This is
important for minimizing cost and improving
effectiveness of the software testing process. The
results of the proposed methodology on the eight
NASA space system datasets suggest that the Bayesian
and Decision Tree approaches could be successfully
applied in software fault prediction with HFS feature
sets yielding overall significant increase in prediction
performance.

4.1. HFS Method vs Feature Ranking
Approaches

The HFS method combines the power of both ranking
and feature subset selection approaches. The algorithm

Dataset Feature
Selection Measures BN NB AD NN

CM1
EFS1 Accuracy 66.6 82.6 87.8 77.9

MCC 0.211 0.219 0 0.011

HFS2 Accuracy 82.8 85.5 87.8 80.8
MCC 0.269 0.263 0 0.003

JM1
EFS Accuracy 70.7 81.4 81.7 77.1

MCC 0.247 0.226 0 0.223

HFS Accuracy 75.2 81.2 81.7 76.4
 0.266 0.277 0 0.203

KC3
EFS Accuracy 77.5 78.5 84 75.5

MCC 0.094 0.231 0.399 0.123

HFS Accuracy 79 81 83.5 78.5
MCC 0.126 0.268 0.374 0.214

MW1
EFS Accuracy 81.4 81.8 84.8 83.7

MCC 0.304 0.31 -0.07 0.155

HFS Accuracy 87.1 85.6 84.8 83.7
MCC 0.384 0.373 -0.07 0.127

PC1
EFS Accuracy 70.2 88.5 92 89.9

MCC 0.276 0.274 0 0.287

HFS Accuracy 75.1 88.7 92 90.6
MCC 0.219 0.288 0 0.323

PC2
EFS Accuracy 86 95.5 98.5 98

MCC 0.156 0.078 -0.07 -0.01

HFS Accuracy 96.2 95.8 99 98.4
MCC 0.186 0.114 0 0.125

PC3
EFS Accuracy 65.1 32.6 87.6 85.7

MCC 0.271 0.124 0 0.308

HFS Accuracy 74.8 82.4 87.6 84.4
MCC 0.33 0.293 0 0.291

PC4
EFS Accuracy 74.5 87.3 88.2 86.6

MCC 0.346 0.364 0.283 0.398

HFS Accuracy 79.3 88.6 89.3 87.4
MCC 0.462 0.401 0.378 0.434

Software Defect Prediction in Large Space Systems through Hybrid Feature... 213

automatically defines the number of features in the
extracted feature subset. This is an improvement over
the feature ranking algorithms that generate a rank of
all the features based on a predefined criterion. The
number of features to be selected for classification has
to be decided by the user who sets the threshold for
feature selection. This may often result in more
number of features being selected for classification and
may lead to extensive time being consumed before the
optimal feature set is identified.

4.2. Comparison to Previous Work
The improvements put forth by this research analysis
in comparison to previous work is reported in Table 6
based on the results of Song et al. [22, 23] who have
reported on fault prediction in NASA space system
datasets.

Table 6. Comparison of predictor performance to previous work.

S.No NASA Dataset Previously Reported
Accuracy (%)

Currently Reported
Accuracy (%)

1 CM1 74.9 82.8
2 JM1 76.6 81.2
3 KC3 70.8 85
4 MW1 66.5 90
5 PC1 78.7 90.6
6 PC2 79.7 96.2
7 PC3 71.1 82.4
8 PC4 82.2 89.3

However, the previous work did not report on the
MCC measure of the predictor techniques. The
comparisons clearly reveal the improved classification
performance with comparison to previous work, with
reduced computational complexity. The optimal
feature sets identified by this research generates further
scope for design investigations on the detected
software space system attributes for fabrication of
improved and fault-free space systems.

This research has achieved three main objectives:
The utilization of feature selection techniques has
unearthed the relevance of the most contributing
properties in space system software for fault
prediction; reduction in the number of features for
prediction greatly minimized the computational
complexity in terms of time and memory requirements;
and the obtained classification accuracy and MCC is
much higher compared to the previous reports on the
NASA datasets with the MCC (stated to be more
precise in ranking the predictor techniques on
unbalanced binary class datasets) being reported for
the first time on NASA space system datasets.

5. Conclusions
The goal of fault prone modules’ prediction using data
mining techniques aims at improving the software
development process. This enables the software
manager to effectively allocate project resources
toward those modules that require more effort. This
will eventually enable the developers to fix the bugs
before delivering the software product to end users.

This research placed focus on identifying the optimal
set of predictive features in NASA space system
datasets to enable design of fault-free space systems
for utilization in defence purposes. This research has
revealed the most contributing features for fault-
prediction in space system software with the highest
reported accuracy thus far, consequently paving way
for further investigations on the possible design
enhancements for space systems.

References
[1] Alhutaish R. and Omar N., “Arabic Text

Classification Using K-Nearest Neighbour
Algorithm,” The International Arab Journal of
Information Technology, vol. 12, no. 2, pp. 1-6,
2014.

[2] Compton P., Edwards G., Kang B., Malor R.,
Menzies T., Preston P., Srinivasan A., and
Sammut S., “Ripple Down Rules: Possibilities
and Limitations,” in Proceeding of the 6th
Knowledge Acquisition for Knowledge-Based
Systems Workshop, pp.6-1-6-20, Canada, 1991.

[3] Fenton N. and Neil M., “Critique of Software
Defect Prediction Models,” IEEE Transactions
on Software Engineering, vol. 25, no. 5, pp. 679-
685, 1999.

[4] Fenton N. and Ohlsson N., “Quantitative
Analysis of Faults and Failures in a Complex
Software System,” IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 797-
814, 2000.

[5] Gaines B. and Compton P., “Induction of Ripple-
Down Rules Applied to Modeling Large
Databases,” Journal of Intelligent Information
Systems, vol. 5, no. 3, pp. 211-228, 1995.

[6] Halstead M., Elements of Software Science,
Elsevier, 1977.

[7] Han J. and Kamber M., Data Mining Concepts
and Techniques. Second edition, Morgan
Kaufman Publishers, 2006.

[8] Hassan A. and Holt R., “Guest Editors.
Introduction: Special Issue on Mining Software
Repositories,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 1-20, 2005.

[9] Jacob S. and Ramani G., “Design and
Implementation of a Clinical Data Classifier: A
Supervised Learning Approach,” Public Library
of Science, vol. 8, no. 2, pp. 16-26, 2013.

[10] Kagdi H., Collard M., and Maletic J., “A Survey
and Taxonomy of Approaches for Mining
Software Repositories in the Context of Software
Evolution,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 19,
no. 2, pp. 77-131, 2007.

[11] Lo D., Khoo S., and Liu C., “Efficient Mining of
Iterative Patterns for Software Specification
Discovery,” in Proceeding of the 13th ACM

http://link.springer.com/journal/10844
http://link.springer.com/journal/10844
http://link.springer.com/journal/10844
https://www.plos.org/
https://www.plos.org/
https://www.plos.org/

214 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

International Conference on Knowledge
Discovery and Data Mining, San Jose, pp. 460-
469, 2007.

[12] Martens D., Backer M., Haesen R., Vanthienen
J., Snoeck M., and Baesens B., “Classification
with Ant Colony Optimization,” IEEE
Transactions on Power Systems, vol. 11, no. 5,
pp. 651-655, 2007.

[13] Martin B., Instance-Based learning: Nearest
Neighbour With Generalization, University of
Waikato, 1995.

[14] McCabe T., “A Complexity Measure,” IEEE
Transactions Software Engineering, vol. 2, no. 4,
pp. 308-320, 1976.

[15] Menzies T., Greenwald J., and Frank A., “Data
Mining Static Code Attributes to Learn Defect
Predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2-13, 2007.

[16] Metric Data Program MDP, http://mdp.
ivv.nasa.gov, Last Visited 2014.

[17] Nada V. and Lavrac N., “Feature SubsetSelection
in Association Rules Learning Systems,” in
Proceeding of Slovenian Electrical and
Computer Science Conference, pp. 301-304,
1999.

[18] Najadat H. and Izzat A., “Enhance Rule Based
Detection for Software Fault Prone Modules,”
International Journal of Software Engineering
and Its Applications, vol. 6, no. 1, pp. 75-86,
2012.

[19] Ramani R. and Jacob S., “Improved
Classification of Lung Cancer Tumors Based on
Structural and Physicochemical Properties of
Proteins Using Data Mining Models,” Public
Library of Science, vol. 8, no. 3, pp. 58772, 2013.

[20] Ramani R. and Jacob S., “Prediction of P53
Mutants (Multiple Sites) Transcriptional Activity
Based on Structural (2D and 3D) Properties,”
Public Library of Science, vol. 8, no. 2, pp.
55401, 2013.

[21] Ramani R., Kumar S., and Jacob S., “Predicting
Fault-Prone Software Modules Using Feature
Selection and Classification Through Data
Mining Algorithms,” in Proceeding of IEEE
International Conference on Computational
Intelligence and Computing Research,
Coimbatore, pp. 1-4, 2012.

[22] Song Q., Jia Z., Shepherd M., Ying S., and Liu J.,
“General Software Defect-Proneness Prediction
Framework,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 356-370, 2011.

[23] Twala B., “Predicting Software Faults in Large
Space Systems using Machine
LearningTechniques,” Defence Science Journal,
vol. 61, no. 4, pp. 306-316, 2011.

[24] WEKA data mining toolkit,
http://www.cs.waikato.ac.nz/~ml/weka, Last
Visited 2014.

[25] Witten I. and Frank E., Data Mining: Practical
Machine Learning Tools and Techniques,
Morgan Kaufmann, 2005.

Geetha Raju is Associate Professor,
Department of Information Science
and Technology, College of
Engineering, Guindy, Anna
University, Chennai, India. She has
more than 15 years of teaching and
research experience. Her areas of

specialization include Data mining, Bioinformatics,
Social Networks, Evolutionary Algorithms and
Network Security. She has over 50 publications in
International Conferences, Journals and books to her
credit.

Shomona Jacob is Associate
Professor, Department of Computer
Science and Engineering, SSN
College of Engineering, Chennai,
India. She completed her Ph.D in
the area of Biological and Clinical
Data Mining at Anna University,

Chennai. She has more than 25 publications in
International Conferences and Journals to her credit.
Her areas of interest include Data Mining,
Bioinformatics, Machine Learning, and Artificial
Intelligence.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.David%20Martens.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Manu%20De%20Backer.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raf%20Haesen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jan%20Vanthienen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Monique%20Snoeck.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bart%20Baesens.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jeremy%20Greenwald.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Art%20Frank.QT.&newsearch=true
https://www.plos.org/
https://www.plos.org/
https://www.plos.org/
https://www.plos.org/
http://www.cs.waikato.ac.nz/%7Eml/weka

