
Service-Oriented Process Modelling for Device
Control in Future Networks

Muhammad Sohail Khan and DoHyeun Kim
Computer Engineering Department, Jeju National University, South Korea

Abstract: The recent advancements in the fields of electronics, information and communication technologies have paved a
pathway towards a world-wide future network of connected smart devices. Researchers from industry and academia are
taking even more interests in the realization of such an infrastructure where a seamless interaction of sensing and actuating
devices will take place in order to provide valuable services to the human kind and other systems. So far the major focus of
research is towards the connectivity, management and control of sensing devices and no major attention has been given to the
control of actuating devices in such an environment. This paper presents a generic process model for actuating device control
service in future networks. A prototype implementation of the proposed model based on the presented platform has been
described along with the performance analysis of the proposed model.

Keywords: Process modelling, future networks, device profile, device control.

Received October 16, 2014; accepted April 26, 2015

1. Introduction
In recent years, the number of devices (things) around
us has exponentially increased. According to the
European Commission report, the number of connected
devices in the world will reach an estimated value of 50
billion by 2020 [9]. The era of these computing devices
is outside the dominion of traditional desktop
computers. For such an era, scientist have already
introduced a conception of Internet of Things (IoT),
where the things around us will be part of a huge
network producing information to be used by humans or
other related objects and vice versa. According to
Gubbi et al., the vision of IoT is to connect anything,
anytime and anywhere [3]. In such a scenario, all the
daily life things around us such as home appliances
heaters, televisions, cameras, ovens, refrigerators and
even furniture [8] will all be connected to a huge
network along with an array of sensors to collect the
contextual and environmental data around these things
and based on that data each appliance will be
controlled.

The connectivity of industrial actuators and home
appliances to internet in order to provide a remote
access and control interface for these devices has been
a long perceived concept. Such a scenario was always
envisioned which would provide a communication and
control interface for the daily used home appliances
from anywhere in the world. World-Wide-Web
(WWW) provided the initial realization of such visions.
Effort were performed to connect and control
multimedia devices such as cameras [2], telemedicine
applications [5], Heating, Ventilation and Air
Conditioning (HVAC) systems [6] etc. with the current
developments in the electronic industry, daily life

devices such as televisions, refrigerators, lighting
equipment and microwave ovens etc. are being made
smart and such devices are able to meet the varying
needs of the users based on time and user activities
[11, 13]. Some of the early efforts in this regards
include the internet based control of manufacturing
equipment [7] and personal robots [4, 12] among so
many others. The main issue with these early attempts
was that most of these implementations were based on
the control of specific devices. Another issue was that
most of the technologies used for such
implementations were based on distributed object
technologies such as Object Management Group
(OMG) CORBA [14], java Remote Method
Invocation (RMI) [1] and Microsoft’s Distributed
Component Object Model (DCOM) [10]. These
distributed objects based technologies were too tightly
coupled which presented issues such as inflexible
communication and implementations which could not
be generalized.

The recent advances in the electronics and
communication technologies have revolutionized
human’s lives. Smart devices in the form of sensors
and actuators can be found all around us. The numbers
of these devices are increasing with an exponential
growth [9]. Miniature devices called the Micro-
Electro-Mechanical Systems (MEMS) along with the
wireless communications technologies over smaller
distances have made possible the interconnection of
devices into Wireless Sensor Networks (WSN). Such
networks are being utilized widely in monitoring
applications for environment, traffic and infrastructure
etc., [15].

The concepts of ubiquitous computing by Mark
Weiser [16] defines a smart environment as “the

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

physical world that is richly and invisibly interwoven
with sensors, actuators, displays and computational
elements, embedded seamlessly in the everyday objects
of our lives, and connected through a continuous
network”. The more recent concepts of Cloud
computing [17] and Internet of things [3] have the
promise of reliable service provision based on next
generation data centres, where the processing of data is
hidden from users and provides the user with easy and
understandable web based visualization.

Controlling devices from a remote location becomes
very important in the above mentioned scenarios, where
the devices are expected to provide intelligent services
to the users. The major issue in solving this problem is
mainly offered by the heterogeneous nature of the
hardware of the devices that are needed to be connected
and controlled. In past many efforts have been done to
provide remote connectivity to devices and to provide
remote control access via web and internet technologies
but the solutions provided were too tightly coupled with
the hardware and the implementation technologies. The
existing solutions are mostly applications specific and
so far no general model has been presented for
controlling actuating devices in the future network
scenarios. This paper presents a generic service-
oriented process model for control service in future
network paradigm. The process modelling notations
have been used to model different processes that enable
the control of devices and a prototype has been
developed to test the performance of the proposed
model.

The rest of the paper is organized as follows. Section
2 presents the conceptual model of the platform on
which the control model has been based. The section
describes the platform in terms of the layers and major
responsibilities of each layer. Section 3 provides a
detailed description of the proposed process model for
device control service in IoT scenario. The section
illustrates each process in step by step detail along with
graphical representation of the processes in the form of
business process model diagrams. In order to test the
proposed model, a simple prototype of the proposed
model was developed. Section 4 provides a brief
description of the implementation tools and
technologies for the development of the prototype.

Section 5 presents the experimental setup, the
network deployment, hardware and software platform
specifications and the results of the performance
analysis experiment. Finally, Section 6 concludes the
paper.

2. Control Platform
The proposed model for device control is based on a
generic platform shown in the Figure 1. The physical
devices indicate the hardware which is intended to be
controlled using the system. The middleware is
responsible for the connection and communication with

the heterogeneous hardware devices and implements
the necessary drivers and communication
technologies. Service Provider represents the sink
node which maintains a database to store the
information defining the connected devices and also
the data produced by the devices. Normally, control is
associated with actuating devices so the data produced
by such devices is normally the operational states of
the devices. The proposed scheme considers more
than one service providers in order to keep the system
simple and flexible.

Application Server

Service Provider

Middleware

Physical Devices

Client Application

Control
Message

Control
Message

Control
Message

Execution
Ack

Execution
Ack

Execution
Ack

Control
Command

Info
Visualization

Physical
Layer

Middleware
Layer

Service
Layer

Application
Layer

Service
Registry

Publish

Search

Figure 1. IoT paltform for device control.

The state data collected from the physical devices
by the middleware is forwarded to the service
providers. This is made possible by the control service
exposed by the service provider. The service provider
exposes provider service to enable the clients or the
application server to access the data and information
stored at the service provider’s database. The provider
services are published to the service registry in order
to be discovered and utilized by application server or
the clients. The service registry is a module with
Search and Publish interfaces and maintains a
database to store the service information. This
information is utilized by the service searching entities
(clients/ application server) to utilize the published
services.

Application server is the processing and binding
point for data and information offered by one or more
service providers. It also presents a connection point
for the clients to get integrated services based on the
provider services offered by individual service
providers. The binding of services (integration) is
performed by getting the service information for
multiple service providers from the service registry
using the search interface. The data offered by each
service provider is then combined according to a
predefined schema. In order to make the clients utilize
the combined data, the applications server exposes
(publishes) application server provider service. These
services are also published to the service registry from
where the clients may search and consume a service.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

3. Proposed Model
This section presents the illustration of the proposed
model for device control process in future networks.
The model has been described in the form of individual
processes at each layer. Each process is step by step
illustrated in the form for business process model
diagrams with various tasks at different layers. There
are four major processes and each one is explained as
follows.

3.1. Setup Process
The setup process configures the various components
of the system in order to initialize the system.
The setup process is mandatory so that all the
components (objects, connections, services etc.) are
initialized for the whole system to work properly. The
setup process involves the application layer and
service layer. The steps describe the process in details
and the steps are illustrated in Figure 2. Here devices
mean the actuating devices unless otherwise
mentioned.

Ap
pl

ic
at

io
n

La
ye

r
Se

rv
ic

e
La

ye
r

Ap
pl

ic
at

io
n

Se

rv
er

 p
ro

vi
de

r
Se

rv
ic

e
Re

gi
st

ry
De

vi
ce

 P
ro

vi
de

r
Se

rv
ic

e
Ap

pl
ic

at
io

n
Se

rv
er

M

an
ag

em
en

t
De

vi
ce

M

an
ag

em
en

t

Create device &
other contents’

Binding Info

Get Device ID
list

Save info to
AppServer
provider
Database

Store Binding
Info

Create
AppServer

Provider Info

Register Service
Info

Search Device
Provider
Services

Send Provider
service URI to
AppServer for

connection

Register service
infommation

Search Service
Information

Create Device
Info Attributes

and middleware
Config

Store device
info to device

provider

Create device
provider service

info

Register device
Provider Service

info

Store device
Information

Register service
infommation

Figure 2. Process model for setup of device control environment.

Device management module of the service layer
creates Actuator information (ID, Type etc.,) and saves
the info to the service provider’s database at the
Service Layer. This information is stored in the
provider’s data repository. The device management
module also creates the Service Provider’s service
information and registers it to the Service Registry
module at the Service layer. This enables the provider
service to be searchable by the clients which have a
link to the Service Registry module.

As the device control platform is proposed for an
indoor environment scenario, the location information
for the devices is provided by an information service
provider called as the GIS service provider. The GIS
Management module at the Service layer creates map
contents based on the map image (building area, floors
and rooms) and saves the info to the GIS Provider’s
database at the Service layer. The stored GIS contents
are made available for the clients by exposing a GIS
provider service. GIS Management module creates the
GIS Provider’s service information as an xml
document and registers it to the service registry module
at the Service layer so that other modules may search
and access the service.

In order to bind the information from different
providers, the Application Server Management module
searches the intended Actuator Provider service
information in the service registry module and sends it

to application server provider to get actuator
information from the respective service provider. the
application server management module also acquires
the intended GIS Provider service from the Service
Registry and binds the service to a map based on the
administrator’s choice. The GIS service must be
associated with a map because the GIS service
provider contains multiple maps and map contents.

Thus, each utilization of the service must associate a
map object with the service in order to use the GIS
contents related to that map. The application server
management module then creates binding information
for map coordinates and Actuator locations based on
the administrator choice. The Application Server
Management module finally saves the binding
information to the Application Server Provider
database, Creates Application Server Provider service
information and registers it to the Service Registry
Module.

3.2. Search Process
Service Registry module exposes the Search service
interface in order to enable the clients to search
services information in its service information
repository. The search service interface helps the client
to find the required service information using keyword
search and returns the service information through

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

which client may consume and utilize the respective
service. The search process involves the interaction
between application layer and the service layer. The
steps describe the process in details and the process is
illustrated in Figure 3.

Ap
pl

ic
at

io
n

La
ye

r
Se

rv
ic

e
La

ye
r

Cl
ie

nt
Ap

pl
ic

at
io

n
Se

rv
er

Se
rv

ic
e

Re
gi

st
ry

Pr
ov

id
er

 S
er

vi
ce

Get AppServer
URI

Service Search Return
AppServer URI

Connect to
AppServer

Request Service
Provider

Request Server for
Actuator position,

Actuator Info, state &
Attributes

Read Actuator
Info, state and
Attributes from

DB

Get Actuator
Position from

DB

Return the
contents

Combine the
contents

Display

 Figure 3. Process model for search process.

The client utilizes the search service exposed by the
registry service and using the search interface and
search keyword, the client queries the service
repository for the required provider or application
server services. It is important to note that client can
search and consume services exposed by service
providers for using the raw data from the underlying
hardware or may search and consume application
server’s services to get integrated data from multiple
service providers. In the current scenario, the control is
being provided by the application server so the client
utilizes the integrated service for location based control
of devices. Once the connection with the application
server is established, the client requests the Server for
actuator information and location data. Application
server requests the Application Server Provider to get
the Actuator Information and GIS contents from the
Actuator Provider database and GIS contents
repository. Application Server then integrates the

information from the two service providers and sends it
to client. The client then receives the information and
displays it to the user.

3.3. Service Registration Process
Registration service is the interface provided by
Service Registry module for Service Providers to make
their service searchable to the clients. The registration
service is utilized by the service providers to register
their service information with the Service Registry.
Using the registration service, the provider’s service
information (xml) is stored at the service repository at
the Service registry from where the clients can select
and utilize it using the search service. The process is
illustrated in Figure 4.

The service provider’s management module creates
the service information in the form of an xml file. This
information is then sent to the service registry module
using the registration service. The registration service
has the necessary implementation to send and store the
provider service information at the information
repository at the service registry module. The clients
may then search and utilize the registered services
using the search service interface.

3.4. Device Control Process
The actuator control process involves physical layer,
service layer and application layer. The process has
been illustrated in the Figure 5 with the division of
tasks at each layer. In order to control an actuator, the
actuator and the associated middleware must first be
configured.

Se
rv

ic
e

La
ye

r

Se
rv

ic
e

&
 D

at
a

M
an

ag
em

en
t

Se
rv

ic
e

Re
gi

st
ry

M
an

ag
er

(u

se
r)

Service
Management

Create Service
Provider Info

Save to Local
XML File

Register The
Info

Service Publish
API Called

Save Info to
Database

Information
Created

Read Service
info from File

Read Local XML
File File Found?

Figure 4. Service process model for device control service.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Ap
pl

ica
tio

n
La

ye
r

Se
rv

ice
 La

ye
r

Ph
ys

ica
l L

ay
er

Cl
ien

t
Ap

pS
er

ve
r

Pr
ov

id
er

Ac
tu

at
or

 Se
rv

ice

Pr
ov

id
er

M
id

dl
ew

ar
e

Ac
tu

at
or

Request
Provider for

Configuration
Info

Read
Middleware

Config Info from
DB

Provide
Middleware
Config Info

Middleware
Configured

Request
Middleware for

Connection

Update
Middleware

Mapping Table

Waiting for
Actuator

Connection
Request

Connection
Established?

Update Provider
Mapping Table

Create Control
Message

Send to
AppServer
Provider

Receive Control
Message from

client

Forward
Message to

Service Provider

Receive
Message From

Server

Forward
Message to
Middleware

Based on
Mapping Table

Receive
Message from

Service Provider

Forward
Message to

Actuator based
on Mapping

Table

Receive Control
Message

Execute Control
Message

Save Actuator
State

Return State &
Response
Message

Map back
Response

Message to
Provider Service

Map Back
Response

Message to
Server

Return
Response

Message to
Client

Receive
Response
Message

Display

Figure 5. Process model for service registration process

Thus the first step in the process is the configuration

of actuator middleware. the middleware requests the
configuration information from the actuator provider
and based on that information it creates a configuration
for the actuator network to be created. The middleware
then waits for a connection from the actuators at the
physical layer. Once actuators successfully connect to
the middleware, the middleware mapping table
(actuator, middleware mapping) is updated and the
same information is sent to actuator provider to update
the mapping table (middleware, provider mapping) at
the provider.

When the client creates a control message for
changing the operational state of an actuator, it sends
the message to the application server provider. The
application server provider receives the message and
forwards it to the appropriate actuator provider at the
service layer based on the actuator information. Based
on the provider’s mapping table, the provider forwards
the control message to the appropriate middleware.

Middleware receives the control message and based
on middleware mapping table, it forwards the message
to the appropriate actuator.

Actuator receives the message and executes it. After
execution of the control command, it sends a response
message with its current state information backwards
to the middleware. Middleware receives the response
message, saves the actuator state and based on the
middleware mapping table sends the response message
to the actuator provider. Actuator provider uses its
mapping table to send back the response message to
the application server provider. Finally, the application
server returns the response message to the client,
which displays the new state of the actuator.

4. Implementation
This section provides a brief description of the
implementation technologies used for the development
of the system. The services in the proposed scheme
have been implemented by using Windows
Communication Foundation (WCF) technology in the
.Net framework. The data and service repositories are

implemented using SQL Server 2010. The client
application for the utilization of the services and data is
implemented using Microsoft Silverlight 4.0.

5. Performance Analysis
5.1. Experimental Setup
Figure 6 shows the experimental setup for testing the
performance of the proposed process model for device
control in IoT. The figure shows the network setup for
various modules of the system. For this experiment, an
actuator emulator has been used to emulate the
functionality of actuating devices such as Fan, Light,
AC and Boiler/heater. A specialized Control Requester
module has been developed for the sake of experiment.

Device

Emulator Middleware
Service

Provider

Control
Requester

Ethernet

Figure 6. Network composition for experiment.

The control requester can be configured to
simultaneously request the control of single or multiple
devices attached to the system. For this experiment the
actuator emulator uses TCP connection to connect to
the middleware. The middleware in turn uses the
control service exposed by the service provider. The
Control requester module utilizes the provider service
exposed by the service provider for evaluation at the
service layer while for the Application layer testing;
the requester utilizes the provider service exposed by
the application server.

Table 1 summarizes the experimental setup in terms
of the hardware and software used. The table presents
the hardware in terms of processor specification,
Memory and graphic adaptor used in each server. The

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

software includes the development environment and
the backend database used at each station.

A control requester module was specially designed
for the sake of this experiment which utilizes the
control service exposed by the control service provider.

Table 1: Hardware and software sepcifications

 Server 1 (mcl-12) Server 2 (mcl-16) Client 1 (mcl-11)

Operating
System

Microsoft
Windows 7(X64)

Microsoft Windows
7(X64)

Microsoft Windows
7(X64)

Development
Environment

.Net Framework
3.5, 4.0

.Net Framework 3.5,
4.0

.Net Framework 3.5,
4.0

DBMS
Microsoft SQL

Server 2012
express

Microsoft SQL Server
2012 express -

Hardware

CPU: Intel®
Core™ W3503 @

2.39GHz

CPU: AMD®
Athlon™64 X2 Dual
Core Process 6000+

@ 3.1GHz

CPU: Intel® Core™
i5-3570 @ 3.40GHz

RAM: 4GB RAM: 5GB RAM: 4GB

Graphics: NVIDIA
GeForce FX 580

Graphics: Standard
VGA Graphics

Adapter

Graphics: NVIDIA
GeForce GT 440

 The requester is designed in such a way that it can

select anyone of the available devices and then may
issue a control command for that specific device using
the control service. The command message is then
processed at the provider and forwarded to the
intended middleware. The middleware forwards the
control message to the specific device and takes back
the response. This response message is routed back to
the control requester. The time between the issuance of
a command message and the reception of the response
message by the control requester is measured as the
delay.

5.2. Results
Performance analysis has been performed based on the
level of device control service provision and the
measurements taken at two different levels e.g. the
Service Provider level and the Application Server level
have been compared. Figure 7 shows the graph of
minimum, maximum and average delay for
performance measurement at the service layer. As
mentioned in the previous section, at the service layer
resides the service providers. Clients or other
applications may directly consume the control service
exposed by the provider. The graph is a depiction of
the control delay in terms of minimum, maximum and
average delay in three different scenarios. In the first
scenario, control requester is configured to control 1
device using the control service. The time for control
requester to issue a control message and getting back
the response message is recorded for 20 iterations. In
the second scenario, control requester is configured to
simultaneous control 5 devices using the control
service and in the third scenario, 25 devices are
simultaneously issued control commands by the
control requester module.

Figure 7. Control service performance at service layer.

Figure 8. Control service performance at application layer.

6. Conclusions
In this paper we presented a general model for device
control service in actuator web as part of the IoT
system. The proposed model is based on service-
oriented platform, which has been illustrated in the
paper. The processes for system configuration, service
registration, service search and device control service
have been illustrated step by step using business
process model diagrams. The paper also presents a
prototype implementation of the control service based
on the service-oriented platform. The prototype has
been evaluated for performance in terms of control
service provision at service as well as application
layer. The results shows that the model can be adopted
as a generic service-oriented solution in scenarios
where actuating devices connected in a network need
to be controlled. Further, the prototype system
presented here will be developed into a larger system
for autonomous control system based on the
integration of various service providers like the one
presented in this article. We also intend to include data
semantics based on ontology for improved automated
reasoning and decision making capabilities in the
future system.

Acknowledgments

This work was partly supported by Institute for
Information and communications Technology
Promotion (IITP) grant funded by the Korea
government (MSIP) (No.10043907, Development of
high performance IoT device and Open Platform with
Intelligent Software). And This research was supported
by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

2015-H8501-15-1017) supervised by the IITP(Institute
for Information and communications Technology
Promotion).

References
[1] Cattell, R. G., and Inscore, J. J2EE in Practice:

Building Business Applications with the Java 2
Platform Enterprise. Addison-Wesley Longman
Publishing Co., Inc., 2001.

[2] Chang, E. C. P. "Internet based remote camera
control system." In Proceedings of the IEEE
Intelligent Vehicles Symposium, pp. 126-129,
1996.

[3] Gubbi, J., Buyya, R., Marusic, S., and
Palaniswami, M. "Internet of Things (IoT): A
vision, architectural elements, and future
directions." Future Generation Computer
Systems, vol 29, no. 7, pp.1645-1660, 2013.

[4] Han, K. H., Kim, S., Kim, Y. J., Lee, S. E., and
Kim, J. H. "Implementation of Internet-based
personal robot with internet control architecture."
In Proceedings of International Conference on
Robotics and Automation, IEEE ICRA., vol. 1,
pp. 217-222, 2001.

[5] Hernández, A., Mora, F., Villegas, G.,
Passariello, G., and Carrault, G. "Real-time ECG
transmission via Internet for nonclinical
applications." IEEE Transactions on Information
Technology in Biomedicine, vol. 5, no. 3, pp.
253-257, 2001.

[6] Lin, P. I. H., and Broberg, H. L. "Internet-based
monitoring and controls for HVAC applications."
IEEE Industry Applications Magazine, vol. 8, no.
1, pp. 49-54, 2002.

[7] Luo, R. C., Tzou, J. H., and Chang, Y. C. "An
Internet-based remote control and monitoring
rapid prototyping system." In 27th Annual
Conference of the IEEE Industrial Electronics
Society, IECON'01, vol. 1, pp. 159-164, 2001.

[8] Maskeliunas, R., and Raudonis, V.
“ROBOSOFA-Low cost multimodal I/O fusion
for smart furniture”. Int. Arab J. Inf.
Technol., vol. 10, no. 4, pp. 317-328, 2013.

[9] Perera, C., Zaslavsky, A., Christen, P., and
Georgakopoulos, D. "Sensing as a service model
for smart cities supported by internet of things."
Transactions on Emerging Telecommunications
Technologies, vol. 25, no. 1, pp. 81-93, 2014.

[10] Sessions, R. COM and DCOM: Microsoft's
vision for distributed objects. John Wiley &
Sons, Inc., 1997.

[11] Sou, K. C., Weimer, J., Sandberg, H., &
Johansson, K. H. "Scheduling smart home
appliances using mixed integer linear
programming." In 50th IEEE Conference on
Decision and Control and European Control
Conference (CDC-ECC), pp. 5144-5149, 2011.

[12] Taylor, K., and Dalton, B. "Internet robots: a new
robotics niche." IEEE Robotics & Automation
Magazine, vol. 7, no. 1, pp. 27-34, 2000.

[13] Wang, Z., Ding, H., Han, J., and Zhao, J. "Secure
and Efficient Control Transfer for IoT Devices."
International Journal of Distributed Sensor
Networks, 2013.

[14] Yang, Z., and Duddy, K. "CORBA: a platform
for distributed object computing." SIGOPS
Operating Systems Review, vol. 30, no. 2, pp. 4-
31, 1996.

[15] Yick, J., Mukherjee, B., and Ghosal, D.
"Wireless sensor network survey." Computer
networks, vol. 52, no. 12, pp. 2292-2330, 2008.

[16] Weiser, M., Gold, R., and Brown, J. S. "The
origins of ubiquitous computing research at
PARC in the late 1980s." IBM systems journal,
vol. 38, no. 4, pp. 693-696, 1999.

[17] Zhang, Q., Cheng, L., & Boutaba, R. "Cloud
computing: state-of-the-art and research
challenges." Journal of internet services and
applications, vol. 1, no. 1, pp. 7-18, 2010.

Muhammad Khan received his
B.S. and M.S. degrees from
Computer Software Engineering
Department, University of
Engineering and Technology
Peshawar in 2008 and 2012
respectively. Meanwhile, he had

been a part of the software development industry in
Pakistan as a designer and developer. From 2010
onwards, he has been working as a faculty member at
his parent department. Currently, he is pursuing his
Ph.D. studies from Jeju National University, South
Korea and is associated with the Mobile Computing
lab at JNU. The major focus of his work is the
application of software design strategies towards the
design and development of Sensor-Actuator Networks
and Internet of Things.

DoHyeun Kim received the B.S.,
M.S. and P.D degrees in Electronics
Engineering from Kyungpook
National University, Taegu, Korea,
in 1988 and 1990, 2000 respectively.
He joined the Agency of Defense
Development (ADD), Korea, in

1990. Since 2004, he is currently a professor at the
Department of Computer Engineering at Jeju National
University, Korea. His research interests include sensor
web, optimization algorithm and context prediction.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

	Service-Oriented Process Modelling for Device Control in Future Networks
	Client 1 (mcl-11)
	Server 2 (mcl-16)
	Server 1 (mcl-12)
	Operating System
	.Net Framework 3.5, 4.0
	.Net Framework 3.5, 4.0
	.Net Framework 3.5, 4.0
	Development Environment
	Microsoft SQL Server 2012 express
	Microsoft SQL Server 2012 express
	-
	DBMS
	Hardware

