
An Architecture of Thin Client-Edge Computing
Collaboration for Data Distribution and Resource

Allocation in Cloud

Aymen Abdullah Alsaffar, Pham Phuoc Hung, and Eui-Nam Huh
Department of Computer Science and Engineering, Kyung Hee University, South Korea

Abstract:These days, Thin-client devices are continuously accessing the Internet to perform/receive diversity of services in the
cloud. However these devices might either has lack in their capacity (e.g. processing, CPU, memory, storage, battery,
resource allocation, etc) or in their network resources which is not sufficient to meet users satisfaction in using Thin-client
services. Furthermore, transferring big size of Big Data over the network to centralized server might burden the network,
cause poor quality of services, cause long respond delay, and inefficient use of network resources. To solve this issue, Thin-
client devices such as smart mobile device should be connected to Edge computing which is a localized near to user location
and more powerful to perform computing or network resources. In this paper, we introduce a new method that constructs its
architecture on Thin-client -Edge computing collaboration. Furthermore, present our new strategy for optimizing big data
distribution in cloud computing. Moreover, we propose algorithm to allocate resources to meet service level agreement (SLA)
and QoS requirements. Our simulation result shows that our proposed approach can improve resource allocation efficiently
and shows better performance than other existing methods.

Keywords:Cloud computing, data distribution, edge computing, resource allocation, and thin client.

Received January 19, 2015; accepted August 12, 2015

1. Introduction
Internet of Things (IoT) is a technology that enables
many objects (e.g. smart mobile devices, tablets, home
appliances, etc) which also known as Thin-client to
connect to Internet to perform diversity of computing
services (e.g. processing, memory, storage,
virtualization, etc) as well as others (e.g. receive/send
data, surf internet, access social websites, etc). As a
result, mobile services are presence in almost every
aspect of our daily life (e.g. education, health care,
commerce, etc). In spite of mobile computing
astonishing convenience and flexibility it offers, still it
has deficiency in ability to perform heavy computing
tasks/fast high data transmission due to restriction in
mobile devices resources (memory, processing, battery
life, CPU, storage, etc) as well as restriction in network
bandwidth when we consider variety of devices. To
overcome this issue, we use mobile cloud computing
(MCC) [10] and Edge computing [14]. MCC leverages
on the cloud technique for storage and process on
mobile devices or collaborate with edge Compuitng to
acquire sufficient resources. Edge computing can also
be considered as mobile cloud Compuitng where it
perform the same services as mobile cloud computing.
Edge computing is localized which moves data and
computation closer to user location where MCC is
centralized. Edge computing is an important method
for delivering web data over the internet [14].

One of the ways to alleviate this issue is by using
mobile cloud computing (MCC) [10], which leverages
on cloud computing technique for storage and
processing of data on mobile device, or collaborating
with external devices to get more resources. This can
be released with minimal management effort or
service provider interaction. Connecting massive
number of smart devices to MCC to perform
computing might burden the network and the MCC as
well. Therefore, edge computing is efficient solution
where it provides better resource management, quick
delivery of data, and fast access. In another word, we
are moving all the service in MCC to be performed in
edge computing based on the requested service/size of
data that is need to be sent in order to be processed.

There is some research developed to minimize the
shortcoming of MCC. In [6], the author introduces
guidelines to create framework of virtual mobile cloud
computing provider. The framework advantages is
being nearby thin-client to develop on-the-fly
connection which avoid the need to connect to
infrastructure based cloud. In spite of that, it has
restriction in thin-client capacity and low bandwidth
between thin-client and cloud because of the long
distance. Edge computing has higher capacities and
fast strong connections with much higher bandwidth.
Sufficient bandwidth is very critical issue where the
higher bandwidth we have the higher quality of
services is received [17].

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Therefore, in this paper we introduce a new
architecture that collaborate thin-client and edge
computing which enhances its capacities. Furthermore,
we introduce our new strategy for data distribution
optimization such as big data. Moreover, we introduce
an algorithm to perform resource allocation in order to
satisfy service level agreement and quality of service
(QoS). We also introduce new communication
protocols between components on our architecture. Our
simulation show that our approach can improves the
efficiency of resource allocation and shows a better
performance comparing with others.

The rest of the paper is organized as follows. In
section 2, we introduce related work. In section 3, we
present overview of edge computing. In section 4, we
present our motivation scenario. In section, 5, we
introduce our system architecture. In section, 6 we
present our proposed communication protocol. In
section 7, we present our implementation and analysis
result. Finally, in section 8 we present our conclusion
and future work.

2. Related Work
There are many searches attempting to resolve
previously mentioned issues. In [19], the author
proposed efficient cloud based synchronization for
number of hierarchy distributed number of file system.
They utilize the concept of master-slave architecture in
order to propagate data to reduce traffics. The author in
[2], is presenting resource scheduling methods which
can be efficient in mitigating the impacts that can
influence application time of respond and utilization of
the system. The authors in [3] and [11] is present the
impact of data transmission delay on the performance.
In [9] the author introduce one way to make a parallel
processing to big data which will increase the
performance in federated cloud computing. In spite of
that, these researches do not statehow much resources
should be used.

There are also many researches done dealing with
resource allocation. In [7] illustrate that shared
allocation is superior to dedicated allocation. In spite of
that, the author does not perform experiment with an
arbitrary number of SLA and does not show how fast
the server needs to be to guarantee QoS. In [13] and
[14] the authors provide services to huge number of
SLA even though it is difficult to obtain performance
between shared allocation and reserved allocation. In
[12] the author present model for securing resource
allocation in cloud computing where it design fuzzy-
logic based trust and reputation model.

Many researches have been done to provide better
way for the integration of mobile devices and cloud
computing. In [20] the author introduces an idea
utilizing cloud to improve the capability of mobile
devices. In [16] the author makes changes to Hyrax
which enables mobile devices to use cloud computing

platforms. The idea of utilizing mobile device as a
provider of resources is introduce. However, the
experiment is not integrated.

In [4], the authors just concentrate on using
partition policies to hold the effect of application on
mobile devices, but do not solve any other matter
related to mobile cloud computing. To the best of our
knowledge, there are not so many researches
considering collaboration of thin-client and edge
computing to provide better way of managing data
distribution and resource allocation in edge computing
instead of MCC as well as creating protocol to show
how these entities can communicate with each other.

3. Overview of Edge Computing
Edge computing was design to be located at the edge
of network to provide scalability and availability of
web services. It allocates the logic of application and
the underlying data to network edges [8]. Some of
edge computing advantages are 1) reduce down
network latency, faster respond to end user, better user
of resource, reduce the cost of scalability, and fast data
delivery [8]. Edge computing consider as an
extension of content delivery network as well as
mobile cloud computing because it offers all of mobile
cloud capabilities. Edge computing can be helpful
with applications that run database where it can
distribute the section of database to edge servers for
farther processing [8]. Therefore having edge server
located closer to user location provides significant
advantages.

4. Motivating Scenario

Figure 1. Motivating Scenario Architecture

Figure 1. illustrates our scenario which reflects the
benefits of the IoT-Edge Computing collaboration.
Our scenario start when user takes some pictures of
food which they are eating and later on they want to
cooking at home. The user decided to cook the same
food in the picture at home. However, it is
inconvenient and not safe to hold the smart phone in
their hand while they are cook. Some of today home
appliances such as refrigerator carry big screen and
capable to connect to internet. The user sends the food

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

picture to refrigerator to obtain food ingredient and
cooking instructions. User can look at the screen or
listen to the cooking instruction which is read by
refrigerator system.

Unfortunately, the direct Internet connection of the
refrigerator only has a restricted bandwidth and
capacity to perform searches for food which might
generate thousands of search result and required long
respond time. Instead the refrigerator can connect
toedge computer then requests the edge computer to
access the internet to look for the information. After
receiving information, the result will be returns to the
refrigerator. Finally, the user can see or hear the
cooking instructions.

Our scenario in using thin-client and edge computing
introduce the potential benefit of their collaboration in
cloud computing environment which increases the
opportunity of using and managing resource efficiently.
In spite of that, the issues here are; 1) how to optimize
data distribution?; 2) how to increase/better managing
resources efficiently?; and 3) how to allocate sufficient
resources to satisfy a diversity of Service Level
Agreements (SLA).

5. System Architecture
Our system architecture consists of three Layers which
are illustrated in figure 2. The lowest layer consists of
User IoT devices such as Refrigerator, Smart TV,
Smart Oven, Smart Phone, etc which is capable to
connect to each other through WiFi, 3G and LAN. The
middle layer is the underlying network which consists
of Edge computing and 3rd party Edge computing. We
need 3rd party Edge computing because 1) sometimes
some requested services might not be offered by home
Edge computing and 2) due to the popularity of Edge
computing, countless number of IoT smart devices
might be connected to Edge computing requesting
services which might be too much for it to handle, so
some of the requested services can be redirected to 3rd
party Edge computing. In this case we can guarantee
QoS. The upper layer is cloud computing environment
and it consist of Mega data center, Edge location
server, Edge broker server which is purpose to receive
new service requests and 3rd part mega data center.
Most of the work will be accomplished by lower and
middle layer.

Figure 2. Our Proposed System Architecture.

Most of previously introduces approaches uses
1/m/1 model to resolve the above mentioned problem.
However, our proposed utilize 1/m/m/1 model for
resolving the problem. When the data is send to Edge
computing, it will be divided into multiple blocks.
These blocks will be assigned to certain VMs where
each block is divided into multiple chunks which
transferred to multiple processors for processing. After
receiving the processed data, the processors join them
into one data and send them to user IoT devices. In
this case we do not burden the system to process big
size data, ensure the availability of the server to
process other request when they exists, and guarantee
fast respond to ensure QoS.

The overall process is divided into two phases.
Phase 1 will involve 1) determine VMs needed
minimum number and the speed of that VMs, and 2)
sorting, dividing and assigning data to VMs based on
VMs current capacity. Phase 2 will involve 1)
distribute data that has different capacities to
processors, and 2) merging data and send to IoT
devices. Table 1 describe our system component and
their role.

Table1. System component and their role.

Component Role

IoT Smart Devices Responsible of connecting to Internet through
the network (WiFi, 3G, LTE, etc).

Edge Computing
Responsible of receiving user requests and

providing service such as processing, storage,
bandwidth, etc.

3rd Party Edge
Computing

Responsible of providing other services and
processing received service by other edge

Compuitng server.
Mega Data Center Responsible of providing services in the cloud.

3rd Party Mega Data
Center

Responsible of providing other services which is
not provided in the mega data center.

Edge Location Server

Responsible of which stores addresses edge
computing server for fast requests respond and

is used by edge computing to locate other
nearby edge computing to request previous

offered services.

Edge Broker Server Responsible of receiving new services requested
by the IoT device users.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

5.1. Phase 1 of Our Proposed Method
5.1.1. Determine VMs Need Minimum Number

The purpose of algorithm 1 is to determine the
minimum number of VMs depending on SLA. We
utilize cumulative distribution function (CDF) F(x)
time respond which is available in [1]. Until the F(x)
reaches the targeted probability, the minimum
numberof VMsm keeps increases. Finally, we received
the required m for SLA. Below is the description of
F(x):

F(x) =Probability (time of response < x) =

()

−≠
+−

+−−
−−−

−−−

−=−−−−

1for
1

1
11

1for 1

im
im

imx
eimx

ekxe

imxxekxe

σ
σ

σµσµ
µµ

σµµµ

(1)

Where σ = λ ∕μ

() ()σim
im

!im
μim

σ0pk
−

∗
−

=

()

1
1

0 !!
)0(

−

∑
−

= −
+=

m

n mm

mmp
n

n
P

σ
σ

(2)

𝜆𝜆 is the arrival rate and μ is the service rate.

Algorithm 1: Determining the No. of VMs

Input:
1. ƛ // rate of arrival
2. µ // rate of service
3. SLA(x,z) // x:time of response
// z: probability target
Output: m // required minimum no. of VMs
4. Float σ=ƛ/µ
5. Function determineMinVM(σ,µ,x,z) {
6. If (σ -- (int) σ) m-(int) σ;
7. Else m= (int)Math.floor (σ) + 1;
8. While F(x) <= z, m++;
9. Return m;// required minimum no. of VMs}

Usually, edge computing infrastructure may provide
diversity of services to satisfy a large number of SLAs
by utilizing FCFS scheduling methods which is
illustrated in Figure 3. Therefore, we recommend
allocating the VMs into two groups where the first
group will be used for Shared Allocation (SA)
msharedAllocation and the second group will be used for
Reserved Allocation (RA) mreservedAllocation. For shared
allocation, the arrival jobs of SLA are combined into a
single steamed and served by m VMs. As for reserved
allocation, we provide one VMs for each arriving job
which illustrated in Figure 4.

Figure 3. Service Level of Agreements (SLA) Consideration.

Figure 4. Our proposed strategy of resource allocation.

In shared Allocation, all of SLAs will have the
same CDF of response time and arrival rate ∑

=
=

k

i
i

1
λλ . As

a result, the minimum number of VMs mSharedAllocation to
meet k SLAs is given by:

 ()kmimmcationSharedAllom ,...,,...,1max= (3)

𝑚𝑚𝑖𝑖refer to the number of VMs required to satisfySLAi
of useri. Let msharedAllocation become the smallest number
of VMs which is required to meet k SLAs in Reserved
Allocation. So mReservedAllocation is given by:

∑
=

=
k

i
imcationservedAllom

1
Re

(4)

As a result, when more than one requesters have the
same SLAs, Shared Allocation will provide same or
better performance than Reserved Allocation
(msharedAllocation<=mReservedAllocation). But, if SLA1, SLA2 are
different for Shared Allocation and Reserved
Allocation, then it is difficult to determine which one
is better than the other.Table 2 shows an example of
both shared and reserved allocation.

In the first case, mReservedAllocationis better than
msharedAllocationeven though the reverse case is true in the
Shard allocation.

Table 2. Proposed cases example.

Case 𝛌𝛌1 𝓧𝓧1,𝓨𝓨1 𝛌𝛌2 𝓧𝓧2,𝓨𝓨2 mReserved mShared
1 3.9 3,0.7 3 10 10 11
2 3.9 3,0.85 2.9 12 12 10

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

In order to satisfy SLA1,SLA2 , we are trying to
discover the best favourite strategy regarding shared
allocation of reserved allocation. Furthermore, the VMs
can ensure the quality of service as well. Let E(SLA)
refer to the average number of VMs which is required
to meet the given SLA over the considered arrival rate.

() ()∑ ∫=

k
yxk

k
SLAE

0
,,

1

(5)

Let D be the SLA difference between both SLA1 and
SLA2. D is given by:

 () ()21 SLAESLAED −= (6)

In Algorithm 2, we state the allocation strategy to
satisfy service level agreements and quality of service.
In table 3, we show the relationship between D and
angle α. Every D is fixed by the change in arrival time
λ1,λ2 in (0,30) and average angle of SLA difference for
every range. We state angle α by the following formula
which is presented in Figure 5:

 ()22112sin λλλλλα ∗+∗= sqrt (7)

Table3. Service Level Agreement Difference (SLA)

D 𝛂𝛂
(0,20) 0
(20,40) 20
{40,66} 50

(66,88) 70

Figure 5. Allocation strategy.

Here we need to discover the speed of VM to
guarantee quality of service. In addition we are
applying little law [18] which we describer below;

[]

() µ
λ

=
−

= p where
1 p

pNE

(8)

E[N] denotes the no. of jobs in the system. As a result,
the processing time expectation is as follow:

[]

[]
() () λµµλλ −

=
−

=
−

==
1

1
1

1 pp
pNE

TE

(9)

We set the bellow formula to satisfy QoS:

 []
λµ +>=

TE
1

(10)

Based on this formula , we can discover the VMs rate
service. We present the bellow example to set it clear.

Let’s say for example we want E[T] <= 10 second,
λ=1 job/sec, then the needed VM rate is as fellow:

 10
111

10
1
+>=µ (11)

Algorithm 2: Determining the allocation strategy

Input:
1. ƛ1, ƛ2// rate of arrival
2. µ // rate of service
3. SLA1, SLA2
4. E // processing time expectation
Output:
5. SA, RA //shared and reserved allocation strategy
6. Function determineAllocStrategy (ƛ1,ƛ2,SLA1,

SLA2,E,µ){
7. Calculate SLA difference D
8. Get the corresponding angle α from the SLA difference table
9. If (µ>= (1/E[T] +ƛ1) && µ>=(1/E[T]+ƛ2))
10. If (Math.asin(ƛ2/sqrt(ƛ1*ƛ1 + ƛ2*ƛ2)) <=α)
11. Return RA // reserved allocation
12, Else
13. Return SA // sharedallocation
14. Else
15. Return false {

5.1.2. VMs Capacity

In this section we will sort, divide and assign data to
VMs current capacity. In order to set data priority we
utilize training data to sort out the data. The data with
high priority will be transferred first and the data with
low priority will be transferred last. The data can be in
blocks {bl1, bl2,…,bln} which has different sizes.
Then we uses Greedy algorithm to select the best VMs
based on their capacities. Finally, we assign VMs with
higher capacity to the block with big size. Figure 6
illustrate the proposed methods of assigning data to
VMs.

Figure 6. The assignment of data to VMs.

5.2. Phase 2 of Our Proposed Method
5.2.1. Distribute Data Block

In this section we distribute data block that has
different capacities to processors. We start by dividing
data to block where the blocks also will be divided to
small size called chunks{chk1, chk2, …, chkn} which
has different size depending on the bandwidth

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

strength. chki denote to chunk in each block. w(chi)
denote to the size of chunk. bwi denote the bandwidth
between VMs and processor. w(chi)/bi represent the
time it takes to send chunk from VMs to processor.
When we consider parallelization, then the time it takes
to send chunks of data to processors should even.

() () () ()

t
ibw

ichkw
bw
chkw

bw
chkw

bw
chkw

==== ...
3

3

2

2

1

1

(12)

() ()∑

=
∑
=

===
n

i

n

i
ibtchkwblockwSet

0 0
 S

(13)

Therefore:

() ibn

i
ib

S
ibtichkw ∗

∑
=

=∗=

0

(14)

Based in the above stated value, we are able to
determine the size of every chunk to adapt it with the
bandwidth. Then we sort out the processor based on
their capacities. The bigger the chunk of data will be
sent to processor with higher capacity to process it.

5.2.2.Merging Data

In this section we try to merge data and then send it to
IoT devices. The use of peer-to-peer synchronization
might generate complexity between processors. As a
result, we make edge computing to act as master which
will receive chunk of data from other processors to
reduce the complexity which result from firewall
between processors. Figure 6 illustrate four processor
example as well as master-slave and all-to-all
communication methods.

Figure 7. Communication strategy architecture.

6. Propose Our Communication Protocols
In this section we present our develop communication
protocol. The communication protocol takes place
between;

• Smart IoT devices and Edge computing
• Edge computing and other edge computing in

inter/intra network area.
• Edge computing and 3rd party edge computing.

Due to the significant advantages of edge computing,
most of the IoT devices requested service will be
redirected to edge computing instead of cloud
computing for the fact of being localized. This might
lead to overhead, low performance and poor quality of

services. As a result, we create communication
protocol between edge computing’s as well as 3rd
party edge computing which enablesthese components
to smoothly communicate with each other. Some of
the requested service might not be available in user
home edge computing, therefore we can request from
3rd part edge computing which will guarantee quality
of services. Figure 8, 9 and 10 illustrate a sequence
flow diagram of proposed communication protocols.

Figure 11 illustrate the communication protocols
between the above mentioned entities. We assign
global address for each edge computing server which
is generated by Edge computing location server which
will make it easy to discover/communication with
other 3rd party edge computing as well as other edge
computing. For the first time, edge computing need to
connect to edge computing location server to discover
surrounding other edge computing server. After that
they just connect directly to them. We use the same
approach in [5] to create the communication methods.
This method will create tunnel between entities (MAG
and LMA) in order to send data/ share data between
each other. In our case we will use this method to
create the communication of the entities mentioned
above.

Figure 8. Sequence flow diagram between IoT device and edge
computing.

Figure 9. Sequence flow diagram between edge computing and
other edge computing in inter/intra network area

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Figure 10. Sequence flow diagram between edge computing and 3rd party
edge computing in inter/intra network area

Figure 11. Communication protocols

7. Implementation and Analysis
In this section, we used numerical simulation to
examine the efficiency of Shared Allocation (SA) and
Reserved Allocation (RA). Furthermore, we compare
the performance of our proposed approach with
existing one. The parameter in our simulation consists
of arrival rate (λ), response time (x), the targeted
probability (y), and the proposed algorithms. We use
Java (jdk-7u7-i586 and Netbeans-7.2) to generate our
simulation. The result proves that the shared allocation
and reserved allocation almost have the same impact
when they have the same SLA with different arrival
rate(λ), response time(x), and target probability (y). We
also experimenting inthe same case but we used
multiple SLA instead of single one.

Figure 12 illustrates shared allocation and reserved
allocation with different response time. The result
shows that the response time increases when the
smallest number of VMs decreases. It also shows that
when we set different respond time for shared and
reserved allocation, the probability is almost the same
for both of them.

Figure 13 illustrates SLA different target probability
of shard allocation and reserved allocation. The result
shows the minimum number of VMs which is needed
to meet SLA satisfaction. For example, when the target

probability to meet SLA is 0.2, then we need
minimum of 5 VMs for shard and reserved allocation.
Therefore we meet SLA different target probability for
shared and reserved location.

Figure 12. Different time response of shared and reserved
allocation.

Figure 13. SLA different target probability of shared and reserved
allocation

Figure 14. Different arrival rate of shared and reserved allocation.

Figure 14 illustrate Different arrival rate of Shard
allocation and reserved allocation. The result shows
the minimum number of VMs which is required to
meet SLA which is equivalent to different arrival rate.
For example, we need minimum number of 3 VMs
when the arrival rate is 1.

When considering working with multiple SLAs, it
is recommended that the strategy of shared allocation
is more resource efficient than reserved allocation.
Figure 15 illustrate the result of different SLAs of
shard allocation and reserved allocation. The result
shows that share allocation uses fewer VM than
reserved allocation when the number of SLA

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

increases.As a result, reserved allocation can provide
guarantee rate due to the offering of resources.

Figure 15. Different SLAs of shared and reserved allocation

Furthermore, we compare the processing time of
sending big size of data to destination for our proposed
system with other approaches that uses only one single
processor. Figure 16 illustrates a comparison of our
proposed approach with other approaches that uses only
one processor to process big file size. For example, the
processing time for file size of 200Mb using our
approach results in less processing time than other
approaches that uses one processor. The result shows
that our proposed approach results in a better
performance than other approach (uses one processor).

Figure 16. Comparison of our proposed approach with other

approaches.

Figure 17 illustrate the result regarding the number
of thin clients/edge computing with respect to thin
clients’ workload.We calculate the minimum number of
thin client/edge computing which are able to satisfy
thin client requirement with different workload. When
the thin client work load increase, the number of edge
computing increase in order to satisfy the requirement.

Figure 17. Thin clients workload

Conclusions
In this paper, we have introduced a system
architecture that utilizes the thin-client – edge
computing collaboration to enhance thin client
capacities. We introduce efficient strategy to optimize
the data distribution in edge computing. In addition,
we create algorithms to allocate resources to meet
service level agreement and quality of service.
Furthermore, we propose a new communication
protocol that allows entities in our system architecture
to communication or share data. We simulated our
proposed system to evaluate our method. Our
proposed approach enhances resource allocation and
shows better performance than other previous
approaches.

Acknowledgments
This research was supported by the MSIP(Ministry of
Science, ICT and Future Planning), Korea, under the
ITRC(Information Technology Research Center)
support program (IITP-2015-(H8501-15-1015)
supervised by the IITP(Institute for Information &
communications Technology Promotion)). The
corresponding author is Eui-Nam Huh.

References
[1] Andreolini M., Casolari S., and Colajanni M.,

“Autonomic Request Management Algorithms
for Geographically Distributed Internet-Based
System,” Self-Adaptive and Self-organizing
System, Second IEEE International Conference
on (SASO’08), pp.171-180, 20-24 Oct. 2008.

[2] Delgado J., Sadjadi S.M., Fong L., Yanbin L.
Bobroff N. and Seelam S., “Efficiency
Assessment of Parallel Workloads on
Virtualized Resources,” 2011 Fourth IEEE
International Conference on Utility and Cloud
Computing (UCC), pp. 89-96, 5-8 Dec,2011.

[3] Fan P., Wang J., Zheng Z., and Lyu M.R.,
“Toward optimal deployment of communication-

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

intensive cloud applications,” 2011 IEEE
International Conference on Cloud Computing
(CLOUD), pp. 460-467, 4-9 July, 2011.

[4] Giurgiu I., Riva O., Juric. D., Krivulev I., and
Alonso G.,“ Calling the Cloud: Enabling Mobile
Phones as Interfaces to Cloud Applications,”
Lecture Notes in Computer Science, vol. 5896,
pp. 83-102. 2009.

[5] Gundavelli S., Leung K., Devarapalli V.,
Chowdhury K., and Patil B.,” Proxy Mobile
IPv6,” http://tools.ietf.org/pdf/rfc5213.pdf

[6] Huerta-Canepa G. and Lee D.M., “A Virtual
Cloud Computing Provider for Mobile Devices,”
1st ACM Workshop on Mobile Cloud Computing
& Services: Social network and Beyond, no. 6,
June 15, 2010, San Francisco, California, USA.

[7] Hu Y., Wong J., Iszlai G. and Litoiu M.,
“Resource Provisioning for Cloud Computing,”
Proceedings of the 2009 Conference of the center
for advanced studies on Collaborative Research
(CASCON), pp. 101-111, 2009, USA.

[8] Hwee-Hwa P., and Kian-Lee T., “Authentication
Query Results in Edge Computing,” 20th
Conference on Data Engineering 2004, pp.560-
571, 30 March-2 April, 2004.

[9] Jung G.Y., Gnanasambandam N., and Mukherjee
T., “Synchronous Parallel Processing of Big-Data
Analytics Services to Optimize Performance in
Federated Clouds,” 2012 IEEE 5th International
Conference on Cloud Computing (CLOUD),
pp.811-818, 24-29 June, 2012.

[10] Kumar K. and Yung-Hsian L., “Cloud Computing
for Mobile Users: Can Offloading Computation
Save Energy?,” IEEE Computer, vol. 43, no. 4,
pp.51-56, April 2010.

[11] KwokM.,” Performance Analysis of Distributed
Virtual Environments,” PhD Thesis, University of
Waterloo, Ontario, Canada, 2006.

[12] Kamalanathan C., Valarmathy S. and Kirubakaran
S.,”Designing a Fuzzy-Logic Based Trust and
Reputation Model for Resource Allocation in
Cloud Computing,” the International Arab Journal
of Information Technology, vol. 13, no. 1, 2013.

[13] Li J., Chinneck J., Woodside M., and Litoiu M.,”
Fast Scalable Optimization to Configure Service
Systems Having Cost and Quality of Service
Constraints,” Preceeding of the 6th International
conference on Autonomic Computing (ICAC09),
pp. 159-168, USA, 2009.

[14] Lenk A., Klems M., Nimis J., Tai S., and
Sandholm T., "What's inside the Cloud? An
architectural map of the Cloud landscape," ICSE
Workshop on Software Engineering Challenges of
Cloud Computing (CLOUD '09). pp. 23-31,
23May 2009.

[15] Lin Y., Kemme B., Patino-Martinez M., and
Jimenez-Peris R.,“ Enhancing Edge Computing
with Database Replication, “ 26th IEEE

Symposium onReliable Distributed System, pp.
45-54. 10-12 Oct. 2007.

[16] Marinelli E.E., “Hyrax: Cloud Computing on
Mobile Devices using MapReduce,” Master
Thesis draft, Computer Science Dept., CMU,
September 2009.

[17] Nguyen T.D., Nguyen M.V., and Huh E.N.,
“Service Image Placement for Thin Client in
Mobile Cloud Computing,” 2012 IEEE 5th
International Conference on Cloud Computing
(CLOUD), pp. 416-422, 24-29 June, 2012.

[18] Sheldon R., “Introduction to Probability
Models,” 10th edition, 2010 Elsevier.

[19] Sandesh U., Flouris M.D., and Angelos
B.,”Cloud-based Synchronization of Distributed
File System Hierarchies,” 2010 International
Conference on Cluster Computing Workshops
and Poster (CLUSTER WORKSHIPS), pp.1-4,
20-24 Sept.2010.

[20] Xun L., “From Augmented Reality to
Augmented Computing: A Look at Cloud-
Mobile Convergence,” 2009 International
Symposium on Ubiquitous Virtual Reality, pp.
29-32, 8-11 July 2009.

Aymen Abdullah Alsaffar Earned his
B.A. degree in Computer Science from
Newbury College, Boston, USA in 2004.
Earned his M.S. degree in Computer
Engineering, from KyungHee University,
Suwon, South Korea in 2011. He is
currently a Ph.D. Candidate in Computer
Engineering of the Departmentof
ComputerScience and Engineering in

Kyung Hee University, Suwon, South Korea. He received
Scholarship for Master and Ph.D. degree from King Abdullah
Scholarship Program, Riyadh, Saudi Arabia. He also is working as
a research engineer at Real-Time Mobile Cloud Research Center
(RmCRC), Kyung Hee University. He received Best Achievement
Award from SW Research Institute for Global and Creative
Human Resource Incubation. His research interests include N-
Screen, Cloud Computing, Thin-Client, Network Security,
Network Security, Virtualization, and IPTV.

Pham Phuoc Hungreceived the B.S. degree
in Computer Engineering from Ho Chi Minh
National University, University of Sciences,
Vietnam, and MasterDegree in Computer
Science from Dongguk University, Korea.
He used to be a project manager in some
software companies. He has been a PhD
scholar in Computer Engineering at Kyung
Hee University, Korea, since 2012. At

present, he is also working as Research Engineer at Real-time
Mobile Cloud Research Center (RmCRC), Kyung Hee University,
where he has been working on several large-scale R&D funded
projects, including their proposals. His research interests include
Resource Allocation, Parallel and Distributing Computing, High
Performance Computing, Cluster and Grid Computing, Cloud
Computing, Sensor Network.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

http://tools.ietf.org/pdf/rfc5213.pdf

Eui-Nam Huh earned a B.S. degree from
Busan National University in Korea,
aMaster’s degree in Computer Science from
the University of Texas, USA in 1995, anda
Ph.D. degree from the Ohio University, USA
in 2002. He is the director of RmCRC (Real-
time mobile Cloud Research Center). He is
an editor of the Journal of theKorean Society
for Internet Information and he has been the

Korean Grid Standardgroup chair since 2002. He was also an
Assistant Professor at Seoul Women’sUniversity, South Korea. He
is now a Professor in the Department of ComputerScience and
Engineering, Kyung Hee University, South Korea. His research
interests include highperformance networks, sensor networks,
distributed real-time systems, gridmiddleware, monitoring, network
security, and cloud computing

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

	An Architecture of Thin Client-Edge Computing Collaboration for Data Distribution and Resource Allocation in Cloud
	Responsible of connecting to Internet through the network (WiFi, 3G, LTE, etc).
	IoT Smart Devices
	Responsible of receiving user requests and providing service such as processing, storage, bandwidth, etc.
	Edge Computing
	Responsible of providing other services and processing received service by other edge Compuitng server.
	3rd Party Edge Computing
	Responsible of providing services in the cloud.
	Mega Data Center
	Responsible of providing other services which is not provided in the mega data center.
	3rd Party Mega Data Center
	Responsible of which stores addresses edge computing server for fast requests respond and is used by edge computing to locate other nearby edge computing to request previous offered services.
	Edge Location Server
	Responsible of receiving new services requested by the IoT device users.
	Edge Broker Server
	Case
	1
	2

