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Abstract: This paper presents a novel swam intelligence optimization algorithm that combines the evolutionary method of 
particle swarm optimization with the filled function method in order to solve the evacuation routing optimization problem. In 
the proposed algorithm, the whole process is divided into three stages. In the first stage, we make use of global optimization of 
filled function to obtain optimal solution to set destination of all particles. In the second stage, we make use of the randomicity 
and rapidity of particle swarm optimization to simulate the crowd evacuation. In the third stage, we propose three methods to 
manage the competitive behaviors among the particles. This algorithm makes an evacuation plan using the dynamic way 
finding of particles from both a macroscopic and a microscopic perspective simultaneously. There are three types of 
experimental scenes to verify the effectiveness and efficiency of the proposed algorithm: a single room, a 4-room/1-corridor 
layout, and a multi-room multi-floor building layout. The simulation examples demonstrate that the proposed algorithm can 
greatly improve upon evacuation clear and congestion times. The experimental results demonstrate that this method takes full 
advantage of multiple exits to maximize the evacuation efficiency. 
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1. Introduction 
Emergency evacuation plans are developed to ensure 
the safest and most efficient evacuation time of all 
expected residents of a structure or region [8, 9, 19]. 
With the increasing complexity of buildings and 
frequency of disasters, the evacuation routing 
optimization problem has become a hot topic in the 
area of emergency evacuation planning. The problem 
can be divided into the microscopic and the 
macroscopic perspectives. To better characterize crowd 
behaviors for egress analysis, microscopic pedestrian 
models have been developed during recent decades 
where an evacuee’s behavioral/psychological status can 
be modeled and simulated. Ha et al. [13] considered 
motivational force, psychological repulsive tendencies, 
compression, viscous damping, personal force and 
sliding friction in the simulation of specific emergency 
evacuations. The motion of individuals was governed 
by the social-force model to investigate the effect of 
crowd evacuation. Matthew et al. [12] considered an 
agent-based approach to estimate formation of 
bottlenecks during urgent evacuation. The work of 
Xiaoping Zheng et al. [16 - 18] focused on evacuees’ 
cooperative and competitive behaviors by using a close 
analogy to the Chicken-type game. Jun Tanimoto, Aya 
Hagishima and Yasukaka Tanaka [15] proposed a 
deductive approach to analyze the bottleneck problems 
of pedestrian evacuation by using a close analogy to the 
saint&temptation reciprocity game. Dong-Mei Shi and 
Binghong Wang [4] proposed a microscopic framework  

 

to research crowd dynamics based on the modified 
lattice gas model by using snowdrift game theory. Ha 
et al. [5] proposed an Agent-based modeling of a 
multi-room multi-floor building emergency evacuation. 
Particle Swarm Optimization (PSO) [1, 6 and 20] is a 
multi-agent based simulation method that can simulate 
complex behaviors of individuals in an urgent 
evacuation. However, such microscopic models only 
take the evacuees’ local behavior into account, 
omitting other factors which may be of equal 
importance for them. In addition, microscopic 
simulations are computationally complex, making it 
difficult to be used directly for optimizing evacuation 
strategies. On the other hand, some researchers have 
studied evacuation planning from a macroscopic 
perspective. Chooramun et al. [2] developed an 
evacuation model utilizing hybrid space discretization, 
which uses a mixture of three basic techniques for 
space discretization, namely coarse networks, fine 
networks, continuous networks.. However, these 
methods only considered the global evacuation plan 
and ignored the influence of the behavior of 
individuals while simulating the evacuation behavior. 
Modeling the dynamic way finding of evacuees with 
respect to both the macroscopic and microscopic 
perspectives simultaneously is rare. Therefore, the 
present study proposes a novel PSO algorithm to 
optimize evacuation routing from these two 
perspectives simultaneously.  
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This study addresses two issues. The first is how to 
optimize particles’ competitive behaviors. The second 
issue is how to determine optimal evacuation routes for 
particles. We present the “global/local particle swarm 
optimization” (GLPSO) algorithm for multi-exit 
evacuation, intended to plan an optimal egress route 
based on global and local optimum nodes. The main 
contribution of this method provides a new perspective 
to understand the optimal control of emergency 
evacuation. The proposed method can improve 
evacuation clearance time and decrease crowd density 
in determining emergency evacuation strategies. In 
addition, it can take full advantage of multiple exits in 
order to obtain the safest evacuation route.  
The reminder of this paper is organized as follows. 
Section II introduces the state of the art in evacuation 
planning. Section III presents the result of the 
optimization. Section IV concludes this paper and 
describes the outlook on future studies. 

2. The Description of PSO Algorithm 
The PSO algorithm is based on swarm intelligence [5]. 
The movements of the particles are determined by their 
own best known position in the search-space as well as 
the entire swarm's best known position. An improved 
PSO algorithm is then: 
Algorithm 1: The improved PSO algorithm. 

1. Initialization 
     Initialize the particles’ positions randomly with a uniform 

probability. Initialize the particles’ best known positions to 
their initial positions. Initialize the particles’ velocities. 

2. Get destination node 
     Compute destination node of each particle by a filled 

function (described in Section 2.1).  
3. Global optimum node and Local optimum node 
      Compute the global optimum node of each particle using the 

destination node. Compute the local optimum node of each 
particle according to the global optimum node. 

4. Update velocity 
     Update the velocity of each particle: 
      

     If  
     If  
5. Conflict detection 
     Predict the particle's position:  
     Calculate the distance d between two particles. Determine 

whether the positions conflict. If d<2r, then go to Step 6, else 
go to Step 7. 

6. Conflict resolution 
     According to distance d, the GLPSO model optimizes 

conflicts by locating each particle’s position using three 
methods: ConflictMethod1, ConflictMethod2 or 
ConflictMethod3 (described in Section 2.3). 

7. Update position 
      Update all particles’ position. 
8. Terminal condition 
     If a particle moves to the next neighbor node, then go to Step 

3, if a particle passes through an exit, then the termination 
criterion of that particle is met. Else go to Step 4. 

The flowchart of the solution process is presented in 
Figure 1. 

 
Figure 1. The flow chart of improved PSO model 

2.1. Particle Destination Nodes 
In this paper, the concept of a filled function [11, 14] 
is introduced. This method is designed to obtain the 
particles’ destination node. First, we treat all the 
evacuees of a node (e.g. a room) as a “whole entity” 
and assign them to each exit by Formulas 1. 
According to the evacuee distribution, the length of 
the escape routes and the maximum flow rate, an 
estimate of evacuation clearance time must be taken 
into account with an expectation of the reaction of 
other evacuees at the same exits. We obtain the 
destination of particles with the following formula: 

(1) 

represents the minimizing function value and 
“subject to” is abbreviated by “s.t.”.  

 is the number of particles in the ith exit.  
 is the maximum flow rate of the ith exit. 
 is the distance from current node to the ith exit. 

 is average speed. 
 is congestion time. 

Equation 2 is the transformation formulation of the 
minimum evacuation clearance time to reduce the 
computational complexity. 
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We obtain the optimal evacuation plan using this filled 
function method, which is an approach to solve 
unconstrained global minimization problems. The filled 
function handles Formulas 1 to arrive at the global 
minimum by breaking the algorithm into a two-step 
process. 
We obtain the optimal evacuation plan using this filled 
function method, which is an approach to solve 
unconstrained global minimization problems. The filled 
function handles Formulas 1 to arrive at the global 
minimum by breaking the algorithm into a two-step 
process. 

• Step1. According to Wolfe-Powell conditions, we 
get the local minimum x1 of the function 1 2( , , , )nT x x x  
using the BFGS [3, 21] algorithm, which 
approximates Newton's method in multiple 
dimensions efficiently. The BFGS method is a 
standard iterative method for solving unconstrained 
nonlinear optimization problems using the following 
procedure. 

Algorithm 2: The BFGS method 

1. Initialization 
     Set the initial point x0, define a positive definite matrix H0，

the tolerance Ɛ>0，and an iterator k=0. 
2. Terminal condition 
      If ||gk||≤Ɛ, then xk is the optimal solution. 
3. Linear search 

a. Compute the search direction dk= -Hkgk. 
b. Calculate the factor ak of the step length using a linear    

search，and set xk+1=xk+akdk. 
c.  Correct Hk to get Hk+1, set k=k+1, and go to Step 2.  

The iteration solution formula of H is given by 

                    k+1 =
T T T

k k k k k k
kT T T

k k k k k k

H I H I
δ γ γ δ δ δ
δ γ δ γ δ γ

   
− − +   

   
         (3) 

Where，δk=xk+1-xk,γk=gk+1-gk. 

• Step 2. Here, x1 is the outcome of Step 1, which 
yields a local minimum of 1 2( , , , )nT x x x . We construct 
a filling function fill(x) on the local minimum x1, 
and take random a point as the initial point in the 
neighborhood of x1. If there is a field below x1, xm is 
a point in the field found by minimizing fill(x). Then 
go to Step1, using the xm which minimizes 

1 2( , , , )nT x x x  as the initial point to get a new local 
minimum value x2, and iterate, each time using a 
different local minimum as the initial point.   

Algorithm 3: The global minimum method 

1. Initialization 

Read parameter values, Ɛ>0, 0<δ<1, a>0, nS R⊂ . Ɛ is 
allowable error, δ is a point with an offset, a is the 
parameter of the filled function, and S is a region 
containing all the minima of 1 2( , , , )nT x x x . 

2. Local minimum point 
Set x’∈S as the initial point, then use Algorithm 1 to arrive 
at a local minimum point x1 of 1 2( , , , )nT x x x . 

3. Construct filling function 
Set fill(x) as the filled function of 1 2( , , , )nT x x x  near the 
local minimum x1.  
Set initial point using the rule 

0 1 1[ ]
2

( 1)i
i ix x eδ += + − ,i=1,2,…,2n.Where, ( 1, 2, , )ie i n=   

is the ith unit vector. 
4. Terminal condition 

If minimizations of the filled function traverse all of the 
iteration points for any given initial point in the region S, 
then the algorithm terminates, and x1 is the global optimum 
of 1 2( , , , )nT x x x .  
We assume that yk is a randomly point in the lower area, 
when the iteration point yk meet any of following condition. 
Set x’=yk, and go to Step 5. 

a. ( )1 0T
k kd v y− ∇ ≥ ， 1

T
kd −  is the search direction of yk-1. 

b. ( ) ( )1 0T
k ky x fill y− ∇ ≥  

c. ( )kv y ε∇ <   

d. ( ) ( )1kf y f x<  

5. Minimization function 
Set x’ as initial point to get a new local minimum value x2. 
If f(x2) <= f(x1), then set x1=x2 and go to Step 3, or else set 
a=10a and go to Step 4. 
GLPSO sets the destination of each particle in the node by 
the result of function 1 2( , , , )nT x x x . 

2.2. Global Optimum Node and Local 
Optimum Node 

Each particle's movement is influenced by both its 
local best position and global best position. The global 
best position is equal to the local best position in a 
global optimum node. The Global optimum node is 
the neighbor node of the current location in the 
shortest path to the destination. The local best position 
is guided toward the best positions (such as exit and 
door) with the global optimum node in the search-
space of the current node.  

Jiyeong Lee and MeiPo Kwan [10] proposed a Node 
Relation Structure (NRS) to represent buildings’ 
internal structure. NRS abstracts the complex 
topological relationships among 3D features to a 
logical network structure. However, this model can’t 
describe rooms or corridors containing exits. Since the 
presence of these exits can affect particles’ behavior in 
their emergency response, obtaining optimal 
evacuation routes with such a 3D network analysis is 
difficult. We improved NRS to add exit and door 
nodes for obtaining the global optimum node and the 
local optimum node. We represent the architectural 
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structure with a hierarchical undirected graph G = (V, 
E), consisting of a finite set V of particles (nodes) and a 
finite set E of edges. 
There can be emergency evacuations in multi-room or 
multi-floor buildings. We present a hierarchical 
undirected graph model to extend the nodes into a 
subgraph, subsequently abstracting them into a super 
graph. This building has two levels of graphs (see 
Figure 3). 
For example, consider a two-story building in which 
each story has seven rooms, one hallway, and one 
stairway (see Figure 2a). Suppose there is an exit in the 
first floor (see Figure 2b). This building has 18 
enclosures (nine per story), which we label P1 to P16. 
E1 to E17 represent doors, and E8 is the Exit. S1 and 
S2 are stairways. We transform the 3D spatial units to 
2D polygons. Figure 2b shows all spatial units on the 
first story. 
We construct the node relationships from this 
abstracted layout. The node relationships take the 
center point of each spatial unit as the location of the 
corresponding node. The edges connecting the nodes 
represent the connectivity among the spatial units. The 
extended subgraph presents the first story’s extended 
node relations (see Figure2c). If we set hallway P8 as a 
node, the Local optimal node can't accurately calculate 
the path distances according to the route length. Thus, 
we find the intersection point of the door centerline and 
the corridor centerline as an extended node to get an 
accurate distance (such as P81). 
The supergraph comprises two levels of subgraph and 
the stairway represents the connectivity among the 
subgraphs (see Figure 3). A boundary node stands for 
each story’s stairway node or an exit node. 

 
a) A 3D building model. 

 
b) A plane graph of one story. 

 
c) The node-relation structure model of the simple node 

relationship with extended nodes. 
Figure 2. A 3D building model and its hierarchical relation 

structure.  

 
Figure 3. The abstracted supergraph, with each story abstracted to 

its boundary nodes 

Here are the relationships: 
SG = (Gc, G) 
G = (G1, G2)  
G1 = (V1, E1), V1 = {s2}, E1 = {○} 
G2 = (V2, E2), V2 = {s1, e8}, E2 = {s1e8} 
Gc = (Vc, Ec), Vc = {s1, s2}, Ec = {s1s2}, 
Where 
SG is supergraph set, Gc is a supergraph, G is a 
subgraph set, and G1 and G2 are subgraphs. 
s1, s2 and e8 are boundary nodes. 
s1s2 is the connectivity between the supergraph’s 
boundary nodes. 
We seek an optimum route whose total distance is the 
minimum to the destination node. The global optimum 
node is the neighborhood node of the current location 
in the optimum route. 

2.3. Conflict Problem Optimization 
In the process of evacuation, there is competitive 
behavior between the particles. The perception of 
hazards can stress people in crowds, evoke their 
competitive response, and trigger blocking as they 
attempt to pass through narrow passages [7] (e.g., a 
small exit) simultaneously. We propose a 
mechanism to manage competitive behavior in three 
manners as shown in Figure 4. 
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Figure 4. Three competitive behaviors between the particles 

We determine three types of conflict with the distance 
between the particles. r is radius of particle and d is the 
distance between the center of a circle of two particles. 
That is 

0 / 2, Conflict 1
/ 2 5 / 4 Conflict 2

5 / 4 2 , Conflict 3

if d r then Method
if r d r then Method
if r d r then Method

< <
 ≤ <
 ≤ <

，               (4) 

a.  ConflictMethod1: There are five particles to    
compete a position in the first type of conflict 
problem (see Figure 5). The red balls are evacuees 
and the yellow circle is an empty location. We put 
forward six strategies to solve the conflict between 
the particles as shown in Figure 5 (a), (b), (c), (d), 
(e), (f). 

 
Figure 5.  Study of the competitive behavior of ConflictMethod1 . 
(a) P1 move to empty location, (b) P3 move to empty location and 

P2 move to P3,  (c) P4 move to empty location, (d) P3 move to 
empty location and P5 move to P3,  and(f) P5 move to empty 

location. 

P1, ……, P5 are five conflict particles in Figure5, 
and their movement strategies comply with the 
following combination rules. 

 
 
 
 
 
 

Table 1. Constraint pattern for conflict method1 

Constraint Description 
When P2 or P5 move to position 

empty location. P1, P3 and P4 stay in the same place 

When P1 or P4 move to position 
empty location. 

The optimal position for P2 and P5 
are P1’ position and P4’ position, 

respectively. 
When P3 move to position empty 

location. P2 or P5 move to P3’position. 

We calculate the probability of each particle and 
form a probability table for each movement strategy. 
We tabulate the probability according to particle 
velocity s and particle number d behind the current 
particle. The probability function can be written as: 

                      ( ) ( ) ( ), *i i i ip s d P s P d=         (5) 

                               

( )

1,

i
i n

j
j i j

sP s
s

= ≠

=

∑
                             (6)

  

                             
( )

1
/

n

i i j
j

P d d d
=

= ∑       (7)
                                       

 

According to the probability table, we adopt the 
minimum entropy principle to decide which strategy 
to utilize. Conflict Method1 sets 1 2 n{ , , , }S S S= S  as a 
collection of mutually exclusive natural states. The 
collection of subjective probability distributions is 
defined as 

i. 1{ ( , , ) | Pr ( ) , 1, , ;i in i j ijS P p p s p i m∆ = = = =   
1, , }j n=  . This is a finite set, where Pri（sj） is the 

ith subjective probability about strategy sj. The 
modeling process consists of the following four steps. 
1. Compute information entropy, which is given by 

1
( ) ln , 1, 2, ,

n

i ij ij
j

H P p p i m
=

= − =∑   

2. If
0 01

min ( .) ( .)(1 )i ii m
H P H P i m

≤ ≤
= ≤ ≤ , then 

0i
P  is outcome

；  
     If

11
min ( .) ( .) ( .) ( 2).

ri i ii m
H P H P H P s r

≤ ≤
= = = = ≥  then 

compute 
0

1
. /

r

i
k

P Pik r
=

= ∑  

3. If 
0

( )iH P s< , Pi0 is outcome; 
     If 

0
( ) lnis H P s r≤ ≤ + , then randomly choose it and 

set Pit as outcome in i1， i2…ir(1≤t≤r). 
4. Set movement strategy of particles with outcome 

and combination rules. 
b.  ConflictMethod2：PSO calculates the movement 

positions of the particles in the next iteration. When 
the predicted position of two particles meet a 
collision condition, ConflictMethod2 first evaluates 
their priority according to the fitness distance, then 
computes the optimal position of the particles.  

In Figure 6, Pa and Pb are two particles, r is the particle 
radius, Pb’ is the predicted position of Pb. r1 is the 
fitness distance, r2 equals 2r, r4 equals the velocity of 
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particle Pb’, and r3 equals the difference between r4 and 
r. The points (c,d) and (e,f) are the centers of the circle 
of two particles. S is the particle's center in non-conflict 
movement area. The ConflictMethod2 is the following. 
Algorithm 4: The ConflictMethod2 

1. Initialization 
The coordinates for Pa and Pb are C (c,d) and D (e,f) 
respectively.  
Set (a,b) as point M. 
The radius of the purple circle is r1. 
Read parameter values, particle radius r, and particle 
velocity v. 

2. Optimal coordinate 
Get point coordinates (a,b) for the shortest distance between 
the particle and the Exit. The point at the particle’s center is 
a distance “r” from the boundary of the Exit. 

3. Point of intersection 
   Define A(x1, y1) and B(x2, y2) as the two points of intersection       
between Pa’ and S. Then  

( ) ( )
( ) ( )

2 2 2
2

2 2 2
3

x c y d r

x e y f r

 − + − =


− + − =
                      (8)                   

A point’s coordinates E are ( ) ( )( )1 2 1 2/ 2, / 2x x y y+ + . 

4.  Negotiation rounds 

Calculate the distance 
2

2121 )()( 22 yyxx −− +  

between A and B. 
(a)Calculate the angle θ  between AD and DE. If 0<θ <

r
yyxx

3

22

2
2121arcsin
)()( −− + , then A is the optimal point. 

(b)Calculate the angle θ  between CD and DB. If 

r
yyxx

3

22

2
2121arcsin
)()( −− + < θ <

r
yyxx

3

22

2
2121arcsin2
)()( −− + , 

then B is optimal point. 
5. Point of tangency 

If A and B are not the optimal points, then ConflictMethod2 
derives the tangency point N(xn,yn) between S and the purple 
circle. The tangency point N is the optimal point as shown 

    

( ) ( )

( ) ( ) ( ) ( )

2 2 2
3

2 2 2 2
3

n n

n n

x e y f r

x a y b r a e b f

 − + − =

 − + − + = − + −

       (9) 

 
Figure 6. Study of the competitive behavior of ConflictMethod2 

 

c.  ConflictMethod3：We set a yellow circle at the 
position of the fixed particle Pa. Pb’ is the optimized 
location of Pb. The fitness value of Pa is less than 
that of Pb. The particle center coordinates for Pa and 
Pb are A (a,b) and B (c,d), respectively.  

 
Figure 7. Study of the competitive behavior of ConflictMethod3 

As shown in Figure 7, L is a straight line joining A 
and B, and R is tangent to Pa and perpendicular to L. 
Particle Pb’ is tangent to particle Pa and line R, whose 
center coordinate is on line L. 
Algorithm 5: The ConflictMethod3 

1. Initialization 
Read parameter values A and B. 

2. Tangent coordinates 
Compute the tangent coordinates (x1, y1). 

   

( )
( ) ( )

( ) ( )

1 1

2 2 2
1 1

a c
y x a b

b d

x a y b r

 −
= − − + −

 − + − =

     (10) 

3. Optimized coordinates 
Compute the center coordinates ( )1 12 , 2x a y b− −  of Pb’ 
based on the results of Step 2. 

3. Discussion and Results 
Numerical testing is presented using three scenarios. 
The first scenario uses a single room to compare our 
GLPSO model with the PSO [16] and Agent [3] 
strategies. This experiment explained the different 
evacuation times estimated by three evacuation 
methods in microscopic simulations. The second 
scenario uses a larger layout and compares our 
optimization-based strategies with the strategy using 
PSO [16] based on the nearest exits and Game theory 
[12]. The third scenario uses a multi-room multi-floor 
building to compare our evacuation planning with 
PSO for crowed movement [16]. 
• Scenario 1. This example studies an egress scenario 

in which a group of pedestrians is guided to exits 
within a single room (as shown in Figure 8). 
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Figure 8. The single room 

 
Figure 9. The evacuation time vs. evacuee 

This experiment is to test the validity of the 
evacuation time. Fig. 9 shows the evacuation time of 
each method. The black curve is the average evacuation 
time for the GLPSO method. The red curve is the 
average evacuation time for the Agent method. The 
blue curve is the average evacuation time for the 
traditional PSO method. With the increase of the 
number of evacuees, the average evacuation time for 
the GLPSO model is obviously smaller than the other 
two algorithms.  
• Scenario 2. This scenario studies an egress scenario 

in which four groups of people are guided to three 
exits within a small planar layout (as shown Figure 
10). 

 
Figure 10. Exiting pattern for a 4-room/1-corridor layout 

 
Figure 11. Optimal allocation of particle to the three exit by 
GLPSO 

 
Figure 12. Optimal allocation of particle to the three exit by the 
nearest exits 

This experiment is to test the optimal choice for 
multi-exit scenarios. One of the main objectives of 
forecasting evacuation times is the optimization of the 
allocation of people and areas to the various available 
exits. Fig. 11, Fig. 12 and Fig. 13, are the optimal 
allocations of each method in a plan. The evacuation 
times to Exits 1, 2 and 3 are shown in the red, blue, 
and green curves, respectively. The black curve is the 
total evacuation time for the GLPSO strategy. 
Fig. 11, Fig. 12 and Fig. 13 show evacuation planning 
for the three algorithms. The results show that the 
different of the optimal allocation of particles between 
Exit1 and other exits increases with increase in the 
number of particles. On the other hand, GLPSO and 
Game theory exhibit a slowly-rising trend as a 
function of particle number. The evacuation time 
estimated by GLPSO is less than Game theory. 
Therefore, in total, the plan made by GLPSO is better 
than that of the other two algorithms. 
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Figure 13.Optimal allocation of particle to the three exit by game 
theory 

Scenario 3: 
This example studies an egress scenario in which 780 
pedestrians are guided to exits within a multi-room, 
multi-floor building (as shown in Figure 16). 

 
Figure 14. Evacuation curves of two algorithms 

Figure 14 shows the evacuation curves of two 
algorithms. For GLPSO, 100% of particles have been 
evacuated out of the building at 170 seconds. However, 
using PSO for Crowd movement model, 229 seconds 
elapsed before all particles were evacuated. The 
cumulative number of particles evacuated is different 
between the two models by 112 seconds. This is a 
result of GLPSO taking full advantage of multiple exits 
to evacuate particles.  
Figure 15 shows the evacuation time for each exit in a 
plan. In the case of the GLPSO algorithm, the 
simulation output shows an evacuation plan with a 
maximum evacuation time of 170 seconds at Exit 1, 
and a minimum evacuation time of 140 seconds at Exit 
4. The PSO algorithm results in a maximum evacuation 
time of 230 seconds at Exit 1 and a minimum 
evacuation time of 114 seconds at Exit 4. Obviously, a 
reasonable planning can take full advantage of multiple 
exits and drastically improve the evacuation time. The 
simulation output of GLPSO provides a more rational 
result than PSO for crowd movement model because 
the different values and the maximum evacuation times 
are smaller. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Cumulative evacuees passing through (a) exit 1, (b) exit 
2 (c) exit3 and (d) exit4. (Allocation of 780 people to four exits) 
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Figure 16. An egress structural Layout 

4. Conclusions 
In summary, we have presented a global and local 
optimization method (GLPSO) which combines the 
filled function method and the Particle Swarm 
Optimization (PSO) algorithm for the evacuation 
routing optimization problem in complex scenarios. 
This method seeks to find the global minimum of the 
evacuation time using filled function methods. The 
improved NRS method obtains a global optimum node 
and a local optimum node with the global optimum 
particle distribution. The two nodes guide particles to 
their own best-known positions in the search-space 
from a macroscopic point of view. We have 
demonstrated that under different scenarios, GLPSO 
takes full advantage of multiple exits to reduce 
evacuation and congestion times. In addition, we 
proposed three methods to manage the competition for 
space in GLPSO. These methods simulate particle 
movement and optimize competition behavior on the 
micro level. GLPSO has been established to examine 
how the rational evacuation planning of the evacuees 
will affect the evacuation process. Our results provide 
compelling evidence for a global/local optimization in 
emergency evacuation, which are effective in 
maximizing the evacuation efficiency and optimized 
competitive behavior. Further works will need to 
examine the effect of familiarity and environmental 
stimuli as well as accident prevention effect on multi-
exit selection. 
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