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ABSTRACT 

  The strurural, electronic and elastic properties of rare-earth monochalcogenides EuX (X=Se, 

Te) were investigated with the full-potential-linearized-augmented plane wave (FP-LAPW) 

based on density functional theory (DFT). The exchange-correlation term is treated using two 

approximations the generated gradient approximation (GGA) and the local density 

approximation (LDA). The structural parameters, such as the equilibrium lattice parameters, 

the bulk modulus B and its derivative B‘, the electronic proprerties (the band structure, the 

total density) and the elastic constants (C11, C12, C44) of EuX compounds (X= Se, Te) are 

calculated in two phases: face-centered cubic structure type NaCl (B1) and the simple cubic 

structure CsCl type (B2) under ambient and high pressure. We also studied the structural 

phase transition between B1, B2. To determine this transition pressure, we calculated Gibbs 

energy   G= E+PV-TS. 

KEYWORDS: DFT, FP-LAPW, GGA, LDA, the band structure, phase transition. 
 

NOMENCLATURE 

Symbols : C  Elastic constants 

G  Gibbs energy Greek symbols : 

P  Pressure (GPa) σ  Poisson ‘s ratio 

V  Volume ɛ  Stain tensor 

T  Temperature (K) Subscripts :dices : 

S  Entropy Max  maximum 

H  Enthalpy 0  (V0) volume of the unit 

cell 

 

1. INTRODUCTION 

Metals form an important class of technological materials that are exploited widely for their 

ductility and high electrical and thermal conductivities. The rare-earth monochalcogenides 

belong to this class. Electronic and optical properties of rare-earth monochalcogenides have 

long been a challenge to investigators; the chalcogenides and pnictides are difficult to 

fabricate into a single phase. During the last few years, frequent attempts have been made to 

understand the electronic properties of rare-earth compounds because of their interesting 
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semiconducting properties and various practical applications in the field of nonlinear optics, 

electro-optic components, glass making, grinding alloys, composites lasers, phosphors lasers, 

and electronics [1-2]. 

  The rare-earth monochalcogenides XY (X= Eu, and Y= Se, Te) compounds crystallize in 

rock-salt structure but change to CsCl-type structure at high pressures (B2 phase) [3, 4, 5, 6]. 

The elastic constants are important technological properties of solids: they determine the 

behavior of materials under any arbitrary, but sufficiently small, loading.  

In view of earlier studies, the high-pressure phase transition and the elastic constants have 

been investigated using a simple approach with a three or two body interaction potential [7–8] 

except for a few studies that used a sophisticated method. One study reported by 

Vaitheeswaran et al. [9, 10] who employed the tight-binding linear muffin orbital approach to 

density functional theory (DFT) within the local approximation to investigate the phase 

transition in lanthanum monochalcogenides and another one reported by Bouhemadou et al. 

[11] on the elastic constants of EuX(X= Se, and Te) at normal and under hydrostatic pressure 

using the method developed by Charpin. In addition, the study of the second-order elastic 

constants (C11, C12, and C44) and their pressure derivatives at 0 K is quite important for 

understanding the nature of the inter-atomic forces. One can also directly obtain some useful 

information on the characteristics of bonding and the structural stability of a crystal.  

We have used full-potential linearized-augmented plane wave (FP-LAPW) [12] based on the 

DFT [13] in WIEN2K code to investigate the high-pressure structural phase transition, 

electronic and the elastic constants of these compounds. 

2. NUMERICAL SIMULATION 

2.1 Total-Energy Calculation : 

    The calculations are performed using the FP-LAPW implemented in the WIEN2k computer 

package [14]. The essence of the method is: near an atomic nucleus the potential and wave 

functions are similar to those in an atom – they strongly varying but nearly spherical. 

However, between the atoms both the potential and wave functions are smoother [12]. 

Accordingly, space is divided into regions and different basis expansions are used in these 

regions. In this method, both the potential and charge density are treated without shape 

approximations and core electrons are treated in a relativistic way. 

In our calculations, we used the generalized gradient approximation (GGA) for the exchange 

correlation potential [17]. The spherical harmonics inside nonoverlapping muffin-tin (MT) 

spheres surrounding the atoms are expanded up to lmax=10. The MT radii are assumed to 2.5 

atomic units (a.u.) for Eu, whereas a 2.5 (a.u.) is used for Se, and Te, respectively. The plane 

wave cut off of kmax=8/RMT was chosen for the expansion of the wave function in the 

interstitial region for all the compounds EuY, where RMT denotes the smallest atomic sphere 

radii and kmax gives the magnitude of the largest k vector in the plane-wave expansion. Special 

k points were used in performing the Brillouin zone summations. The self-consistent 

iterations were performed until the convergence in the energy reached about 10_4 Ry. 

2.2 Elastic Properties :  

    The knowledge of elastic constants of a solid provides access to an understanding of its 

mechanical properties for practical application in many fields. To obtain the elastic constants 

of these compounds with cubic structure, we have used a numerical first principles calculation 

by computing the components of the stress tensor e for small strains, using the method 

integrated in the WIEN2K code [14]. It is well-known that a cubic crystal has only three 

independent elastic constants. 

The first equation involves calculating the bulk modulus (B), which is related to the elastic 

constants by [16] :                                                    

       B =  (C11 + 2C11 )                                       (1) 

The shear modulus G of a cubic structure is given by : 
 

     G = ( C11-C12+3C44) /5                                 (2) 
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Then, Young’s modulus E and Poisson’s ratio σ are: 
 

   𝜎 =
1

2
+ (1 −

E

3B
)                                            (3) 

 

   𝐸 =
9BG

3B+G
                                                        (4) 

3. RESULTS 

3.1 Total-Energy Calculation, High-Pressure Structural Transformation and Electronic 

Properties  

    The total energy as a function of unit-cell volume around the equilibrium cell volume V0 

for EuX (X= Se, Te) compounds was calculated for each of the phases B1 and B2. The 

calculated total energies are fitted to Murnaghan’s equation of state to obtain the ground-state 

properties [15]. The results are shown in Figure 1. The lowest energy is found in the B1 

phase, the B2 structure is not favorable for the entire compound EuX (X= Se, Te), since the 

calculated energy is higher than that of B1 phase. From the graph 1, one can see that the rare-

earth chalcogenides EuX (X= Se, Te) crystallize in NaCl phase (B1) at ambient pressure. 

They show a phase transformation from B1 to (B2) phase. The calculated structural parameter 

of EuX (X=Se, Te) phases are listed in. It is interesting to note that the lattice parameter 

increases when we move from EuSe to EuTe. On the other hand, the bulk modulus decreases 

from EuSe, to EuTe in both phases B1 and B2. High pressure, along with ambient-pressure 

studies on materials, can help with analyzing the nature of interaction around the atoms. It is 

found that under pressure; most of the rare-earth compounds undergo a first-order phase 

transition from the six-fold coordinate NaCl structure to the eightfold coordinate CsCl-type  

structure (B2). Thermodynamically, a phase transition occurs when changes in the structural 

details of the phase are caused by variation of the free energy. The stability of a particular 

structure is decided by the minima of Gibbs energy [19]: G = E +PV-TS Since the theoretical 

calculations are performed at 0 K, the free energy becomes equal to the enthalpy: H= E + PV. 

    At a given pressure, a stable structure is one for which the enthalpy has its lowest value and 

the transition pressure are calculated at which the enthalpies for the two phases are equal. The 

calculated phase transition pressures for these materials are summarized in Table 2, together 

with previous theoretical results. The application of pressure to the crystals causes the 

decrease in their volume, which in turn leads to an increased charge transfer due to the 

existence of the deformed charge between the overlapping electron shells of adjacent ions. 

We note that the pressure Pt increases when the chalcogen atom Se is replaced by Te (Figure 

1, Figure 2). The energy study of the two phases shows that the lowest energy is in phase 

B1(NaCl) so that B1 is more stable than B2 phase (CsCl) because the calculated energy is 

above the phase B1. From the band structure and total state density EuX obtained by both 

approximations, we can see that the energy gap is zero in both phases B1 and B2. So these are 

metals (figure 3). 

3.2 Elastic properties :  

    The elastic properties of a solid reflect the response of the interatomic forces between the 

atoms concerned to an applied stress. Since the bonding forces vary with crystallographic 

orientation, the elastic properties of metal single crystal may be highly anisotropic. In cubic 

materials, only three independent elastic constants are needed C11, C12, and C44. So, the study 

of the second order elastic constants (C11, C12, C44) and their pressure derivatives at 0 K is 

quite important for understanding the nature of the interatomic forces. 

Hence, to determine these constants, we have used the method developed by Charpin and 

integrated by Mortada [18]. The obtained elastic constants of EuX (X= Se,Te) compounds at 

ambient and under pressure are listed and compared with available results in Table 3.  To the 

best of our knowledge, no experimental value for the elastic constants of these compounds 

have appeared in literature, so our results for B2 phase can serve as a prediction for future 

investigation. It is clearly seen from Table 3 that the values of C12 are smaller than that of C11 

and for the compound EuTe, the value of C12 is negative approximately_1.60 GPa.  We note 
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that the elastic constants decrease with the chalcogen atom form Se to Te in EuX (X=Se, Te) 

compounds in B1 phase. From Table 3, we see that these elactic constants Cij are decreased 

when we move from EuSe to EuTe in the two phases except C44 for the EuSe to EuTe  in the 

high pressure phase B2. The Young’s modulus E and Poisson’s ratio s are important in 

technological and engineering application [20].Young’s modulus is defined as the ratio of 

stress and strain when Hooke’s Law holds. From Table 4, the Young’s modulus in the Eu 

compound it is increased linearly. Also, we conclude that the stiffness of materials decreases 

with pressure. Our obtained values for Poisson’s ratio varied from 0.17–0.28 in B1 phase, 

which is an indication that ionic bonds are presented [22]. However, in B2 phase s is greater 

than 0.25, which indicates that the interatomic forces in B2 phase of XY (X= Eu, and Y=Se, 

Te) compounds are central forces [21].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 calculated ground-state energy versus optimized volume curves of B1 and B2 

phases for EuX (X= Se, Te) compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 calculated pressure versus enthalpy of B1 and B2 phases for EuX (X= Se, Te) 

compounds and  
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Figure 3  Band dispersion for EuX (X=Se, Te) calculated according to GGA. 

 

Table 1 Calculated lattice constant a, bulk modulus B0 and its pressure derivative B for B1 

and B2 phases XY (X= Eu and Y= Se,  Te) compounds, compared with the available 

experimental and theoretical data. 
 

B1phase 

 a (A°) B0(GPa) B’ 

 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

EuSe 5.72 ---- 73.4 --- 4.6 --- 

EuTe 6.14 ----- 53.4 --- 4.1 ---- 

B2phase 

 a (A°) B0(GPa) B’ 

 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

EuSe 3.52 --- 75.2 --- 4.56 --- 

EuTe 3.76 --- 53.6 --- 4.06 --- 

 

Table 2 Calculated values of phase transition pressures Pt, at phase transition pressures for 

EuSe, EuTe compounds. 

 

B1                 B2 

 Pt(GPA) 

 

Present 

work 
Theory experiment 

EuSe 8.9 16 [5] --- 

EuTe 17.4 ----- --- 

 

Table 3 Calculated elastic constants Cij (GPa), for B1 and B2 phases of EuSe, EuTe 

compounds. 

B1phase 

 C11 C12 C44 

 
Present 

work 
Theory 

Present 

work 
Theory 

Present 

work 
Theory 

EuSe 213.1 80.5[5] 3.6 29.7[5] 30.06 35.6[5] 

EuTe 163.5 ----- -1 .6 --- 8.8 ---- 

B2phase 

 C11 C12 C44 

 
Present 

work 
Theory 

Present 

work 
Theory 

Present 

work 
Theory 

EuSe 143.6 --- 41.0 --- -3.3 --- 

EuTe 115.3 --- 22.3 --- 11.9 --- 
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Table 4 Calculated Young’s modulus E (GPa), shear modulus G (GPa) and Poisson’s ratio σ,  

(in GPa), for B1 and B2 phases of EuSe and EuTe compounds. 

 

B1phase 

 E G Σ 

 
Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

EuSe 141,4 ---- 59,9 --- 0,18 --- 

EuTe 92,7 ----- 38,3 --- 0,21 ---- 

B2phase 

 E G Σ 

 
Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

Present 

work 

Theory 

+experiment 

EuSe 51,4 --- 18,5 --- 0,39 --- 

EuTe 66,6 --- 25,8 --- 0,29 --- 

 4. CONCLUSIONS 

    The calculations were performed using the code wien2k [14] which is an implementation of 

the method FP-LAPW (full potential linearized augmented plane wave) based on DFT 

(functional density total). We used the approximation of the local density (LDA) and the 

gradient approximation (GGA) for the term of the exchange-correlation (XC). We deduced 

that these compounds are crystallized in phase B1; it is the more stable than in Phase B2 and 

the best approximation to calculate the structural property is the GGA approximation. Some 

basic physical properties, such as lattice constant, bulk modulus, second-order elastic 

constants (Cij), shear modulus, Young’s modulus and Poisson’s ratio constants are calculated. 

It is interesting to note that the lattice parameter increases when we move from EuSe toEuTe. 

On the other hand, the bulk modulus decreases from EuSe to EuTe with in both phases (B1 

and B2). It is found that the pressure Pt decreases when the chalcogen atom Se is replaced by 

Te a for EuX (X=Se,Te) compounds. The same behavior is shown for the calculated elastic 

constants. They decrease with the chalcogen atom from Se to Te in B1 phase. We have also 

studied the ductility the brittleness and the stiffness of the compounds under consideration by 

analyzing the parameter Young’s modulus. The effect of chalcogen atom on these properties 

is investigated. At the same time, it is found that the gap is zero in both phases which 

confirms that these are metals. 
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