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Abstract: In some data stream applications, the information embedded in the data arriving in the new recent time period is 
important than historical transactions. Because data stream is changing over time, concept drift problem will appear in data 
stream mining. Frequent pattern mining always generate useless and redundant patterns, in order to obtain the result set of 
lossless compression, closed pattern is needed. A novel method for efficiently mining closed frequent patterns on data stream 
is proposed in this paper. The main work includes: distinguish importance of recent transactions from historical transactions 
based on time decay model and sliding window model; design and use frame minimum support count-maximal support error 
threshold-decay factor (θ-ε-f) to avoid concept drift; use closure operator to improve the efficiency of algorithm; design a 
novel way to set decay factor: average-decay-factor faverage in order to balance the high recall and high precision of 
algorithm. The performance of proposed method is evaluated via experiments, and the results show that the proposed method 
is efficient and steady-state, it applies to mine data streams with high density and long patterns, it is suitable for different size 
sliding windows, and it is also superior to other analogous algorithms.  
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1. Introduction1 
Data stream as a new data model is widely used in 
many applications. Data stream which is different from 
traditional database is time ordered, rapidly changing, 
massive and unlimited. Searching for frequent patterns 
in a continuous data stream has become important and 
challenging.  

In recent years, some algorithms for mining 
frequent patterns or itemsets on data streams have been 
proposed. Algorithms such as Sticky Sampling[15], 
Lossy Counting[15], XSM[1] and FDPM[26] mine 
frequent patterns which meet maximal support error 
rate and minimum support count. These methods do not 
distinguish between recent and historical transactions 
and do not consider the importance of recent 
transactions. In addition, these methods for mining 
complete result sets will produce a lot of useless 
patterns. For reducing the number of patterns, concise 
pattern set should be mined, mainly including: maximal 
frequent patterns, closed frequent patterns, top-k 
frequent patterns or a combination of them and so on. 
Algorithms Max-FISM[6] and GUIDE[19] discover 
recent maximal frequent patterns based on sliding 
windows. WMFP-SW[10] mines weighted maximal 
frequent patterns based on sliding windows. Algorithms 
Moment[5], NewMoment[11], CloStream[24],  
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Stream_FCI[20], TMoment[17], IncMine[4] and 
CloStream*[25] discover closed frequent patterns 
based on sliding windows. TOPSIL- Miner[23] uses 
landmark windows to mine top-k frequent patterns. 
Methods Top-k Lossy Counting[22], MSWTP[2] and 
Top-k Miner[18] discover top-k frequent patterns 
based on sliding windows. FCI_max[21] mines closed 
top-k frequent patterns based on sliding windows and 
so on. The drawbacks of above algorithms are that: (1) 
using only the minimum support threshold for 
frequent patterns mining and unprocessed concept 
drift problem of data streams. (2) Although window 
model are used in these methods, the weights of 
transactions in window are set to the same weights. 

As can be seen from the above algorithms, 
mining frequent patterns on data streams usually based 
on window model, especially the sliding window. The 
reason is that recent transactions normally contain 
more information than historical ones. Besides sliding 
window model, Time Decay Model(TDM)[3, 5, 8-9, 
12-14,19] is also used to process recent transactions. 

TDM-based methods to mine frequent patterns on 
data stream emphasize that the importances of recent 
and historical transactions should be distinguished in 
the window. Recent years, the ways to set decay factor 
in TDM usually divide into two categories. The first 
one set decay factor to random value in the range of 
(0, 1) [9, 14, 19]. Such ways lead to the instability of 
the mining results because of the random values of 
decay factor. The second method assumes that 
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algorithm meets 100% Recall or 100% Precision to get 
the upper and lower bounds of decay factors[3, 12]. 
Then set decay factor to the upper bound or lower 
bound or random value between them. The problems of 
these two ways to set decay factor are that it can get 
high recall or high precision of algorithm, while get the 
low corresponding precision or recall of algorithm. Or 
because of the uncertainty of the decay factor value, the 
result sets of algorithm are instability. 

In order to avoid concept drift, distinguish recent 
transactions from historical ones, discover compact 
pattern result set efficiently, and apply to mine high 
dense transactions and long patterns, a novel algorithm 
is proposed in this paper. Mainly works and 
innovations are that: (1) design a novel way to set 
decay factor f. Existed methods set f to boundary value 
of lower bound and high bound by assuming 100% 
Recall and 100% Precision[3, 12, 26], or to a random 
value in range of (0, 1)[13, 16]. The former will lead to 
corresponding algorithm low Precision or low Recall. 
And the later will make unstable performance of 
algorithm. In order to balance Recall and Precision of 
algorithm, proposed an average way to set decay factor 
in this paper. (2) Three layers frame: minimum support-
maximum support error-decay factor is used in this 
paper to solve the concept drift problem and avoid loss 
of possible frequent patterns. (3) Proposed a novel 
algorithm to mine closed frequent patterns on data 
streams based on time decay model and sliding window 
model. It can get lossless compression result set. Time 
decay model[3, 12-13, 16] is used to further emphasize 
the importance of recent transactions and reduce the 
importance of historical ones. By the comparison of 
precisions of novel algorithm and existed algorithms, 
the novel algorithm can get more accurate result sets. 

The rest of this paper is organized as follows. 
Section 2 presents background knowledge; mainly on 
closure operator and time decal model. The efficient 
novel algorithm based on time decay model to discover 
closed patterns is detailed in section 3. Section 4 
describes the experiments and explains the 
experimental results. Section 5 concludes this work. 

2. Preliminaries 
A data stream DS=<T1, T2, … , Ti, …> is a continuous 
and unbounded sequence of transactions in a timely 
order, where Ti (i=1, 2, …) is the ith transaction. Each 
transaction contains a unique transaction identifier tid, as 
shown in the first column of Table 1. The support count 
of frequent pattern P, denoted as freq(P, N)[6], is the 
number of transactions in existed N transactions in 
which P occurs. 

• Define 1. (Frequent Pattern[12]) Let N be the sliding 
window size, and θ( ]1,0(∈θ ) be the minimum 
support. If itemset P meets freq(P, N)≥θ×N, P is 
frequent pattern.  

• Define 2. (Half-Frequent Pattern, Non-Frequent 
Pattern[12]) Let N be the sliding window size, 
θ(θ∈(0,1]) be the minimum support and ε (ε∈(0, 
θ)) be the maximal support error. If itemset P meets 
θ×N ≥ freq(P, N) ≥ ε×θ×N, P is half-frequent 
pattern. Else if freq(P, N) < ε×θ×N, P is non-
frequent pattern. 

Table 1 Transaction data stream 

TID Transaction 
t1 1 3 4 
t2 2 3 5 
t3 1 2 3 5 
t4 2 3 4 5 

Data stream changes in real time and the infrequent 
patterns over time may become frequent patterns. That 
is concept drift. Therefore, in order to reduce the 
number of missing possible patterns, frequent patterns 
and half-frequent patterns need to be maintained 
during mining process. In addition, in order to reduce 
the cost of maintaining patterns, non-frequent patterns 
need to be lost. By this way, the possible error of loss 
patterns is not greater than ε[3, 12]. Therefore, using 
θ-ε framework can solve the problem of concept drift. 

A heavy problem of mining frequent pattern from 
data stream is generated a large number of useless 
patterns. Therefore, mining useful and compressed 
pattern is needed. Discovering closed frequent pattern 
is a common method, which is lossless compressed 
and contains all the information of the complete result. 
Meanwhile, in order to improve the efficiency to 
discover closed patterns, closure operator[24-25] is 
used in this paper. The performance of the algorithm 
with closure operator is better than classic closed 
pattern mining algorithms such as Moment[5], CFI-
Stream[9] and NewMoment[11]. Take closure 
operator into account, the concept of closed patterns 
are shown in definitions 3 to 5. 

• Define 3. (Closure Operator [24-25]) Let T be the 
subsets of all that transactions in D, denotes as 

DT ⊆ . Let Y be the subsets of all items set I ( IY ⊆ ) 
which appears in D. Concept of closed itemset is 
based on the following two functions h and g: 

},|{)( tiTtIiTh ∈∈∀∈=      (1) 

},|{)( tiDiDtYg ∈∈∀∈=     (2) 

Function h takes T as input and returns an itemset 
included in all transactions belonging to T. Function g 
takes an itemset Y as an input and returns a set of 
transactions including Y. A function  

)(ghghC ==   
is called Closure Operator. 
• Define 4. (Closed Itemset[25]) An itemset P is 

called a closed itemset if and only if it satisfy 
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Formula 3. Otherwise, P is non-closed. The C(P) is 
called the closure of P. 

PPghPC == ))(( )(         (3) 

• Define 5. (Closed Frequent/Half-Frequent Pattern) If 
itemset P=C(P) and its support is no less than 
minimum support, then P is called a closed frequent 
pattern. If itemset P=C(P) and its support is no less 
than maximal support error, then P is called a closed 
half-frequent pattern. Otherwise, P is non-frequent 
pattern. 

Due to the continuous and infinite, knowledge 
contained in data stream will change with the passage 
of time. Under normal circumstances, the value of 
recent transaction is important than historical one. 
Therefore, it is necessary to increase the weight of 
recent transaction. A time decay model (TDM) is 
developed to gradually decay the occurrence count of 
itemset contained in the transaction[2, 11]. Let the 
decay ratio of support count in the unit time is decay 
factor f (f∈(0,1]). When Tn arrives, support count of 
frequent pattern P is denoted as freqd(P, Tn). Each time 
a new transaction arrives, freqd(P, Tn) is multiplied by a 
decay factor f. When the mth transaction Tm arrives, r is 
1 if it contains P, otherwise r=0. The freqd(P, Tm) based 
on decay factor is shown in Formulas 4 and 5. 

1,),( == mifrTPfreq md
 

2,*),(),( 1 ≥+= − mifrfTPfreqTPfreq mdmd
 

(4) 

mTPifr ⊆= ,1  

otherwiser ,0=  (5) 

3. Algorithm TDMCS 
In this section, data structures and the new way to 
define decay factor f are introduced, and the proposed 
algorithm TDMCS (TDM-Based Closed Frequent 
Pattern Mining on Data Stream) is introduces in detail 
which is used to mining frequent closed patterns based 
on f-θ-ε framework. 

Three data structures are used in algorithm 
TDMCS, including: ClosedTable[24], CidList[24] and 
NewTransactionTable/OldTransactionTable. Closed-
Table which is used to maintain the information of 
closed itemsets consists of three fields: Cid, CP and 
SCP. Each closed itemset CP is assigned to a unique 
closed identifier Cid, and its support count is denoted as 
SCP. CidList maintains each item in data stream and its 
corresponding Cid sets which point to ClosedTable. 
NewTransactionTable is used to maintain the 
information of new transaction Tnew. It consists of two 
fields: TempItem and Cid. TempItem contains the 
information of itemsets which satisfy {Ti∩Tnew, Ti∈
ClosdeTable}. The Ti is the ith transaction in data 
stream and Tnew is the new transaction. Structure of 

OldTransactionTable is same as New- 
TransactionTable, which is used to maintain the 
information of old transaction Told.  

The core issue of removing old transactions from 
sliding window is how to effectively prune the 
existing data structures. Existing methods are often 
pruning step by step which is inefficient. A sliding 
step M is used in this paper. Pruning data structure 
after the sliding window move M transactions, that is, 
pruning when transactions Tsw+i*M (sw is the size of 
sliding window, i=1, 2, …) are arrived. 

In order to distinguish the weights of the 
historical transactions and the recent transactions, 
thereby improving the accuracy of result set, and 
avoiding the missing of possible frequent patterns, a 
novel algorithm TDMCS (TDM-Based Closed 
Frequent Pattern Mining on Data Stream) is proposed 
in this paper. TDMCS mines closed frequent patterns 
on data streams based on frame θ-ε-f (decay factor-
minimum support-maximal support error). This 
algorithm uses data structures ClosedTable, CidList, 
NewTransactionTable and OldTransactionTable to 
maintain frequent itemsets information. It uses time 
decay model (TDM) to estimate the support count of 
pattern, and maintain the frequent and half-frequent 
closed frequent itemsets which satisfy frame θ-ε. The 
description of algorithm TDMCS is shown as 
Algorithm 1. The main idea is processing the 
information of new transaction Tnew at first. Secondly, 
if the number of processed transactions exceeds the 
size of sliding window, delete the information of old 
transaction Told. If the processing steps of the 
transactions meet the pruning step M, do pruning 
operation. In order to increase the efficiency of the 
algorithm, it only adds delete flags (DeleteFlag) when 
processing old transactions and does the actual delete 
operations when pruning. 
Algorithm 1: TDMCS() 

Mining closed frequent patterns on data streams 
1 For Each Transaction Tnew In S Do  
2 Call TDMCSADD(Tnew); 
3 If NUM>N Then TDMCSREMOVE(Told); 
4 If NUM%M==0 Then Call PRUNNING(); 
5 End For 

Specifically, there are three methods consisted in 
algorithm TDMCS. Method TDMCSADD(Tnew) is 
used to process the new transactions, method 
TDMCSREMOVE(Told) processes old transactions and 
method PRUNING() processes pruning. 

When new transaction Tnew arrived, TDMCS-
ADD(Tnew) is described as Algorithm 2. For example, 
if new transaction is T4 as shown in Table 1, this 
algorithm processes it in four steps. First, generate 
CidSet associated with T4 to discover the intersection 
between T4 and existed frequent itemsets. Second, 
build NewTransactionTable to maintain possible 
frequent itemsets associated with T4. Then update 
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ClosedTable and CidList referring to 
NewTransactionTable and ClosedTable. The 
processing is as shown in Figure 1. 
Algorithm 2: TDMCSADD()  

Processing new transactions 
1 Add Tnew To NewTransactionTable 
2 Let setcid(Tnew)={∪CidSet(itemi),itemi∈Tnew } 
3 For Cid In setcid(Tnew) Do 
3.1 interS= Tnew∩ClosedTable(Cid) 
3.2 For TempItem In NewTransactionTable Do 

If interS∈ClosedTable 
Then update support(interS) 
Else If support(interS) ≥ N×ε×θ 

Then Add (interS, Cid) To ClosedTable 
End For 

3.3 For (TempItem, Cid) In NewTransactionTable Do 
If(TempItem==ClosedTable(Cid)) 
Then update support(ClosedTable(Cid)) 
Else update support(TempItem) 

If(newsupport(TempItem) ≥ N×ε×θ) 
Then Add (TempItem, newsupport(TempItem))  

To ClosedTable 
If item∈Tnew And item Is Not In CidList 
Then Add item To CidList 

End For 
4 End For 

Illustrate the process of algorithm TDMCSADD(Tnew) to 
handle new transactions. Data stream is shown as in 
Table 1 including 4 transactions. Let decay factor f=0.8, 
minimum support threshold θ=0.1. When new 
transaction T4={2, 3, 4, 5} is arrived, information of 
ClosedTable, CidList and NewTransactionTable are as 
shown in Tables 2-4. There are 5 frequent itemsets in 
ClosedTable, 5 items in CidList and NULL in 
initialized NewTransactionTable. When new tranaction 
T4 arrived, there are some steps to process it. 

Step 0: Add values <T4, 0> to New-
TransactionTable. 

Step 1: Compare items in T4 and items in CidList 
to get the CidSet associated with T4.  

Step 2: Add itemsets associated with T4 to 
NewTransactionTable according with CidSet, as shown 
in Table 4. That is for each element Cid of CidSet to get 
the intersection of T4 and ClosedTable. 

Step 3: Update ClosedTable with information of 
NewTransactionTable, then get Table 5.  

Step 4: Update CidList with information of novel 
NewTransactionTable and ClosedTable. It will be 
update under two conditions: the emergence of a new 
frequent itemset or a new item. Assuming T4 contains a 
new item (7) represented in italics in Figure 1. Then 
add value < {7}, {6} > to CidList. Meanwhile, there are 
two new frequent itemsets in ClosedTable, then update 
CidList too. 

For continuous generation of new transactions, 
repeat steps above for processing. When you need to 
remove the information of old transactions from sliding 
window, use algorithm TDMCSREMOVE(Told). The 

main process is similar to algorithm 
TDMCSADD(Tnew). First, generate OldTransaction-
Table to maintain the information about old 
transaction Told. Second, find the intersections of 
OldTransactionTable and ClosedTable. Next, update 
or delete ClosedTable. In order to improve efficiency 
of algorithms, it only adds deleting flags and does not 
do the actual deletion.  

When steps of processing transactions meet the 
pruning step, call function PRUNING() to do pruning 
operations. This is the actual process of deleting 
operations, and it mainly does updating and deleting 
operations on ClosedTable and CidList. The algorithm 
is described as shown in Algorithm 3. 
Algorithm 3: PRUNING() 

Dropping information of historical transactions. 
1 For Each Cid In ClosedTable 
2  Remove itemsets(with DeleteFlag) From closedTable 
3    If support(Cid)< N×ε×θ 

Then Remove itemsets From closeTable 
4    Update cidlist 
5 End For 

If only the parameters minimum support threshold θ 
and decay factor f are used in algorithms, some 
possible frequent patterns might be lost. Such as, let 
minimum support θ=0.1, then complete result set is 
mined. Therefore, many useless patterns may be 
discovered. If setting θ=0.3, when T4 arrived, frequent 
itemsets should meet the support count 4×0.3=1.2. 
Then generate three frequent itemsets in ClosedTable 
as shown in Table 7. From Table 7 and Table 5, it is 
clear that the pattern {3 4} (freqd({3 4})=1.512>1.2)) 
is missing. 
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Figure 1. Schematic of the process of handling new transaction T4 

 

Table 7. ClosedTable (θ=0.3) 

Cid CP SCP 
0 {0} 0 
1 {2 3 5} 2.44 
2 {3} 2.952 
3 {1 3} 1.312 

The reason is that the frequency with decay factor of 
pattern P is smaller than its original frequency, that is 
freqd(P) < freq(P). Let f=0.8, then freqd(P)<1/(1-0.8)=5 

as calculated by Formula 6. Therefore, if only the 
minimum support threshold θ is used under the time 
decay model, some frequent patterns may be lost, for 
its support count may be less than θ×N. To solve this 
problem, ε is introduced as the maximum support 
error. Therefore, the frequent support of mined 
patterns needs to meet N×ε×θ instead of N×θ. 

rf×TPfreqTPfreq mdmd += − ),(),( 1            (6) 

 
 

 
 

T4: {2     3      4    5} 

Table 2. CidList(before T4) 
item CidSet 
{1} {1, 4, 5} 
{2} {2, 4} 
{3} {1, 2, 3, 4, 5} 
{4} {1} 
{5} {2, 4} 

 
 

CidSet: {1,    2,    3,     4,     5} 

Table 3. ClosedTable 
(θ=0.1, before T4) 

Cid CP SCP 
0 {0} 0 
1 {1 3 4} 0.64 
2 {2 3 5} 1.8 
3 {3} 2.44 
4 {1 2 3 5} 1 
5 {1 3} 1.64 

 
 

Table 4. 
NewTransactionTable 

TempItem Cid 
{2 3 4 5} 0 
{3 4} 1 
{2 3 5} 2 
{3} 3 

 Table 5. ClosedTable  
(θ=0.1, after T4) 

Cid CP SCP 
0 {0} 0 
1 {1 3 4} 0.512 
2 {2 3 5} 2.44 
3 {3} 2.952 
4 {1 2 3 5} 0.8 
5 {1 3} 1.312 
6 {2 3 4 5 7} 1 
7 {3 4} 1.512 

 
 

Table 6. CidList(after T4) 
item CidSet 
{1} {1, 4, 5} 
{2} {2, 4, 6} 
{3} {1, 2, 3, 4, 5, 6, 7} 
{4} {1, 6, 7} 
{5} {2, 4, 6} 
{7} {6} 

 
 

T4: { 2    3    4    5    7} 
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The next question is how to determine the value of the 
decay rate f after given parameters: minimum support, 
maximum support error and sliding window size. 
Suppose recall is 100%, a lower bound for the decay 
factory is showed by Formula 7 [3, 12]. Formula 8 [3] 
shows the upper bound of f under the condition of 
precision=100%. The usual methods set f to random 
value between lower bound and high bound or set f to 
one bound of them[3, 12]. Because both recall=100% 
and precision=100% cannot be achieved at same time, 
selected f should balance these two conditions. 

%100,]/)[()12( 2 =−≥ −− recallwhenf NN θ θεθ
           (7) 

%100,
)(

1)(
=

−
−−

< precisionwhen
N

Nf
εθ

εθ

 
          (8) 

In this paper, a new way to set decay factor is proposed. 
Let sliding window size be 10K. Parameters θ, ε and f 
are shown in Table 8. The third column frecall means the 
lower bound when assuming recall is 100%. The last 
column fprecision implies the upper bound when assuming 
precision is 100%. There are three policies to select f, 
as shown in Formula 9. For example, let θ=0.025 and 
ε=0.05, then set f=frecall=0.999995, f=fprecision=0.995789 
or f=faverage=0.997892. Verified by experiments (in 
Section 4), set f to faverage can get the more balanced 
recall and precision of algorithm. Therefore, set 
f=faverage is more reasonable than set f on random value 
between frecall and fprecision or one of it.  

Table 8. Time decay factor  

θ ε×θ frecall (recall=100%) fprecision (precision=100%) 
0.05 0.05×θ 0.999995 0.997895 
0.05 0.1×θ 0.999989 0.997778 
0.05 0.5×θ 0.999929 0.996 
0.025 0.05×θ 0.999995 0.995789 
0.025 0.1×θ 0.999989 0.995556 
0.025 0.5×θ 0.99993 0.992 
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4. Performance 
The experiments were performed on a 2.1 GHZ CPU 
with 2GB memory, and running on Win7. All the 
algorithms were coded in Java language. To evaluate 
the performance of these algorithms, real and synthetic 
datasets were used. Real dataset from UCI[7] describes 

the page visits of users who visited msnbc.com on 
September 28, 1999. Visits are recorded at the level of 
URL category (see below) and are recorded in order. 
There are 989818 transactions and the average length 
of transaction is 5.7. It is high dense and similar data 
stream. Synthetic datasets were generated from IBM 
data generator. There are four synthetic datasets with 
different average pattern and transaction size: 
T5I5D1000K, T10I4D1000K, T10I5D1000K, 
T10I10D1000K, T20I5D1000K and T20I20D1000K. 
These were used to analyze the performance of data 
stream of different density. The parameters are 
described as follows: D is the total number of 
transactions; I is the average size of maximal potential 
patterns; T is the average length of transactions. Such 
as, T10I5D1000K means the average length of 
transactions is 10, average length of maximal potential 
patterns is 5, and number of transactions is 1000K.  
The mainly purpose of experimental was to analyze: 
(1) the ways to set decay factor f. Compared the 
algorithm performances with setting f as random 
value, boundary value and average value. (2) 
Analyzed the effects of sliding window sizes on 
performance of algorithm TDMCS. (3) Analyzed the 
effects of pruning steps on performance of algorithm 
TDMCS. (4) Compared the performances of 
algorithms TDMCS and CloStream*[25], MSW[12] 
and SWP[3]. Compared to algorithm CloStream[24], 
algorithm CloStream* used the sliding window to deal 
with recent transactions to mine closed frequent 
patterns. CloStream handled all the transactions, so it 
did not apply to mine unlimited data stream. 
Therefore, in this paper compared TDMCS with 
CloStream*. Similar pattern tree structures were used 
in algorithms MSW and SWP. And both of them set 
decay factor as lower bound. In this paper, some 
modifications were made to the two original 
algorithms for mining closed frequent patterns instead 
of complete patterns.   
The maximum support error ε was set to 0.1. The 
value of the time decay factor f was set to average of 
low bound and high bound to balance 100% recall and 
100% precision. The sliding window sizes N were set 
from 0.1M to 0.8M and the minimum support 
thresholds were set from 0.06 to 0.1. The values of f in 
the experiments are shown in Table 9. 

Table 9. Values of decay factors 

fid θ ε×θ N f 
f1 0.06 0.006 0.1M 0.990686 
f2 0.06 0.006 0.2M 0.995343 
f3 0.06 0.006 0.3M 0.996895 
f4 0.06 0.006 0.4M 0.997672 
f5 0.06 0.006 0.5M 0.998137 
f6 0.06 0.006 0.7M 0.998669 
f7 0.06 0.006 0.8M 0.998836 
f8 0.07 0.007 0.1M 0.992009 
f9 0.08 0.008 0.1M 0.993001 
f10 0.09 0.009 0.1M 0.993772 
f11 0.1 0.01 0.1M 0.994389 
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At first, verify the reasonableness of setting f=faverage. 
The relationship between decay factor f and minimum 
support threshold θ, maximal support error threshold ε 
needs to be discussed in algorithm TDMCS, in order to 
determine the optimum parameter value of f. 

Let minimum support θ=0.05, the values of recall 
and precision of TDMCS on msnbc with different 
decay factors are shown in Figure 2. Abscissa axis 
means the random value between frecall and fprecision at 
different window size N. Vertical axis means the recall 
and precision at different N, and the dashed line means 
to set f=faverage. From this figure, it can be concluded 
that: (1) with the decreasing of f, recall is decreasing 
and precision is increasing. (2) The trends of recall and 
precision at different N are similar. (3)When setting 
f=faverage, the values of recall and precision are fixed. 
They are almost unaffected by sizes of sliding 
windows. (4) The values of recall and precision can be 
balanced by setting f=faverage.  
When setting f=frecall, f=fprecision and f=faverage, compare 
the average values of recalls and precisions of 
algorithm with different sliding window sizes. It can be 
concluded that it can get almost 100% recall when 
setting f=frecall, and get lowest recall with setting 
f=fprecision. When setting f=faverage, the value of recall is 
between them. Setting f=fprecision and f=faverage can get 
almost the same precisions. But the value of precision 
is lowest when setting f=frecall. Therefore, recall and 
precision of algorithm can be more balanced by setting 
f=faverage than setting f=frecall and f=fprecision.  

 
a) recall                                     b) precision 

Figure 2. Variation of recall and precision with different decay 
factor 

Next, compare the performance of algorithm with 
setting f to faverage and random values. To make the 
random value more reasonable, set them in the range of 
(0.9, 1), and denoted as frandom. Use function 
Math.random() to generate 5 random values to set 
decay factors. The performance of TDMCS on msnbc is 
shown in Figure 3. As can be seen, when setting 
f=faverage and f=frandom, the values of precision are little 
different. But the values of recall are very different 
when setting f to random values. Therefore the 
performance of algorithm is unstable. The performance 
with is f=faverage is significantly better than set f=frandom, 
and the result set obtained is stable.  

It can get the same conclusions when processing 
synthetic data streams. Thus, set decay factor to 
average value is reasonable.  

 
Figure 3. The performance studies on msnbc with set decay factor 
to faverage and random values 

The second performance comparison experiments 
are used to analyze the influence of window sizes on 
algorithm TDMCS. Set sliding window size N=0.1M, 
0.2M and 0.3M; the minimum support θ=0.06; the 
decay factor f= f1, f2, f3 as shown in Table 9; pruning 
step P=0.1M[3, 12]. The runtime and space costs of 
algorithm TDMCS on msnbc are compared in Figure 
4.  

The performance of TDMCS on data stream 
msnbc is shown in Figure 4 when processing 1M, 
1.5M, 2M and 2.5M transactions. Figure 4.a shows the 
runtime and in which abscissa axis means number of 
transactions. It can be seen that: (1) when the number 
of transactions is small, the increase in window size 
leads to a slight increase in runtime; (2) with the 
increase of processing transaction number, the runtime 
with bigger window sizes is lower than runtime of 
smaller window size. Figure 4.b shows the memory 
usage. It is clear that the effect of different window 
size on memory usage is small. From time and space 
consumption, it can be concluded that the runtime of 
algorithm TDMCS on data stream msnbc is greatly 
different as different size N under the same number of 
transactions. And the memory usage is almost same as 
different size N. Thence, in terms of space complexity, 
TDMCS applies to discovering frequent patterns of 
any window size.  

 
a) runtimes                           

 
 (b) memory usage 

Figure 4. The performance study of TDMCS on msnbc based on 
different sizes of windows 

Thirdly, analyze the effect of pruning step on 
performance of algorithm TDMCS on msnbc. Sliding 
window size N was set to 0.5M, 0.7M or 0.8M. 
Pruning step P was set to 0.1M to 0.5M (P≤N). 
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Minimum support θ was set to 0.06 and f was set to f5 to 
f7. 

Figure 5.a shows the runtime of TDMCS 
performance on data stream msnbc with different 
window sizes and different pruning step lengths. From 
the performance of runtime it can be concluded that: (1) 
optimal pruning step length is related to sliding window 
size, (2) when value P is different, the runtime 
consumption is obvious different as N increasing. The 
memory usage is shown in Figure 5.b. It is clear that 
the effect of pruning step length on memory usage is 
small. From Figure 5 it can be seen that the length of 
pruning step has little influence on runtime and 
memory usage when window size is small. And when 
window size is big, pruning step has a wider range 
influence on runtime. Therefore, set the parameter 
P=0.1M when N=0.1M is reasonable. Figure 5.b also 
shows that algorithm TDMCS applies to discovering 
frequent patterns of any size of window.  

 

  
a) runtimes                                b) memory usage 

Figure 5. The performance study of TDMCS on data stream msnbc 
based on different sizes of windows and pruning steps. 

Finally, compare the performances of TDMCS and 
classical algorithms with different sliding window 
sizes. Let minimum support θ=0.06, maximal support 
error ε=0.1, pruning step P=0.1M, sliding window size 
N=0.1M to 0.5M and decay factor f=f1 to f4 as shown in 
Table 9. 

The performances of four algorithms processing 
synthetic data streams are shown in Figure 6, which are 
average values of recalls and precisions under different 
sliding window sizes. Four data streams with different 
lengths of transactions or patterns are used, includ7ing: 
T10I4, T10I5, T10I10 and T20I5. Figure 6.a shows the 
runtimes of four algorithms. Overall, the runtimes of 
TDMCS and CloStream* are lower than other two 
algorithms. This is because algorithm CloStream* does 
not process data with decay operations and algorithm 
TDMCS uses closure operator. The memory usages of 
algorithms are shown in Figure 6.b. The memory usage 
of TDMCS is the lowest of all. But the different 
between four algorithms is not too much. Figure 6.c 
and Figure 6.d show the recalls and precisions of 
algorithms. Both algorithms MSW and SWP set decay 
factor to lower bound, so we only compared with SWP. 
The recall of algorithm CloStream* is highest of all for 
it does not use time decay model, but the precision is 
the lowest of all. The recall and precision of algorithm 
SWP are in the middle of three algorithms. The recall 
of TDMCS is about 1% lower than other two 

algorithms, but the precision of TDMCS is about 10% 
higher than CloStream* and about 4% higher than 
SWP. Therefore, algorithm TDMCS can get more 
balance recall and precision than other three methods. 
And compared performances of four algorithms on 
data streams with different pattern lengths, such as 
T10I4, T10I5 and T10I10, or data streams with 
different transaction lengths, such as T10I5 and T20I5, 
it can be concluded that algorithm TDMCS is more 
suitable to process data streams with long transaction 
length and long pattern length. 

 

  
a) runtimes                           

 
     b) memory usage 

  
c) recall                              

 
d) precision 

Figure 6. The performance studies of algorithms on synthetic data 
streams. 

5. Summary  
Data stream is a fluid, continuous, unbounded and 
time ordered sequence of data transactions generated 
at a rapid rate. Due to the knowledge contained in data 
stream will change over time, concept drift should be 
taken into account when mining frequent patterns. 
Normally, recent transactions contain more important 
information than historical transactions, thus they 
should be treated differently. Considering the data 
stream characteristics, an efficient algorithm TDMCS 
is proposed in this paper. It is used to mining closed 
frequent patterns and based on time decay model and 
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sliding window model. It uses closure operator to 
improve the efficiency of mining closed frequent 
itemsets. In order to balance the recall and precision, a 
novel manner by average the low bound and high 
bound is provided in this paper. It uses frame minimum 
support-maximum support error-decay factor to avoid 
concept drift and discover more reasonable and 
compact result set. The performance of the proposed 
algorithm was investigated using experiments. The 
results show that it is efficient and scalable, and it 
applies to mining high dense data stream and long 
patterns.  
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