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Abstract: In some data stream applications, the information embedded in the data arriving in the new recent time period is
important than historical transactions. Because data stream is changing over time, concept drigoroblem will appear in data
stream mining. Frequent pattern mining always generate useless and redundant patterns, il ordeno obtain the result set of
lossless compression, closed pattern is needed. A novel method for efficiently miningclogsd frearent patterns on data stream
is proposed in this paper. The main work includes: distinguish importance of recen# tréasadtions from historical transactions
based on time decay model and sliding window model; design and use frame migimug: support count-maximal support error
threshold-decay factor (6-¢-f) to avoid concept drift; use closure operator to impsbve the efficiency of algorithm; design a
novel way to set decay factor: average-decay-factor faverage in order 24 balancesthe high recall and high precision of
algorithm. The performance of proposed method is evaluated via experirfienti,and the results show that the proposed method
is efficient and steady-state, it applies to mine data streams with high adgsity ar¥ long patterns, it is suitable for different size

sliding windows, and it is also superior to other analogous algorithms:
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1. Introduction?

Data stream as a new data model is widely used 4
many applications. Data stream which is different from
traditional database is time ordered, rapidly chariging,
massive and unlimited. Searching for frequent paerig
in a continuous data stream has become igiggriaat ind
challenging.

In recent years, some algorithms ft&s mining
frequent patterns or itemsets on data {treams have been
proposed. Algorithms such as SuekysSampling[15],
Lossy Counting[15], XSM[1}gaid FDPM[26] mine
frequent patterns which meat, nigximal support error
rate and minimum support ceund These methods do not
distinguish betweep#i®aaris, and historical transactions
and do not consider \the importance of recent
transactions. In additie#i, these methods for mining
complete result sets will produce a lot of useless
patterns. For reducing the number of patterns, concise
pattern set should be mined, mainly including: maximal
frequent patterns, closed frequent patterns, top-k
frequent patterns or a combination of them and so on.
Algorithms Max-FISM[6] and GUIDE[19] discover
recent maximal frequent patterns based on sliding
windows. WMFP-SW[10] mines weighted maximal
frequent patterns based on sliding windows. Algorithms
Moment[5], NewMoment[11], CloStream[24],
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StregmpneCI[20], TMoment[17], IncMine[4] and
CloStream*[25] discover closed frequent patterns
based on sliding windows. TOPSIL- Miner[23] uses
landmark windows to mine top-k frequent patterns.
Methods Top-k Lossy Counting[22], MSWTP[2] and
Top-k Miner[18] discover top-k frequent patterns
based on sliding windows. FCI_max[21] mines closed
top-k frequent patterns based on sliding windows and
so on. The drawbacks of above algorithms are that: (1)
using only the minimum support threshold for
frequent patterns mining and unprocessed concept
drift problem of data streams. (2) Although window
model are used in these methods, the weights of
transactions in window are set to the same weights.

As can be seen from the above algorithms,
mining frequent patterns on data streams usually based
on window model, especially the sliding window. The
reason is that recent transactions normally contain
more information than historical ones. Besides sliding
window model, Time Decay Model(TDM)[3, 5, 8-9,
12-14,19] is also used to process recent transactions.

TDM-based methods to mine frequent patterns on
data stream emphasize that the importances of recent
and historical transactions should be distinguished in
the window. Recent years, the ways to set decay factor
in TDM usually divide into two categories. The first
one set decay factor to random value in the range of
(0, 1) [9, 14, 19]. Such ways lead to the instability of
the mining results because of the random values of
decay factor. The second method assumes that



algorithm meets 100% Recall or 100% Precision to get
the upper and lower bounds of decay factors[3, 12].
Then set decay factor to the upper bound or lower
bound or random value between them. The problems of
these two ways to set decay factor are that it can get
high recall or high precision of algorithm, while get the
low corresponding precision or recall of algorithm. Or
because of the uncertainty of the decay factor value, the
result sets of algorithm are instability.

In order to avoid concept drift, distinguish recent
transactions from historical ones, discover compact
pattern result set efficiently, and apply to mine high
dense transactions and long patterns, a novel algorithm
is proposed in this paper. Mainly works and
innovations are that: (1) design a novel way to set
decay factor f. Existed methods set f to boundary value
of lower bound and high bound by assuming 100%
Recall and 100% Precision[3, 12, 26], or to a random
value in range of (0, 1)[13, 16]. The former will lead to
corresponding algorithm low Precision or low Recall.
And the later will make unstable performance of
algorithm. In order to balance Recall and Precision of
algorithm, proposed an average way to set decay factor
in this paper. (2) Three layers frame: minimum support-
maximum support error-decay factor is used in this
paper to solve the concept drift problem and avoid locy
of possible frequent patterns. (3) Proposed a novel
algorithm to mine closed frequent patterns on data
streams based on time decay model and sliding window
model. It can get lossless compression result set. Time
decay model[3, 12-13, 16] is used to further emphasizd
the importance of recent transactions and reduge 4w
importance of historical ones. By the comparisorisof
precisions of novel algorithm and existed_algaritims,
the novel algorithm can get more accuratefresult se.

The rest of this paper is organized ™ follows.
Section 2 presents background know!edge; niainly on
closure operator and time decal mocdi. The efficient
novel algorithm based on time devay model to discover
closed patterns is detaileCyinWsection 3. Section 4
describes the experimantsy, and  explains  the
experimental results. Section d,concludes this work.

2. Preliminaries

A data stream DS=<Ty, T, ..., T;, ...> is a continuous
and unbounded sequence of transactions in a timely
order, where T; (i=1, 2, ...) is the ith transaction. Each
transaction contains a unique transaction identifier tig, as
shown in the first column of Table 1. The support count
of frequent pattern P, denoted as freq(P, N)[6], is the
number of transactions in existed N transactions in
which P occurs.

o Define 1. (Frequent Pattern[12]) Let N be the sliding
window size, and 6(6 € (0,1]) be the minimum

support. If itemset P meets freq(P, N)>6xN, P is
frequent pattern.

o Define 2. (Half-Frequent Pattern, Non-Frequent
Pattern[12]) Let N be the sliding window size,
0(0< (0,1]) be the minimum support and ¢ (¢ < (0,
0)) be the maximal support error. If itemset P meets
OxN > freq(P, N) > &x0xN, P is half-frequent
pattern. Else if freq(P, N) < &x@xN, P is non-
frequent pattern.

Table 1 Transaction data stream

TID | Transaction
t) 134
tp 235
t3 1235
ty 2345

Data stream changes in real time and the infrequent
patterns over time may ke€tme frequent patterns. That
is concept drift.” Thesefore, in order to reduce the
number of migSing, passiole patterns, frequent patterns
and half-freqoasic patterns need to be maintained
during pfining pracess. In addition, in order to reduce
the coSt 0fmaintaining patterns, non-frequent patterns
neean be ICst. By this way, the possible error of loss
pattarnsyis not greater than ¢[3, 12]. Therefore, using
#-¢ framework_ ¢amgsolve the problem of concept drift.

A heavyaprablein of mining frequent pattern from
data stteariy isfgenerated a large number of useless
patterps. “Gherefore, mining useful and compressed
pattesn W, needed. Discovering closed frequent pattern
is, d (common method, which is lossless compressed
and ¢dntains all the information of the complete result.
Meanwhile, in order to improve the efficiency to
aiscover closed patterns, closure operator[24-25] is
used in this paper. The performance of the algorithm
with closure operator is better than classic closed
pattern mining algorithms such as Moment[5], CFI-
Stream[9] and NewMoment[11]. Take closure
operator into account, the concept of closed patterns
are shown in definitions 3 to 5.

o Define 3. (Closure Operator [24-25]) Let T be the
subsets of all that transactions in D, denotes as
T <D LetY be the subsets of all items set | (Y =)
which appears in D. Concept of closed itemset is
based on the following two functions h and g:

h(M)={iel|VteT,iet} 1)

g(Y)={teD|VieD,ict} )

Function h takes T as input and returns an itemset
included in all transactions belonging to T. Function g
takes an itemset Y as an input and returns a set of
transactions including Y. A function
C=hog=h(g)

is called Closure Operator.
o Define 4. (Closed Itemset[25]) An itemset P is

called a closed itemset if and only if it satisfy



Formula 3. Otherwise, P is non-closed. The C(P) is
called the closure of P.

C(P)=h(g(P)) =P 3)

o Define 5. (Closed Frequent/Half-Frequent Pattern) If
itemset P=C(P) and its support is no less than
minimum support, then P is called a closed frequent
pattern. If itemset P=C(P) and its support is no less
than maximal support error, then P is called a closed
half-frequent pattern. Otherwise, P is non-frequent
pattern.

Due to the continuous and infinite, knowledge
contained in data stream will change with the passage
of time. Under normal circumstances, the value of
recent transaction is important than historical one.
Therefore, it is necessary to increase the weight of
recent transaction. A time decay model (TDM) is
developed to gradually decay the occurrence count of
itemset contained in the transaction[2, 11]. Let the
decay ratio of support count in the unit time is decay
factor f (f€(0,1]). When T, arrives, support count of
frequent pattern P is denoted as freqq(P, T,). Each time
a new transaction arrives, freqq(P, T,) is multiplied by a
decay factor f. When the mth transaction Ty, arrives, r,is
1 if it contains P, otherwise r=0. The freqq(P, T) based
on decay factor is shown in Formulas 4 and 5.

freqy, (P, T,)=r, if m=1

4

freq, (P, T,,) = freq, (P, T, ) *f +r, if m>2 ( )
r=1 if PcT,

r=0, otherwise )

3. Algorithm TDMCS

In this section, data structures andgtits new way to
define decay factor f are introducsd, ‘®ad/the proposed
algorithm TDMCS (TDM-Bastd @losed Frequent
Pattern Mining on Data Straam,ais mtroduces in detail
which is used to mining frequegt closed patterns based
on f-6-¢ framework.

Three data (tructtyes> are used in algorithm
TDMCS, includingy,ClogedTable[24], CidList[24] and
NewTransactionTable/OldTransactionTable.  Closed-
Table which is used to maintain the information of
closed itemsets consists of three fields: Cid, CP and
SCP. Each closed itemset CP is assigned to a unique
closed identifier Cid, and its support count is denoted as
SCP. CidList maintains each item in data stream and its
corresponding Cid sets which point to ClosedTable.
NewTransactionTable is used to maintain the
information of new transaction T, It consists of two
fields: Templtem and Cid. Templtem contains the
information of itemsets which satisfy {TiNTpew, Ti €
ClosdeTable}. The T; is the ith transaction in data
stream and T, iS the new transaction. Structure of

OldTransactionTable is same as New-
TransactionTable, which is used to maintain the
information of old transaction T.

The core issue of removing old transactions from
sliding window is how to effectively prune the
existing data structures. Existing methods are often
pruning step by step which is inefficient. A sliding
step M is used in this paper. Pruning data structure
after the sliding window move M transactions, that is,
pruning when transactions Tg.i«v (SW is the size of
sliding window, i=1, 2, ...) are arrived.

In order to distinguish the weights of the
historical transactions and the recent transactions,
thereby improving the agcsuracy of result set, and
avoiding the missing of=podsible frequent patterns, a
novel algorithm TOWTY (TDM-Based Closed
Frequent Pattern Minig on Data Stream) is proposed
in this paper 1 DMCS, mines closed frequent patterns
on data strean¥y’based on frame 6-¢-f (decay factor-
minimuwdl  support-maximal  support error). This
algorithmyses data structures ClosedTable, CidList,
NawigansactionTable and OldTransactionTable to
malntairyfrequent itemsets information. It uses time
decav,model (D) to estimate the support count of
Kauern, and=maiatain the frequent and half-frequent
closed ‘frrequentjitemsets which satisfy frame 6-¢. The
descriytiony, or algorithm TDMCS is shown as
Algewittiy 1. The main idea is processing the
iafornedon of new transaction Ty, at first. Secondly,
if the number of processed transactions exceeds the
size of sliding window, delete the information of old
transaction T,q4 [If the processing steps of the
transactions meet the pruning step M, do pruning
operation. In order to increase the efficiency of the
algorithm, it only adds delete flags (DeleteFlag) when
processing old transactions and does the actual delete
operations when pruning.

Algorithm 1: TDMCS()

Mining closed frequent patterns on data streams
For Each Transaction T,, In S Do

Call TDMCSADD(T e);

If NUM>N Then TDMCSREMOVE(T,);

If NUM%M==0 Then Call PRUNNING();
End For

g b wnN -

Specifically, there are three methods consisted in
algorithm TDMCS. Method TDMCSADD(Tyen) iS
used to process the new transactions, method
TDMCSREMOVE(T,4) processes old transactions and
method PRUNING() processes pruning.

When new transaction T, arrived, TDMCS-
ADD(Tew) is described as Algorithm 2. For example,
if new transaction is T, as shown in Table 1, this
algorithm processes it in four steps. First, generate
CidSet associated with T, to discover the intersection
between T, and existed frequent itemsets. Second,
build NewTransactionTable to maintain possible
frequent itemsets associated with T,. Then update



ClosedTable and CidList referring to
NewTransactionTable  and ClosedTable.  The
processing is as shown in Figure 1.

Algorithm 2: TDMCSADD()

Processing new transactions
1 Add T,., To NewTransactionTable
2 Let setcid(Tew)={ UCidSet(item;),item; ET e }
3 For Cig In setcid(Tpe,) DO
3.1 interS= TwNClosedTable(Ciy)
3.2 For Templtem In NewTransactionTable Do
If interS &ClosedTable
Then update support(interS)
Else If support(interS) > Nxgx6
Then Add (interS, Ciy) To ClosedTable
End For
3.3 For (Templtem, C;g) In NewTransactionTable Do
If(Templtem==ClosedTable(Cj))
Then update support(ClosedTable(C;y))
Else update support(Templtem)
If(newsupport(Templtem) > N xgx6)
Then Add (Templtem, newsupport(Templtem))
To ClosedTable
If item €T, And item Is Not In CidList
Then Add item To CidList
End For
4 End For

Illustrate the process of algorithm TDMCSADD(T )0
handle new transactions. Data stream is shown as in
Table 1 including 4 transactions. Let decay factor f=0.8,
minimum support threshold 6=0.1. When new
transaction T,={2, 3, 4, 5} is arrived, information of
ClosedTable, CidList and NewTransactionTable are &3
shown in Tables 2-4. There are 5 frequent itemsets_in
ClosedTable, 5 items in CidList and NULLX in
initialized NewTransactionTable. When new tranagtios
T, arrived, there are some steps to process i

Step 0: Add wvalues <T,; 03340
TransactionTable.

Step 1: Compare items in T4 an¢ items in CidList
to get the CidSet associated with T§.

Step 2: Add itemsets 4ssogiated with T, to
NewTransactionTable accoraiag viith CidSet, as shown
in Table 4. That is for each edamient Cid of CidSet to get
the intersection of T¢ai,ClosedTable.

Step 3: Updae ClotedTable with information of
NewTransactionTabrestiien get Table 5.

Step 4: Update CidList with information of novel
NewTransactionTable and ClosedTable. It will be
update under two conditions: the emergence of a new
frequent itemset or a new item. Assuming T,contains a
new item (7) represented in italics in Figure 1. Then
add value < {7}, {6} > to CidList. Meanwhile, there are
two new frequent itemsets in ClosedTable, then update
CidList too.

For continuous generation of new transactions,
repeat steps above for processing. When you need to
remove the information of old transactions from sliding
window, use algorithm TDMCSREMOVE(T,q4). The

New-

main process is similar to  algorithm
TDMCSADD(T,ew). First, generate OldTransaction-
Table to maintain the information about old
transaction T4 Second, find the intersections of
OldTransactionTable and ClosedTable. Next, update
or delete ClosedTable. In order to improve efficiency
of algorithms, it only adds deleting flags and does not
do the actual deletion.

When steps of processing transactions meet the
pruning step, call function PRUNING() to do pruning
operations. This is the actual process of deleting
operations, and it mainly does updating and deleting
operations on ClosedTable and CidList. The algorithm
is described as shown in Algorithm 3.

Algorithm 3: PRUNING()

Dropping informatiSn ot tjistoical transactions.
1 For Each Cy IpfClosciiTavle
2 Remove itemgts(fith CeleteFlag) From closedTable
3 If suppart(Cig) SN xex6
Theps2emove iternsets From closeTable
4 Update didlist
5 Enaor

If oriy tie parameters minimum support threshold 6
end ~gecay fagtor ¢ are used in algorithms, some
possible frgquaatvpatterns might be lost. Such as, let
minimunry, seaport 6=0.1, then complete result set is
minec.y, Thagefore, many useless patterns may be
disCoyered If setting 6=0.3, when T,arrived, frequent
itemeeats should meet the support count 4x0.3=1.2.
ahell generate three frequent itemsets in ClosedTable
s shown in Table 7. From Table 7 and Table 5, it is
clear that the pattern {3 4} (freqq({3 4})=1.512>1.2))
is missing.
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Figure 1. Schematic of the process of handling new transaction T,

Table 7. ClosedTable (6=0.3)

Cid [ CcP SCP
0 {0} 0

1 | {235} | 2.44
2 | {3} 2.952
3 [ {13y 1312

as calculated by Formula 6. Therefore, if only the
minimum support threshold & is used under the time
decay model, some frequent patterns may be lost, for
its support count may be less than 8xN. To solve this
problem, ¢ is introduced as the maximum support
error. Therefore, the frequent support of mined
patterns needs to meet Nxex6 instead of Nx6.

The reason is that the frequency with decay factor of

pattern P is smaller than its original frequen
freqq(P) < freq(P). Let f=0.8, then freqq(P)<1

cy, that is freqq (P, Tp) = freqy (P, Tpg)X f +r (6)
/(1-0.8)=5
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The next question is how to determine the value of the
decay rate f after given parameters: minimum support,
maximum support error and sliding window size.
Suppose recall is 100%, a lower bound for the decay
factory is showed by Formula 7 [3, 12]. Formula 8 [3]
shows the upper bound of f under the condition of
precision=100%. The usual methods set f to random
value between lower bound and high bound or set f to
one bound of them[3, 12]. Because both recall=100%
and precision=100% cannot be achieved at same time,
selected f should balance these two conditions.

f >N )0, when recall =100% @)
f< % when precision =100% (8)
—&

In this paper, a new way to set decay factor is proposed.
Let sliding window size be 10K. Parameters é, ¢ and f
are shown in Table 8. The third column f.e.ay Mmeans the
lower bound when assuming recall is 100%. The layt
column fyrecision implies the upper bound when assuming
precision is 100%. There are three policies to select f,
as shown in Formula 9. For example, let #=0.025 and
£=0.05, then set f=fi;=0.999995, f=f;ecision=0.995789
or f=faerage=0.997892. Verified by experiments (i
Section 4), set f t0 fierage Can get the more balansed
recall and precision of algorithm. Therefore, “\set
f=faverage 1S More reasonable than set f on randem vglue
between frecan and fyrecision OF ONE Of it.

Table 8. Time decay factor

0 ex0 |frecall (recall=100%) fprecisig\Tﬁhisionzloo%)
0.05 10.05x6 0.999995 (N, 007895
0.05] 0.1x0 0.999989 9 0997778
0.05] 0.5x0 0.999929 _|__ 0.996
0.025{0.05x0 0.999995 _|_ 0.995789
0.025] 0.1x6 0.999989 (" 0.995556
0.025] 0.5x6 0.99392 4, | 0.992
fl = frecall =" I70’\‘7\/[(9_5)/9]2
(@-&)N-1
f2 = fprecision =T n
(@-¢)N (9)

(2N-N-Dfr 7, (@-e)N-1
_ V@ -¢)16] + @-o)N
2

fs

4. Performance

The experiments were performed on a 2.1 GHZ CPU
with 2GB memory, and running on Win7. All the
algorithms were coded in Java language. To evaluate
the performance of these algorithms, real and synthetic
datasets were used. Real dataset from UCI[7] describes

the page visits of users who visited msnbc.com on
September 28, 1999. Visits are recorded at the level of
URL category (see below) and are recorded in order.
There are 989818 transactions and the average length
of transaction is 5.7. It is high dense and similar data
stream. Synthetic datasets were generated from IBM
data generator. There are four synthetic datasets with
different average pattern and transaction size:
T5I5D1000K, T1014D1000K, T1015D1000K,
T10110D1000K, T2015D1000K and T20I120D1000K.
These were used to analyze the performance of data
stream of different density. The parameters are
described as follows: D is the total number of
transactions; | is the average size of maximal potential
patterns; T is the averags~length of transactions. Such
as, T10I15D1000K meeris)the average length of
transactions is 10, aveigge iength of maximal potential
patterns is 5, Znd nurniaer of transactions is 1000K.
The mainly ptwiose of experimental was to analyze:
(1) thegways to“set decay factor f. Compared the
algorithm®performances with setting f as random
valuen, bouridary value and average value. (2)
Anaiyzed the effects of sliding window sizes on
nerfornance ofi argorithm TDMCS. (3) Analyzed the
grieets of praaing steps on performance of algorithm
TDMCS, W4) ) Compared the performances of
algoriimsy TUMCS and CloStream*[25], MSW[12]
andr7EWRL3|. Compared to algorithm CloStream[24],
argofithim CloStream™ used the sliding window to deal
vith) recent transactions to mine closed frequent
nauerns. CloStream handled all the transactions, so it
aid not apply to mine unlimited data stream.
Therefore, in this paper compared TDMCS with
CloStream*. Similar pattern tree structures were used
in algorithms MSW and SWP. And both of them set
decay factor as lower bound. In this paper, some
modifications were made to the two original
algorithms for mining closed frequent patterns instead
of complete patterns.

The maximum support error ¢ was set to 0.1. The
value of the time decay factor f was set to average of
low bound and high bound to balance 100% recall and
100% precision. The sliding window sizes N were set
from 0.1M to 0.8M and the minimum support
thresholds were set from 0.06 to 0.1. The values of f in
the experiments are shown in Table 9.

Table 9. Values of decay factors

fid 0 £x0 N f

fi | 0.06 | 0.006 | 0.1M | 0.990686
f, | 0.06 | 0.006 | 0.2M | 0.995343
f; | 0.06 | 0.006 | 0.3M | 0.996895
fs | 0.06 | 0.006 | 0.4M | 0.997672
fs | 0.06 | 0.006 | 0.5M | 0.998137
fs | 0.06 | 0.006 | 0.7M | 0.998669
f; | 0.06 | 0.006 | 0.8M | 0.998836
fg | 0.07 | 0.007 | 0.1M | 0.992009
fo | 0.08 | 0.008 | 0.1M | 0.993001
fio | 0.09 | 0.009 | 0.1M | 0.993772
fiu [ 01 | 0.01 | 0.1IM | 0.994389




At first, verify the reasonableness of setting f=fayerage-
The relationship between decay factor f and minimum
support threshold 8, maximal support error threshold ¢
needs to be discussed in algorithm TDMCS, in order to
determine the optimum parameter value of f.

Let minimum support 6=0.05, the values of recall

and precision of TDMCS on msnbc with different
decay factors are shown in Figure 2. Abscissa axis
means the random value between fiecar and firecision at
different window size N. Vertical axis means the recall
and precision at different N, and the dashed line means
to set f=fuerage. From this figure, it can be concluded
that: (1) with the decreasing of f, recall is decreasing
and precision is increasing. (2) The trends of recall and
precision at different N are similar. (3)When setting
f=faverage; the values of recall and precision are fixed.
They are almost unaffected by sizes of sliding
windows. (4) The values of recall and precision can be
balanced by setting f=faerage-
When setting f=fiecan, f=forecision and f=fayerage, COMpare
the average values of recalls and precisions of
algorithm with different sliding window sizes. It can be
concluded that it can get almost 100% recall when
setting f=feca, and get lowest recall with setting
f=forecision. When setting f=foerage, the value of recall is
between them. Setting f=fyrecision aNd f=faerage CaAN g
almost the same precisions. But the value of precision
is lowest when setting f=fcai. Therefore, recall and
precision of algorithm can be more balanced by setting
1:=faverage than Setting fzfrecall and 1:=fprecisi0n-

5.9 0 0997 09% 0995 0992 O 099 098 097
decayfactor decayfactor

a) recall b)(redision

Figure 2. Variation of recall and precision Wits=gifferent decay
factor

Next, compare the perfarnignce of algorithm with
setting f to faerage @R ¥andom values. To make the
random value more¢ reascpanle, set them in the range of
(0.9, 1), and dyaoted’ as fngom- Use function
Math.random() to generate 5 random values to set
decay factors. The performance of TDMCS on msnbc is
shown in Figure 3. As can be seen, when setting
f=faverage @Nd f=frsngom, the values of precision are little
different. But the values of recall are very different
when setting f to random values. Therefore the
performance of algorithm is unstable. The performance
with is f=faerage 1S significantly better than set f=fiangom,
and the result set obtained is stable.

It can get the same conclusions when processing
synthetic data streams. Thus, set decay factor to
average value is reasonable.
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Figure 3. The performance studies on msnbc with set decay factor
to faverage and random values

The second performance comparison experiments
are used to analyze the influence of window sizes on
algorithm TDMCS. Set sliding window size N=0.1M,
0.2M and 0.3M; the minimum support 6=0.06; the
decay factor f= f;, f,, f3asghown in Table 9; pruning
step P=0.1M[3, 12]. Thessuriime and space costs of
algorithm TDMGS_dr, msalic are compared in Figure
4.

The periqrpdance” of TDMCS on data stream
msnbc ig”showrnin Figure 4 when processing 1M,
1.5Mgziviand 2.5M transactions. Figure 4.a shows the
runtigae anayin which abscissa axis means number of
tfansacdions. It can be seen that: (1) when the number
of trapsactions gsysmall, the increase in window size
ads to a slight Increase in runtime; (2) with the
Increass of{oroggssing transaction number, the runtime
with bigger “window sizes is lower than runtime of
smaller\wiridow size. Figure 4.b shows the memory
usage. i, 1s clear that the effect of different window
Size ,.bw memory usage is small. From time and space
ceasumption, it can be concluded that the runtime of
aigorithm TDMCS on data stream msnbc is greatly
different as different size N under the same number of
transactions. And the memory usage is almost same as
different size N. Thence, in terms of space complexity,
TDMCS applies to discovering frequent patterns of
any window size.

a) runtimes
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(b) memory usage

Figure 4. The performance study of TDMCS on msnbc based on
different sizes of windows

Thirdly, analyze the effect of pruning step on
performance of algorithm TDMCS on msnbc. Sliding
window size N was set to 0.5M, 0.7M or 0.8M.
Pruning step P was set to 0.1M to 0.5M (P<N).



Minimum support 8 was set to 0.06 and f was set to fsto
f;.

Figure 5.a shows the runtime of TDMCS
performance on data stream msnbc with different
window sizes and different pruning step lengths. From
the performance of runtime it can be concluded that: (1)
optimal pruning step length is related to sliding window
size, (2) when value P is different, the runtime
consumption is obvious different as N increasing. The
memory usage is shown in Figure 5.b. It is clear that
the effect of pruning step length on memory usage is
small. From Figure 5 it can be seen that the length of
pruning step has little influence on runtime and
memory usage when window size is small. And when
window size is big, pruning step has a wider range
influence on runtime. Therefore, set the parameter
P=0.1M when N=0.1M is reasonable. Figure 5.b also
shows that algorithm TDMCS applies to discovering
frequent patterns of any size of window.

memaeyusage (M)

uuuuuuuuuuuu

a) runtimes b) memory usage

Figure 5. The performance study of TDMCS on data stream msnbc
based on different sizes of windows and pruning steps.

Finally, compare the performances of TDMCS ard
classical algorithms with different sliding window
sizes. Let minimum support 6=0.06, maximal supiort
error ¢=0.1, pruning step P=0.1M, sliding windoW size
N=0.1M to 0.5M and decay factor f=f; to faa.snawiwin
Table 9.

The performances of four algorithms “processing
synthetic data streams are shown in Fgure 6, which are
average values of recalls and preciSmriauiider different
sliding window sizes. Four_ data s«eariis with different
lengths of transactions or pavgrniare used, includ7ing:
T1014, T10I5, T10110 ang”#20:%. Figure 6.a shows the
runtimes of four algewithigs. Overall, the runtimes of
TDMCS and Clofstream’ are lower than other two
algorithms. This is vacasse algorithm CloStream* does
not process data with decay operations and algorithm
TDMCS uses closure operator. The memory usages of
algorithms are shown in Figure 6.b. The memory usage
of TDMCS is the lowest of all. But the different
between four algorithms is not too much. Figure 6.c
and Figure 6.d show the recalls and precisions of
algorithms. Both algorithms MSW and SWP set decay
factor to lower bound, so we only compared with SWP.
The recall of algorithm CloStream™ is highest of all for
it does not use time decay model, but the precision is
the lowest of all. The recall and precision of algorithm
SWP are in the middle of three algorithms. The recall
of TDMCS is about 1% lower than other two

algorithms, but the precision of TDMCS is about 10%
higher than CloStream* and about 4% higher than
SWP. Therefore, algorithm TDMCS can get more
balance recall and precision than other three methods.
And compared performances of four algorithms on
data streams with different pattern lengths, such as
T1014, T10l15 and T10110, or data streams with
different transaction lengths, such as T1015 and T20I5,
it can be concluded that algorithm TDMCS is more
suitable to process data streams with long transaction
length and long pattern length.
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Figure 6. The performance studies of algorithms on synthetic data
streams.

5. Summary

Data stream is a fluid, continuous, unbounded and
time ordered sequence of data transactions generated
at a rapid rate. Due to the knowledge contained in data
stream will change over time, concept drift should be
taken into account when mining frequent patterns.
Normally, recent transactions contain more important
information than historical transactions, thus they
should be treated differently. Considering the data
stream characteristics, an efficient algorithm TDMCS
is proposed in this paper. It is used to mining closed
frequent patterns and based on time decay model and



sliding window model. It uses closure operator to
improve the efficiency of mining closed frequent
itemsets. In order to balance the recall and precision, a
novel manner by average the low bound and high
bound is provided in this paper. It uses frame minimum
support-maximum support error-decay factor to avoid
concept drift and discover more reasonable and
compact result set. The performance of the proposed
algorithm was investigated using experiments. The
results show that it is efficient and scalable, and it
applies to mining high dense data stream and long
patterns.
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