

TDMCS: An Efficient Method for Mining Closed
Frequent Patterns over Data Streams Based on

Time Decay Model
Meng Han, Jian Ding, and Juan Li

 School of Computer Science and Engineering, Beifang University of Nationalities, China

Abstract: In some data stream applications, the information embedded in the data arriving in the new recent time period is
important than historical transactions. Because data stream is changing over time, concept drift problem will appear in data
stream mining. Frequent pattern mining always generate useless and redundant patterns, in order to obtain the result set of
lossless compression, closed pattern is needed. A novel method for efficiently mining closed frequent patterns on data stream
is proposed in this paper. The main work includes: distinguish importance of recent transactions from historical transactions
based on time decay model and sliding window model; design and use frame minimum support count-maximal support error
threshold-decay factor (θ-ε-f) to avoid concept drift; use closure operator to improve the efficiency of algorithm; design a
novel way to set decay factor: average-decay-factor faverage in order to balance the high recall and high precision of
algorithm. The performance of proposed method is evaluated via experiments, and the results show that the proposed method
is efficient and steady-state, it applies to mine data streams with high density and long patterns, it is suitable for different size
sliding windows, and it is also superior to other analogous algorithms.

Keywords: data stream mining, frequent pattern mining, closed pattern mining, time decay model, sliding window,
concept drift.

Received January 15, 2015; accepted August 12, 2015

1. Introduction1
Data stream as a new data model is widely used in
many applications. Data stream which is different from
traditional database is time ordered, rapidly changing,
massive and unlimited. Searching for frequent patterns
in a continuous data stream has become important and
challenging.

In recent years, some algorithms for mining
frequent patterns or itemsets on data streams have been
proposed. Algorithms such as Sticky Sampling[15],
Lossy Counting[15], XSM[1] and FDPM[26] mine
frequent patterns which meet maximal support error
rate and minimum support count. These methods do not
distinguish between recent and historical transactions
and do not consider the importance of recent
transactions. In addition, these methods for mining
complete result sets will produce a lot of useless
patterns. For reducing the number of patterns, concise
pattern set should be mined, mainly including: maximal
frequent patterns, closed frequent patterns, top-k
frequent patterns or a combination of them and so on.
Algorithms Max-FISM[6] and GUIDE[19] discover
recent maximal frequent patterns based on sliding
windows. WMFP-SW[10] mines weighted maximal
frequent patterns based on sliding windows. Algorithms
Moment[5], NewMoment[11], CloStream[24],

1 This paper is supported by National Nature Science Foundation of China
(61563001), Science Foundation of State Nationalities Affairs Commission
(14BFZ008) and Beifang University of Nationalities (2014XYZ13).

Stream_FCI[20], TMoment[17], IncMine[4] and
CloStream*[25] discover closed frequent patterns
based on sliding windows. TOPSIL- Miner[23] uses
landmark windows to mine top-k frequent patterns.
Methods Top-k Lossy Counting[22], MSWTP[2] and
Top-k Miner[18] discover top-k frequent patterns
based on sliding windows. FCI_max[21] mines closed
top-k frequent patterns based on sliding windows and
so on. The drawbacks of above algorithms are that: (1)
using only the minimum support threshold for
frequent patterns mining and unprocessed concept
drift problem of data streams. (2) Although window
model are used in these methods, the weights of
transactions in window are set to the same weights.

As can be seen from the above algorithms,
mining frequent patterns on data streams usually based
on window model, especially the sliding window. The
reason is that recent transactions normally contain
more information than historical ones. Besides sliding
window model, Time Decay Model(TDM)[3, 5, 8-9,
12-14,19] is also used to process recent transactions.

TDM-based methods to mine frequent patterns on
data stream emphasize that the importances of recent
and historical transactions should be distinguished in
the window. Recent years, the ways to set decay factor
in TDM usually divide into two categories. The first
one set decay factor to random value in the range of
(0, 1) [9, 14, 19]. Such ways lead to the instability of
the mining results because of the random values of
decay factor. The second method assumes that

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

algorithm meets 100% Recall or 100% Precision to get
the upper and lower bounds of decay factors[3, 12].
Then set decay factor to the upper bound or lower
bound or random value between them. The problems of
these two ways to set decay factor are that it can get
high recall or high precision of algorithm, while get the
low corresponding precision or recall of algorithm. Or
because of the uncertainty of the decay factor value, the
result sets of algorithm are instability.

In order to avoid concept drift, distinguish recent
transactions from historical ones, discover compact
pattern result set efficiently, and apply to mine high
dense transactions and long patterns, a novel algorithm
is proposed in this paper. Mainly works and
innovations are that: (1) design a novel way to set
decay factor f. Existed methods set f to boundary value
of lower bound and high bound by assuming 100%
Recall and 100% Precision[3, 12, 26], or to a random
value in range of (0, 1)[13, 16]. The former will lead to
corresponding algorithm low Precision or low Recall.
And the later will make unstable performance of
algorithm. In order to balance Recall and Precision of
algorithm, proposed an average way to set decay factor
in this paper. (2) Three layers frame: minimum support-
maximum support error-decay factor is used in this
paper to solve the concept drift problem and avoid loss
of possible frequent patterns. (3) Proposed a novel
algorithm to mine closed frequent patterns on data
streams based on time decay model and sliding window
model. It can get lossless compression result set. Time
decay model[3, 12-13, 16] is used to further emphasize
the importance of recent transactions and reduce the
importance of historical ones. By the comparison of
precisions of novel algorithm and existed algorithms,
the novel algorithm can get more accurate result sets.

The rest of this paper is organized as follows.
Section 2 presents background knowledge; mainly on
closure operator and time decal model. The efficient
novel algorithm based on time decay model to discover
closed patterns is detailed in section 3. Section 4
describes the experiments and explains the
experimental results. Section 5 concludes this work.

2. Preliminaries
A data stream DS=<T1, T2, … , Ti, …> is a continuous
and unbounded sequence of transactions in a timely
order, where Ti (i=1, 2, …) is the ith transaction. Each
transaction contains a unique transaction identifier tid, as
shown in the first column of Table 1. The support count
of frequent pattern P, denoted as freq(P, N)[6], is the
number of transactions in existed N transactions in
which P occurs.

• Define 1. (Frequent Pattern[12]) Let N be the sliding
window size, and θ(]1,0(∈θ) be the minimum
support. If itemset P meets freq(P, N)≥θ×N, P is
frequent pattern.

• Define 2. (Half-Frequent Pattern, Non-Frequent
Pattern[12]) Let N be the sliding window size,
θ(θ∈(0,1]) be the minimum support and ε (ε∈(0,
θ)) be the maximal support error. If itemset P meets
θ×N ≥ freq(P, N) ≥ ε×θ×N, P is half-frequent
pattern. Else if freq(P, N) < ε×θ×N, P is non-
frequent pattern.

Table 1 Transaction data stream

TID Transaction
t1 1 3 4
t2 2 3 5
t3 1 2 3 5
t4 2 3 4 5

Data stream changes in real time and the infrequent
patterns over time may become frequent patterns. That
is concept drift. Therefore, in order to reduce the
number of missing possible patterns, frequent patterns
and half-frequent patterns need to be maintained
during mining process. In addition, in order to reduce
the cost of maintaining patterns, non-frequent patterns
need to be lost. By this way, the possible error of loss
patterns is not greater than ε[3, 12]. Therefore, using
θ-ε framework can solve the problem of concept drift.

A heavy problem of mining frequent pattern from
data stream is generated a large number of useless
patterns. Therefore, mining useful and compressed
pattern is needed. Discovering closed frequent pattern
is a common method, which is lossless compressed
and contains all the information of the complete result.
Meanwhile, in order to improve the efficiency to
discover closed patterns, closure operator[24-25] is
used in this paper. The performance of the algorithm
with closure operator is better than classic closed
pattern mining algorithms such as Moment[5], CFI-
Stream[9] and NewMoment[11]. Take closure
operator into account, the concept of closed patterns
are shown in definitions 3 to 5.

• Define 3. (Closure Operator [24-25]) Let T be the
subsets of all that transactions in D, denotes as

DT ⊆ . Let Y be the subsets of all items set I (IY ⊆)
which appears in D. Concept of closed itemset is
based on the following two functions h and g:

},|{)(tiTtIiTh ∈∈∀∈= (1)

},|{)(tiDiDtYg ∈∈∀∈= (2)

Function h takes T as input and returns an itemset
included in all transactions belonging to T. Function g
takes an itemset Y as an input and returns a set of
transactions including Y. A function

)(ghghC == 
is called Closure Operator.
• Define 4. (Closed Itemset[25]) An itemset P is

called a closed itemset if and only if it satisfy

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Formula 3. Otherwise, P is non-closed. The C(P) is
called the closure of P.

PPghPC ==))(()((3)

• Define 5. (Closed Frequent/Half-Frequent Pattern) If
itemset P=C(P) and its support is no less than
minimum support, then P is called a closed frequent
pattern. If itemset P=C(P) and its support is no less
than maximal support error, then P is called a closed
half-frequent pattern. Otherwise, P is non-frequent
pattern.

Due to the continuous and infinite, knowledge
contained in data stream will change with the passage
of time. Under normal circumstances, the value of
recent transaction is important than historical one.
Therefore, it is necessary to increase the weight of
recent transaction. A time decay model (TDM) is
developed to gradually decay the occurrence count of
itemset contained in the transaction[2, 11]. Let the
decay ratio of support count in the unit time is decay
factor f (f∈(0,1]). When Tn arrives, support count of
frequent pattern P is denoted as freqd(P, Tn). Each time
a new transaction arrives, freqd(P, Tn) is multiplied by a
decay factor f. When the mth transaction Tm arrives, r is
1 if it contains P, otherwise r=0. The freqd(P, Tm) based
on decay factor is shown in Formulas 4 and 5.

1,),(== mifrTPfreq md

2,*),(),(1 ≥+= − mifrfTPfreqTPfreq mdmd

(4)

mTPifr ⊆= ,1

otherwiser ,0= (5)

3. Algorithm TDMCS
In this section, data structures and the new way to
define decay factor f are introduced, and the proposed
algorithm TDMCS (TDM-Based Closed Frequent
Pattern Mining on Data Stream) is introduces in detail
which is used to mining frequent closed patterns based
on f-θ-ε framework.

Three data structures are used in algorithm
TDMCS, including: ClosedTable[24], CidList[24] and
NewTransactionTable/OldTransactionTable. Closed-
Table which is used to maintain the information of
closed itemsets consists of three fields: Cid, CP and
SCP. Each closed itemset CP is assigned to a unique
closed identifier Cid, and its support count is denoted as
SCP. CidList maintains each item in data stream and its
corresponding Cid sets which point to ClosedTable.
NewTransactionTable is used to maintain the
information of new transaction Tnew. It consists of two
fields: TempItem and Cid. TempItem contains the
information of itemsets which satisfy {Ti∩Tnew, Ti∈
ClosdeTable}. The Ti is the ith transaction in data
stream and Tnew is the new transaction. Structure of

OldTransactionTable is same as New-
TransactionTable, which is used to maintain the
information of old transaction Told.

The core issue of removing old transactions from
sliding window is how to effectively prune the
existing data structures. Existing methods are often
pruning step by step which is inefficient. A sliding
step M is used in this paper. Pruning data structure
after the sliding window move M transactions, that is,
pruning when transactions Tsw+i*M (sw is the size of
sliding window, i=1, 2, …) are arrived.

In order to distinguish the weights of the
historical transactions and the recent transactions,
thereby improving the accuracy of result set, and
avoiding the missing of possible frequent patterns, a
novel algorithm TDMCS (TDM-Based Closed
Frequent Pattern Mining on Data Stream) is proposed
in this paper. TDMCS mines closed frequent patterns
on data streams based on frame θ-ε-f (decay factor-
minimum support-maximal support error). This
algorithm uses data structures ClosedTable, CidList,
NewTransactionTable and OldTransactionTable to
maintain frequent itemsets information. It uses time
decay model (TDM) to estimate the support count of
pattern, and maintain the frequent and half-frequent
closed frequent itemsets which satisfy frame θ-ε. The
description of algorithm TDMCS is shown as
Algorithm 1. The main idea is processing the
information of new transaction Tnew at first. Secondly,
if the number of processed transactions exceeds the
size of sliding window, delete the information of old
transaction Told. If the processing steps of the
transactions meet the pruning step M, do pruning
operation. In order to increase the efficiency of the
algorithm, it only adds delete flags (DeleteFlag) when
processing old transactions and does the actual delete
operations when pruning.
Algorithm 1: TDMCS()

Mining closed frequent patterns on data streams
1 For Each Transaction Tnew In S Do
2 Call TDMCSADD(Tnew);
3 If NUM>N Then TDMCSREMOVE(Told);
4 If NUM%M==0 Then Call PRUNNING();
5 End For

Specifically, there are three methods consisted in
algorithm TDMCS. Method TDMCSADD(Tnew) is
used to process the new transactions, method
TDMCSREMOVE(Told) processes old transactions and
method PRUNING() processes pruning.

When new transaction Tnew arrived, TDMCS-
ADD(Tnew) is described as Algorithm 2. For example,
if new transaction is T4 as shown in Table 1, this
algorithm processes it in four steps. First, generate
CidSet associated with T4 to discover the intersection
between T4 and existed frequent itemsets. Second,
build NewTransactionTable to maintain possible
frequent itemsets associated with T4. Then update

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

ClosedTable and CidList referring to
NewTransactionTable and ClosedTable. The
processing is as shown in Figure 1.
Algorithm 2: TDMCSADD()

Processing new transactions
1 Add Tnew To NewTransactionTable
2 Let setcid(Tnew)={∪CidSet(itemi),itemi∈Tnew }
3 For Cid In setcid(Tnew) Do
3.1 interS= Tnew∩ClosedTable(Cid)
3.2 For TempItem In NewTransactionTable Do

If interS∈ClosedTable
Then update support(interS)
Else If support(interS) ≥ N×ε×θ

Then Add (interS, Cid) To ClosedTable
End For

3.3 For (TempItem, Cid) In NewTransactionTable Do
If(TempItem==ClosedTable(Cid))
Then update support(ClosedTable(Cid))
Else update support(TempItem)

If(newsupport(TempItem) ≥ N×ε×θ)
Then Add (TempItem, newsupport(TempItem))

To ClosedTable
If item∈Tnew And item Is Not In CidList
Then Add item To CidList

End For
4 End For

Illustrate the process of algorithm TDMCSADD(Tnew) to
handle new transactions. Data stream is shown as in
Table 1 including 4 transactions. Let decay factor f=0.8,
minimum support threshold θ=0.1. When new
transaction T4={2, 3, 4, 5} is arrived, information of
ClosedTable, CidList and NewTransactionTable are as
shown in Tables 2-4. There are 5 frequent itemsets in
ClosedTable, 5 items in CidList and NULL in
initialized NewTransactionTable. When new tranaction
T4 arrived, there are some steps to process it.

Step 0: Add values <T4, 0> to New-
TransactionTable.

Step 1: Compare items in T4 and items in CidList
to get the CidSet associated with T4.

Step 2: Add itemsets associated with T4 to
NewTransactionTable according with CidSet, as shown
in Table 4. That is for each element Cid of CidSet to get
the intersection of T4 and ClosedTable.

Step 3: Update ClosedTable with information of
NewTransactionTable, then get Table 5.

Step 4: Update CidList with information of novel
NewTransactionTable and ClosedTable. It will be
update under two conditions: the emergence of a new
frequent itemset or a new item. Assuming T4 contains a
new item (7) represented in italics in Figure 1. Then
add value < {7}, {6} > to CidList. Meanwhile, there are
two new frequent itemsets in ClosedTable, then update
CidList too.

For continuous generation of new transactions,
repeat steps above for processing. When you need to
remove the information of old transactions from sliding
window, use algorithm TDMCSREMOVE(Told). The

main process is similar to algorithm
TDMCSADD(Tnew). First, generate OldTransaction-
Table to maintain the information about old
transaction Told. Second, find the intersections of
OldTransactionTable and ClosedTable. Next, update
or delete ClosedTable. In order to improve efficiency
of algorithms, it only adds deleting flags and does not
do the actual deletion.

When steps of processing transactions meet the
pruning step, call function PRUNING() to do pruning
operations. This is the actual process of deleting
operations, and it mainly does updating and deleting
operations on ClosedTable and CidList. The algorithm
is described as shown in Algorithm 3.
Algorithm 3: PRUNING()

Dropping information of historical transactions.
1 For Each Cid In ClosedTable
2 Remove itemsets(with DeleteFlag) From closedTable
3 If support(Cid)< N×ε×θ

Then Remove itemsets From closeTable
4 Update cidlist
5 End For

If only the parameters minimum support threshold θ
and decay factor f are used in algorithms, some
possible frequent patterns might be lost. Such as, let
minimum support θ=0.1, then complete result set is
mined. Therefore, many useless patterns may be
discovered. If setting θ=0.3, when T4 arrived, frequent
itemsets should meet the support count 4×0.3=1.2.
Then generate three frequent itemsets in ClosedTable
as shown in Table 7. From Table 7 and Table 5, it is
clear that the pattern {3 4} (freqd({3 4})=1.512>1.2))
is missing.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Figure 1. Schematic of the process of handling new transaction T4

Table 7. ClosedTable (θ=0.3)

Cid CP SCP
0 {0} 0
1 {2 3 5} 2.44
2 {3} 2.952
3 {1 3} 1.312

The reason is that the frequency with decay factor of
pattern P is smaller than its original frequency, that is
freqd(P) < freq(P). Let f=0.8, then freqd(P)<1/(1-0.8)=5

as calculated by Formula 6. Therefore, if only the
minimum support threshold θ is used under the time
decay model, some frequent patterns may be lost, for
its support count may be less than θ×N. To solve this
problem, ε is introduced as the maximum support
error. Therefore, the frequent support of mined
patterns needs to meet N×ε×θ instead of N×θ.

rf×TPfreqTPfreq mdmd += −),(),(1 (6)

T4: {2 3 4 5}

Table 2. CidList(before T4)
item CidSet
{1} {1, 4, 5}
{2} {2, 4}
{3} {1, 2, 3, 4, 5}
{4} {1}
{5} {2, 4}

CidSet: {1, 2, 3, 4, 5}

Table 3. ClosedTable
(θ=0.1, before T4)

Cid CP SCP
0 {0} 0
1 {1 3 4} 0.64
2 {2 3 5} 1.8
3 {3} 2.44
4 {1 2 3 5} 1
5 {1 3} 1.64

Table 4.
NewTransactionTable

TempItem Cid
{2 3 4 5} 0
{3 4} 1
{2 3 5} 2
{3} 3

 Table 5. ClosedTable
(θ=0.1, after T4)

Cid CP SCP
0 {0} 0
1 {1 3 4} 0.512
2 {2 3 5} 2.44
3 {3} 2.952
4 {1 2 3 5} 0.8
5 {1 3} 1.312
6 {2 3 4 5 7} 1
7 {3 4} 1.512

Table 6. CidList(after T4)
item CidSet
{1} {1, 4, 5}
{2} {2, 4, 6}
{3} {1, 2, 3, 4, 5, 6, 7}
{4} {1, 6, 7}
{5} {2, 4, 6}
{7} {6}

T4: { 2 3 4 5 7}

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

m
mm

i

im
i rfrfrfr +++== −−−∑ ...××× 2

2
1

1

f
ff mm

−
≤+++≤ −−

1
11...21

The next question is how to determine the value of the
decay rate f after given parameters: minimum support,
maximum support error and sliding window size.
Suppose recall is 100%, a lower bound for the decay
factory is showed by Formula 7 [3, 12]. Formula 8 [3]
shows the upper bound of f under the condition of
precision=100%. The usual methods set f to random
value between lower bound and high bound or set f to
one bound of them[3, 12]. Because both recall=100%
and precision=100% cannot be achieved at same time,
selected f should balance these two conditions.

%100,]/)[()12(2 =−≥ −− recallwhenf NN θ θεθ
 (7)

%100,
)(

1)(
=

−
−−

< precisionwhen
N

Nf
εθ

εθ

 (8)

In this paper, a new way to set decay factor is proposed.
Let sliding window size be 10K. Parameters θ, ε and f
are shown in Table 8. The third column frecall means the
lower bound when assuming recall is 100%. The last
column fprecision implies the upper bound when assuming
precision is 100%. There are three policies to select f,
as shown in Formula 9. For example, let θ=0.025 and
ε=0.05, then set f=frecall=0.999995, f=fprecision=0.995789
or f=faverage=0.997892. Verified by experiments (in
Section 4), set f to faverage can get the more balanced
recall and precision of algorithm. Therefore, set
f=faverage is more reasonable than set f on random value
between frecall and fprecision or one of it.

Table 8. Time decay factor

θ ε×θ frecall (recall=100%) fprecision (precision=100%)
0.05 0.05×θ 0.999995 0.997895
0.05 0.1×θ 0.999989 0.997778
0.05 0.5×θ 0.999929 0.996
0.025 0.05×θ 0.999995 0.995789
0.025 0.1×θ 0.999989 0.995556
0.025 0.5×θ 0.99993 0.992

)12(2

1]/)[(−− −== NN
recallff θ θεθ

 (9) N
Nff precision)(

1)(
2 εθ

εθ
−

−−
==

2
)(

1)(]/)[()12(2

3
N

N

f

NN

εθ
εθθεθθ

−
−−

+−
=

−−

4. Performance
The experiments were performed on a 2.1 GHZ CPU
with 2GB memory, and running on Win7. All the
algorithms were coded in Java language. To evaluate
the performance of these algorithms, real and synthetic
datasets were used. Real dataset from UCI[7] describes

the page visits of users who visited msnbc.com on
September 28, 1999. Visits are recorded at the level of
URL category (see below) and are recorded in order.
There are 989818 transactions and the average length
of transaction is 5.7. It is high dense and similar data
stream. Synthetic datasets were generated from IBM
data generator. There are four synthetic datasets with
different average pattern and transaction size:
T5I5D1000K, T10I4D1000K, T10I5D1000K,
T10I10D1000K, T20I5D1000K and T20I20D1000K.
These were used to analyze the performance of data
stream of different density. The parameters are
described as follows: D is the total number of
transactions; I is the average size of maximal potential
patterns; T is the average length of transactions. Such
as, T10I5D1000K means the average length of
transactions is 10, average length of maximal potential
patterns is 5, and number of transactions is 1000K.
The mainly purpose of experimental was to analyze:
(1) the ways to set decay factor f. Compared the
algorithm performances with setting f as random
value, boundary value and average value. (2)
Analyzed the effects of sliding window sizes on
performance of algorithm TDMCS. (3) Analyzed the
effects of pruning steps on performance of algorithm
TDMCS. (4) Compared the performances of
algorithms TDMCS and CloStream*[25], MSW[12]
and SWP[3]. Compared to algorithm CloStream[24],
algorithm CloStream* used the sliding window to deal
with recent transactions to mine closed frequent
patterns. CloStream handled all the transactions, so it
did not apply to mine unlimited data stream.
Therefore, in this paper compared TDMCS with
CloStream*. Similar pattern tree structures were used
in algorithms MSW and SWP. And both of them set
decay factor as lower bound. In this paper, some
modifications were made to the two original
algorithms for mining closed frequent patterns instead
of complete patterns.
The maximum support error ε was set to 0.1. The
value of the time decay factor f was set to average of
low bound and high bound to balance 100% recall and
100% precision. The sliding window sizes N were set
from 0.1M to 0.8M and the minimum support
thresholds were set from 0.06 to 0.1. The values of f in
the experiments are shown in Table 9.

Table 9. Values of decay factors

fid θ ε×θ N f
f1 0.06 0.006 0.1M 0.990686
f2 0.06 0.006 0.2M 0.995343
f3 0.06 0.006 0.3M 0.996895
f4 0.06 0.006 0.4M 0.997672
f5 0.06 0.006 0.5M 0.998137
f6 0.06 0.006 0.7M 0.998669
f7 0.06 0.006 0.8M 0.998836
f8 0.07 0.007 0.1M 0.992009
f9 0.08 0.008 0.1M 0.993001
f10 0.09 0.009 0.1M 0.993772
f11 0.1 0.01 0.1M 0.994389

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

At first, verify the reasonableness of setting f=faverage.
The relationship between decay factor f and minimum
support threshold θ, maximal support error threshold ε
needs to be discussed in algorithm TDMCS, in order to
determine the optimum parameter value of f.

Let minimum support θ=0.05, the values of recall
and precision of TDMCS on msnbc with different
decay factors are shown in Figure 2. Abscissa axis
means the random value between frecall and fprecision at
different window size N. Vertical axis means the recall
and precision at different N, and the dashed line means
to set f=faverage. From this figure, it can be concluded
that: (1) with the decreasing of f, recall is decreasing
and precision is increasing. (2) The trends of recall and
precision at different N are similar. (3)When setting
f=faverage, the values of recall and precision are fixed.
They are almost unaffected by sizes of sliding
windows. (4) The values of recall and precision can be
balanced by setting f=faverage.
When setting f=frecall, f=fprecision and f=faverage, compare
the average values of recalls and precisions of
algorithm with different sliding window sizes. It can be
concluded that it can get almost 100% recall when
setting f=frecall, and get lowest recall with setting
f=fprecision. When setting f=faverage, the value of recall is
between them. Setting f=fprecision and f=faverage can get
almost the same precisions. But the value of precision
is lowest when setting f=frecall. Therefore, recall and
precision of algorithm can be more balanced by setting
f=faverage than setting f=frecall and f=fprecision.

a) recall b) precision

Figure 2. Variation of recall and precision with different decay
factor

Next, compare the performance of algorithm with
setting f to faverage and random values. To make the
random value more reasonable, set them in the range of
(0.9, 1), and denoted as frandom. Use function
Math.random() to generate 5 random values to set
decay factors. The performance of TDMCS on msnbc is
shown in Figure 3. As can be seen, when setting
f=faverage and f=frandom, the values of precision are little
different. But the values of recall are very different
when setting f to random values. Therefore the
performance of algorithm is unstable. The performance
with is f=faverage is significantly better than set f=frandom,
and the result set obtained is stable.

It can get the same conclusions when processing
synthetic data streams. Thus, set decay factor to
average value is reasonable.

Figure 3. The performance studies on msnbc with set decay factor
to faverage and random values

The second performance comparison experiments
are used to analyze the influence of window sizes on
algorithm TDMCS. Set sliding window size N=0.1M,
0.2M and 0.3M; the minimum support θ=0.06; the
decay factor f= f1, f2, f3 as shown in Table 9; pruning
step P=0.1M[3, 12]. The runtime and space costs of
algorithm TDMCS on msnbc are compared in Figure
4.

The performance of TDMCS on data stream
msnbc is shown in Figure 4 when processing 1M,
1.5M, 2M and 2.5M transactions. Figure 4.a shows the
runtime and in which abscissa axis means number of
transactions. It can be seen that: (1) when the number
of transactions is small, the increase in window size
leads to a slight increase in runtime; (2) with the
increase of processing transaction number, the runtime
with bigger window sizes is lower than runtime of
smaller window size. Figure 4.b shows the memory
usage. It is clear that the effect of different window
size on memory usage is small. From time and space
consumption, it can be concluded that the runtime of
algorithm TDMCS on data stream msnbc is greatly
different as different size N under the same number of
transactions. And the memory usage is almost same as
different size N. Thence, in terms of space complexity,
TDMCS applies to discovering frequent patterns of
any window size.

a) runtimes

 (b) memory usage

Figure 4. The performance study of TDMCS on msnbc based on
different sizes of windows

Thirdly, analyze the effect of pruning step on
performance of algorithm TDMCS on msnbc. Sliding
window size N was set to 0.5M, 0.7M or 0.8M.
Pruning step P was set to 0.1M to 0.5M (P≤N).

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Minimum support θ was set to 0.06 and f was set to f5 to
f7.

Figure 5.a shows the runtime of TDMCS
performance on data stream msnbc with different
window sizes and different pruning step lengths. From
the performance of runtime it can be concluded that: (1)
optimal pruning step length is related to sliding window
size, (2) when value P is different, the runtime
consumption is obvious different as N increasing. The
memory usage is shown in Figure 5.b. It is clear that
the effect of pruning step length on memory usage is
small. From Figure 5 it can be seen that the length of
pruning step has little influence on runtime and
memory usage when window size is small. And when
window size is big, pruning step has a wider range
influence on runtime. Therefore, set the parameter
P=0.1M when N=0.1M is reasonable. Figure 5.b also
shows that algorithm TDMCS applies to discovering
frequent patterns of any size of window.

a) runtimes b) memory usage

Figure 5. The performance study of TDMCS on data stream msnbc
based on different sizes of windows and pruning steps.

Finally, compare the performances of TDMCS and
classical algorithms with different sliding window
sizes. Let minimum support θ=0.06, maximal support
error ε=0.1, pruning step P=0.1M, sliding window size
N=0.1M to 0.5M and decay factor f=f1 to f4 as shown in
Table 9.

The performances of four algorithms processing
synthetic data streams are shown in Figure 6, which are
average values of recalls and precisions under different
sliding window sizes. Four data streams with different
lengths of transactions or patterns are used, includ7ing:
T10I4, T10I5, T10I10 and T20I5. Figure 6.a shows the
runtimes of four algorithms. Overall, the runtimes of
TDMCS and CloStream* are lower than other two
algorithms. This is because algorithm CloStream* does
not process data with decay operations and algorithm
TDMCS uses closure operator. The memory usages of
algorithms are shown in Figure 6.b. The memory usage
of TDMCS is the lowest of all. But the different
between four algorithms is not too much. Figure 6.c
and Figure 6.d show the recalls and precisions of
algorithms. Both algorithms MSW and SWP set decay
factor to lower bound, so we only compared with SWP.
The recall of algorithm CloStream* is highest of all for
it does not use time decay model, but the precision is
the lowest of all. The recall and precision of algorithm
SWP are in the middle of three algorithms. The recall
of TDMCS is about 1% lower than other two

algorithms, but the precision of TDMCS is about 10%
higher than CloStream* and about 4% higher than
SWP. Therefore, algorithm TDMCS can get more
balance recall and precision than other three methods.
And compared performances of four algorithms on
data streams with different pattern lengths, such as
T10I4, T10I5 and T10I10, or data streams with
different transaction lengths, such as T10I5 and T20I5,
it can be concluded that algorithm TDMCS is more
suitable to process data streams with long transaction
length and long pattern length.

a) runtimes

 b) memory usage

c) recall

d) precision

Figure 6. The performance studies of algorithms on synthetic data
streams.

5. Summary
Data stream is a fluid, continuous, unbounded and
time ordered sequence of data transactions generated
at a rapid rate. Due to the knowledge contained in data
stream will change over time, concept drift should be
taken into account when mining frequent patterns.
Normally, recent transactions contain more important
information than historical transactions, thus they
should be treated differently. Considering the data
stream characteristics, an efficient algorithm TDMCS
is proposed in this paper. It is used to mining closed
frequent patterns and based on time decay model and

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

sliding window model. It uses closure operator to
improve the efficiency of mining closed frequent
itemsets. In order to balance the recall and precision, a
novel manner by average the low bound and high
bound is provided in this paper. It uses frame minimum
support-maximum support error-decay factor to avoid
concept drift and discover more reasonable and
compact result set. The performance of the proposed
algorithm was investigated using experiments. The
results show that it is efficient and scalable, and it
applies to mining high dense data stream and long
patterns.

References
[1] Chang T. P. “Mining frequent user query patterns

from xml query streams,” International Arab
Journal of Information Technology, Vol. 11, No.
5, 2014: 452-458.

[2] Chen H. “Mining top-k frequent patterns over
data streams sliding window,” Journal of
Intelligence Information System, Vol. 42, Issue 1,
2014: 111-131.

[3] Chen H, Shu L C, Xia J L, and Deng Q S.
“Mining frequent patterns in a varying-size
sliding window of online transactional data
streams,” Information Sciences, 2012, 215(12):
15-36.

[4] Cheng J, Ke Y, and Ng W. “Maintaining frequent
closed itemsets over a sliding window,” Journal
of Intelligent Information Systems, 2008, 31(3):
191-215.

[5] Chi Y, Wang H X, Yu P S, and Muntz R R.
“Catch the moment: maintaining closed Frequent
itemsets over a data stream sliding window,”
Knowledge and Information Systems, 2006, 10(3):
265-294.

[6] Farzanyar Z., Kangavari M., and Cercone N..
“Max-FISM: Mining (recently) maximal frequent
itemsets over data streams using the sliding
window model,” Computers and Mathematics
with Applications, Vol. 64, 2012: 1706-1718.

[7] Frank A, and Asuncion A. UCI Machine Learning
Repository[EB/OL]. Irvine, CA: University of
California, School of Information and Computer
Science, http://archive.ics.uci.edu/ml, 2010.

[8] HewaNadungodage C., Xia Y., Lee J. J., and Tu
Y.. “Hyper-structure mining of frequent patterns
in uncertain data streams,” Knowledge and
Information Systems, Volume 37, Issue 1, 2013:
219-244.

[9] Jiang N and Gruenwald L. “CFI-Stream: mining
closed frequent itemsets in data streams,”
Proceedings of ACM SIGKDD Internal
Conference on Knowledge Discovering and Data
Mining, New York, USA, 2006: 592-597.

[10] Lee G. , Yun U. , and Ryu K. H.. “Sliding
window based weighted maximal frequent pattern

mining over data streams,” Expert Systems with
Applications, Volume 41, 2014: 694-708.

[11] Li H. F., Ho C. C., and Lee S. Y.. “Incremental
updates of closed frequent itemsets over
continuous data streams,” Expert Systems with
Applications, Vol. 36, Issue 2, 2009: 2451-2458.

[12] Li G. H., and Chen H. “Mining the frequent
patterns in an arbitrary sliding window over
online data streams,” Journal of Software, 2008,
19(19): 2585-2596.

[13] Li H. F., Zhang N, et al. “Frequent itemset
mining over time-sensitive streams,” Chinese
Journal of Computers, Vol. 35, No. 11, 2012:
2283-2293.

[14] Li H. F., Ho C. C., Chen H. S., and Lee S. Y..
“A single-scan algorithm for mining sequential
patterns from data streams,” International
Journal of Innovative Computing, Information
and Control, Volume 8, Number 3(A), 2012:
1799-1820.

[15] Manku Q, and Motwani. “Approximate
frequency counts over streaming data,”
Proceedings of the 28th International
Conference on Very Large Data Bases, Hong
Kong, China, 2002: 346-357.

[16] Nabil H. M., Eldin A. S., and Belal M. A. E..
“Mining frequent itemsets from online data
streams: comparative study,” International
Journal of Advanced Computer Science and
Applications, Vol. 4, No.7, 2013: 117-125.

[17] Nori F, Deypir M, and Sadreddini M H. “A
sliding window based algorithm for frequent
closed itemset mining over data streams,”
Journal of Systems and Software, 2013, 86(3):
615-623.

[18] Patnaik D., Laxman S., Chandramouli B., and
Ramakrishnan N.. “A general streaming
algorithm for pattern discovery,” Knowledge and
Information Systems, Vol. 37, Issue 3, 2013:
585-610.

[19] Shie, B. E., Yu, P. S., and Tseng, V. S..
“Efficient algorithms for mining maximal high
utility itemsets from data streams with different
models,” Expert Systems with Applications, Vol.
39, 2012: 12947-12960.

[20] Tang K M , Dai C Y, and Chen L. “A novel
strategy for mining frequent closed itemsets in
data streams,” Journal of Computers, 2012, 7(7):
1564-1572.

[21] Tsai P. S. M.. “Mining top-k frequent closed
itemsets over data streams using the sliding
window model,” Expert Systems with
Applications, Vol. 37, Issue 10, 2010: 6968-
6973.

[22] Wong R. C. W., and Fu A. W. C.. “Mining top-k
frequnt itemsets form data streams,” Data
Mining and Knowledge Discovery, Vol.13, Issue
2, 2006: 193-217.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

[23] Yang B., and Huang H.. “TOPSIL-Miner: an
efficient algorthm for mining top-k significant
itemsets over data streams,” Knowledge and
Information Systems, Vol. 23, Issue 2, 2010: 225-
242.

[24] Yen S J, Lee Y S, Wu C W, and Lin C L. “An
efficient algorithm for maintaining frequent
closed itemsets over data stream,” Next-
Generation Applied Intelligence, 2009, 5579(1):
767-776.

[25] Yen S J, Wu C W, and Lee Y S et al. “A fast
algorithm for mining frequent closed itemsets
over stream sliding window,” Proceedings of
2011 IEEE International Conference on Fuzzy
Systems, Taipei, Taiwan, 2011: 996-1002.

[26] Yu J X, Chong Z, Lu H, and Zhou A. “False
positive or false negative: mining frequent
itemsets from high speed transactional data
streams,” Proceedings of the Thirtieth
International Conference on Very Large Data
Bases, Toronto, Canada, 2004: 204-215.

Han Meng, born in 1982, Ph.D.
candidate, associate professor. Her
research interests include data

mining and machine learning.

Jian Ding, born in 1977, M.S.,
associate professor. His research
interests include machine learning

and data mining.

Juan Li, born in 1975, M.S.,
associate professor. Her research
interests include information
security and cloud computing.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

