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Abstract: The introduction of the speculative parallelism into any models can improve_tiig, performance and provides
significant benefits and increases the ILP and TLP. GPGPU is the future computing techndloswerking with both CPU and
GPU to solve many real-world problems not only the graphics problems but also the ge®aral nurpose applications. As GPU
uses data parallelism tasks, the dynamic memory creation and the splay trees whigh aifseijadjusting allows for the increase
in throughput and load balancing. The frequently used nodes near to the root ar an sdvaatage for finding locality of threads
as well as for caching and garbage collection. A technique used to render and tc{study complex scenes into images and to
render color, intensity of pixels, distance between pixels is referred as Rag.tracing. Wultithreading is a promising technique
which increases the performance of the computer systems by increasirig thginstruction level parallelism and thread level
speculation. In this paper a new technique is proposed for workload,baijncing un the Graphics processors and CPU that can
be implemented on the graphics processors along with the CPU wiich“provides the optimal result with the speculation
techniques and Lorentz Transformation, which is used to detesmine colpr and brigitness of the ray which are refracted or
reflected and also the relative distance between the thread \spaiiming which_redults®in time dilation and contraction. A
GPUOCELOT is a compilation framework, a simulator €sed i ¥r the exgcution ¢f the programs which has resulted in the
increase in the performance of the instructions which uses thelamertized cost
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1. Introduction

Increase in the clock rate, exploiting the€ ILE thagugh
pipelining, out-of-order execution and muiithreading
are the techniques which results gy, reducing the
dependencies and increase in ghe\Cefficiency and
performance of the micrépréiessess. Speculation
techniques are implementagl Wy, the modern micro
architectures to improve peasforgarice and to utilize the
computer resources_as, Weall “as the scheduling of the
instructions based ¢n thefppiimization techniques [1, 7].
The general purposy,computing on graphics processing
units handles the computations executed on the
graphics processor or in  kernels. The  graphics
processing units are computing on the data parallelism
with fast access to memory and high throughput on
parallel tasks. Since CPU’s  performs well on task
parallelism and GPU’s performs well on data
parallelism. The  memory systems are designed to
stream data when the pattern can be accessed linearly
and that can be prefetched [6, 14].

The combined technology of speculative execution on
graphics processors still increases the performance and
efficiency of the execution of the programs. Jaikrishnan
Menon, Marc de Kruijf, Karthikeyan Sankaralingam
proposed iGPU architecture executing the idempotent

regions Load balancing is a method for distributing
the workloads across the processors [10].

The sharing of the workload across CPU and GPU
needs to be balanced as the architectural designs of the
CPU and GPU differs. Christian Lauterback, Qi Mo,
Dinesh Manocha proposed explicit balancing on the
GPU’s and dynamic work Distribution [9].

In this model the hybrid architecture of CPU and GPU
together holds threads of processing units and CPU
does the task parallelism and GPU does the data
parallelism [4, 13]. Distributing work across GPU and
CPU processor’s is an intellectual task so that the
performance, scalability and tolerance factors of the
processor is reduced instead of increase in the
processor performance in ILP and TLP. Many
Researchers’ worked on the parallel ray tracing on the
hybrid architectures with thread level speculation.
Architectures are proposed to increase the
performance through dynamic load balancing,
reducing communication time, and reducing memory
latencies, predicting value reuse, speculative
computation reuse techniques between the CPU and
GPU. But the overall speedup of computation,
performance considerably is the linear speedup and
the overheads incurred, granularity of the code



presented a major focus of issue. GPU supports fine
grained parallelism over the data but the CPU works on
the Coarse grained parallelism as the tasks.
Transferring of the data and control values from CPU
to GPU memory is challenging. Though with the
speculative parallelization the state of the system is not
altered, if the speculation fails, the normal execution of
the task is carried out by the nonspeculative thread to
recover the system state to safe.

To efficiently distribute the workload across the
graphics processors a new technique is proposed which
is a hybrid of CPU and GPU. A self adjusting splay tree
provides load balancing on the GPU.

2. Splay Trees

Splay trees are the data structures where the binary
search trees are self adjusting. Whenever we access a
node of the tree, whether for retrieval, insertion or
deletion a newly accessed node becomes the root of the
modified tree. In splay trees the nodes which are
frequently accessed move towards the root whereas the
infrequent ones moves far away from the root. The
different splaying steps which use the bottom-up
approach are similar to the rebalancing operations on
AVL & Red-Black trees. The cases for the splaying &
ZIG-ZIG and ZIG-ZAG. In Zig-Zig, the splaying a
node X which is a inside grandchild and it is a double
rotation. In Zig-Zag, the splaying a node X which is a
outside grandchild Where the grandchild is pulled to
become the root of the sub tree [12].

2.1. Speculative Work Load Balancing

In this paper an algorithm is proposed wha=e Salaying
steps happens for the threads in a%bleck.™The
architecture of the speculatively parallelized graphics
processors where the computations wHiCi» are massively
parallel in nature can be executeganoii,bsth CPU and
GPU, where the nonspeculative titreacestarts executing
tasks on the CPU. The specu.gtivythreads execute tasks
on the GPU. Another tg€anigye is proposed in this
paper to balance the=aoiis load of the threads on the
graphic processors

The locality of retarense to the code blocks on the
graphic processors is scheduled using an algorithm
where each thread of the block of a graphic processor is
represented in the form of the nodes on a binary search
tree. The splaying steps are applied on the tree of nodes
such that the threads which are active and processing
the computations are rotated near to the root node of the
tree, which are always accessed frequently.

The different types of threads are running to balance
the work loadi.e., some threads are in

a. Active state.

b. Passive state.

. Squashed state.

d. Misspeculation state.

Some threads are at the initialization state. Some
threads are waiting for some event.

The threads in the block are checked for the status.
The different states the nodes are determined as nodes
which are active, passive, nodes under initialization &
miss peculation nodes.

2.2. Splaying on GPU’s

On the graphic processor, the splaying operation is
carried out, where root node is the nonspeculative
thread and other child nodes are speculative threads.
We apply splaying steps on these threads and
determine whether the node is in what state i.e.,
threads on the GPU. [atially the current thread
accessed is its states (re.aetermined based on the
priority.

If the thread j& acCdvenits priority is high and that
thread is riglisrotatea”and made as the child node of
the nonspeculatie thread. Successive access to a node
newlys Wcreases the efficiency and locality of
refefgncing¥o the nodes becomes easier. If the status
ot thewode is determined, based on the status of the
nodesythe activesnodes are moved towards the node
apdtie nodestwhieh are miss peculated/passive are
moved,awdy 1oin the root node. Only active nodes
become (e ®hitdren of the nonspeculative thread such
that_the,load can be balanced between active nodes.
OtlierNaodes are squashed or eliminated from the
ninaryssearch tree.
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Figure 1. Diagrammatic representation of splaying operation on
Threads on GPU.

Figure 1 describes the steps such that the state of
the thread is determined based its locality of reference
after splaying.

2.3. Design Methodology

Algorithm 1: The general algorithm for the splaying data
structure.

Algorithm SplaySpec ()

This algorithm works on the CPU.



Step 1. Initialize the structure which holds elements
No, left, right and the size of the nodes on the
tree representation where each node

represents the threads on the GPU.
Step 2. Function to create treeofthreads ()
Step 3. If tree is empty,
Step 4.Create the threadsoftree.
Step 5.Print the tree

Step 6. Print the each node of the thread of trees.
Algorithm 2: The Algorithm for the splaying operations.

#include<stdio.h>
#include<cuda.h>
# define NUM_BLOCKS 20;

Step 1. Structure for the tree.
Typedef struct splay_node splay;
Struct splay node {
Splay *r*I;
Int info;

}
_device_int * ptr [NUM_BLOCKS];
Step 2. Memory Allocation.
_global void allocate memory ()

{
If (threadID.x==0)

ptr [blockldx.x]=(int *) malloc(blockDim.x*4);

-syncthreads ();

If (ptr[blockldx.x]==NULL)
Return;
ptr[blockldx.x][threadldx]=0

_global void memalloc()
{
Int ptrl=ptr[blockiDx.x];
If (ptr 1!=NULL)
Ptri(threadIDX.X] +=threadIDX.X
}
Step 3. Function splay tree manipulation.
Tree *splay (int i ,tree *s)

Tree n,*1,*r,*y;
If (t==NULL) return t;
For (;;)

If (i<t->info)
{ if (2t+1)==NULL) break,
If (i < (2t+1).info)
{ z=2t+1
2t+1=21-2
2t+2=z
t=z

}
If( 2t+1)==NULL ) break;

r.2t+1=t
r=t
t=2t+1
} else if (i > t.info)
{ if ((2t+2)==NULL) break ;
If (i >2t+2.info)
{ z=2t+2
2t+2=2t+1
2t+1=t
t=z

}
If ((2t+2)==NULL) break;

[.2t+2=t
I=t
t=2t+2

Else

{break ;}}
.2t+2=2t+1
2t+1=2t+2
2t+2=n.2t+1
2t+1=m.2t+2
Return t

}

Initially, the memory is allocated dynamically using
the functions allocatememory () and memalloc ()
functions [3]. The functiqn splay() uses this array’s
and does the splaying by,swaoping the left child nodes
to the right to halemty “the tree. Since the
implementation or lirised #Sts concept in GPU is little
difficult as thefmemugy dllocation becomes difficult, a
proposal to usatiie dynamic array is implemented for
the splaying operation. Dynamic arrays are the
growawleWarrays consisting of variable sized data
struCyre wriere the addition and deletion happens and
supponag by the many of the modern programming
languages.

S dynarmpic Narrays are constructed using the
geometric Gxpansion of doubling in the size of the
fixedwsrajpwitiie it is used for reversed use such that n
elepraniytake O(n) time such that each insertion takes
amorzed constant time.

Thege“types of dynamic arrays are supported by the
GrYd’s  also. CUDA supports dynamic allocation of
rmemory for a thread or a block. The performance
issue relates to the dynamic array are that it includes
Locality of reference and data cache utilization and it
is random access also. The dynamic arrays supports
for the faster indexing also [3]. Since the Amortized
cost definitely guaranteed for the worst case analysis
and performance than the speculation of the states in
the program structure.

2.4. Splaying Transformations

The Figure 3 below shows the transformations on the
splaying rotations of the threads in zigzag and zig-
zig.Consider the threads on the GPU, each of the
blocks of the threads holds 8 small threads inside
numbered from O to 7 and each thread is identified by
a threadID. The computations are allocated to the
block of threads instead of individual threads on the
block. Each block’s threads are referred by the
ThreadIDs and Blocks are represented by the
BlockID’s. BlockiD=0 BlockiD=1 BlockID=20 to 7
ThreadlD’s.

Suppose a computation is assigned to the BlockID=0,
There are 7 threads whose synchronization is carried
out using splaying zig-zag or zig-zig rotations as these
threads are represented in the binary search tree.



The Zig-Zig rotation is carried out for checking the
Activeness, passiveness, initialization of nodes and
misspeculated nodes. Consider BlocklD=0 which
consists of ThreadID’s from 0 to 7

The Zig-Zig operation on this BlockID is that the
thread 0,1,3,5 are active, 6 is inactive, 7 is squashed
and 2,4 are misspeculated threads.

A

Figure 2. The Binary Search tree of threads of a single Block.

The Figure 3 describes the tree of threads
constructed from the 8 threads of the single block.
If t is a node considered for splaying opération.
Parent(t)=(t-1)/2 if t 1=0.
Left child (t) =2t+1 if 2t+1 <=n.
Right child=2t+2 if 2t+2 <=n.
Left Sibling (t) = t-1 if tis even.
Right Sibling (t) =t+1 if t is odd and t+1 <=n [5, 15].

2.
ORONO.

Figure.3 The tree after the splayiha caertion.

Since it is a self adjustiiy trég, tae nodes which are
active are moved near to the“aot’and other nodes are
moved to the end.Tablenrepresent the identification of
the parent and chilg thregdsvon the GPU such that after
splaying operation \yodes /ire self adjusted.

Tablel. lllustrates the parent and child node relationship.

ol1]2]3]als]e|7]s
Parentp | - o|jo|1(1(2|2]3]3
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To transfer the data to the speculative threads the
table is referred to check for the parent and child
threads on the GPU.

At the next level the same operation can be extended
to the block level also since the blocks are numbered
as the B0, B1, B2 the splaying operation can bring the
blocks which are active to the nearer to the root by self
adjustment that saves the memory as well as the
Collection also.

3. Ray tracing using splaying
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Figure 44ikay Tracing Technique.

In computst” grapaics, Ray Tracing is a technique
for generatinghaii image by tracing the path of the
light thrgugh pixels in an image plane and simulating
the efrecuy,of its encounters with virtual objects. In
Ray“Gracing  problem, we send a ray from the
eyerganiyra through each pixel on the virtual screen to
compute the coforvaf the pixel. Some light could also
Fave been refleated”or refracted by this object. The
other HghtWrayis blocked by another object. If the
multip'e raflections or refractions we trace recursively
thegeflewteq or refracted rays until they do not hit any
chjedt. \Winally the energy contributions of all rays
\1sec) to get the color of the screen pixel.

Figure 4 describes the ray tracing technique. Ray
tracing can be efficiently solved by the technique of
speculative  parallelization and  multithreading.
Speculative parallelism technique is a promising
technique used in current technologies to enhance the
instruction level parallelism and thread level
speculation.  Speculative  multithreading  uses
speculative Architectural threads where it has two
threads. A non speculative thread and a set of
speculative threads. A non speculative thread starts
executing the program and at the spawning point
where the program or loop and instructions can be
parallelized. In the Speculative Architectural Thread
paradigm, the technigque is to execute the different
parts of the program in parallel in different sections.
The execution of the program results in correct, if the
values are computed by the speculative threads and
the code executed by them need not be reexecuted by
the main thread. Considering the Ray tracing
techniques, the execution of the loop or instruction
where the ray is being traced or send is traced by the
nonspeculative thread. Once the ray is reflected or
refracted, the point of reflection or refraction is termed
as spawning point or spawning pair [15].

Chen Tian, Rajiv Gupta and Min Feng have developed
the Augmented design for the indicating the dynamic
data structures with speculative parallelism [4], and
also have designed scheduling policies for cross-



iteration dependences as well as irregular control flows
[4].

Erik Reinhard and Frederik W. Jansen have discussed
about data driven and demand driven tasks for good
load balancing and spreading communication evenly in
the network [11]. Kobayashi et al. [8] proposed
hierarchical multiprocessor system for dynamic load
balancing with the static one.

Hence from the spawning point or spawning pair, the
non speculative thread spawns the speculative thread,
the speculative thread starts tracing the ray which is
either reflected or refracted. All the rays are traced by
the speculative threads and the energy is calculated and
passed onto the nonspeculative thread. Each time a ray
is refracted or reflected, a speculative thread is spawned
and a ray suggests that a nonspeculative thread executes
the entire program. T (n) is the time taken for the
sequential execution.

Specthreadl
Spawns () when refracts
Non —> Specthread2
speculative

thread

Specthread3

o \ Specthread4
o

Figure 5. Process of spawning threads.

When speculative threads are tracing the path of ¢

ray, then non speculative thread initializes all the 4ivg=in
variables and initial values to the consumer threadse.,
speculative threads. Figure 5 describes the bracesy, of
spawning threads. After the proper livedn valuga/are
propagated to the consumer threads, theé€ consumer
threads determines the energy of the rags,or the color of
the rays. If the value determinedsby¢thp speculative
thread if it is correct, the state &7 theythread is stored
and the values are moved tCythetaroducer thread. If the
speculation is wrong, thesthrdad s squashed and the
nonspeculative thread,stadts executing normally.
When the speculitive \thiead is spawned by the
nonspeculative threqd the tracing of the refracted ray is
carried out by speculauve thread. Then the ray of light
passes as it is not hitting the object. The eye/camera is
kept at a fixed frame and the ray of the light is moving
either in refracted/reflected. i.e., it is in the moving
frame. The relativity between the fixed frame and the
object moving frame related through the
transformations called the LORENTZ
TRANSFORMATION [3].

3.1. Lorentz Transformation

It is a linear transformation. This transformation
measures the relative distances between the space and
the time, the ordering of the events, elapsed time and

preserves the space time interval between the two

events [3]. In our paper we apply Lorentz
transformation to determine the elapsed time,
relativity

between the nonspeculative and speculative threads.
The time dilation when the speculative threads are
spawned.

The eye/camera where the ray of light is spawned is
referred as fixed frame. From the fixed frame the co-
ordinates are taken as fixed reference values as
(x1,y1). Once the ray is passed through the virtual
screen, the ray is traced and if it touches any object the
ray gets either refracted or reflected. i.e., the ray is in
the moving frame. Whenyan observer from the fixed
frame is observing the fracing of the ray from a fixed
frame, the moving frenve} the time dilation happens.
The coordinate,0fgthe, moving frame are treated as
(x2,y2). Atlfis theyme taken for the ray to move
from fixed fram¢. Using this logic we are determining
the spagvning time of the thread and the thread
distarice Lgtween the speculative thread and the non
specuiative tiread.

Whea use light ray touches the object the ray gets
refraciad, the Jgrigray is in the moving frame. The
rioving frapaasistmoving with velocity v in the x and y
directiéns \yithirespect to the reference frame (fixed
frame)

X2 1IN 1-VPIC?

Y2 = Y1—vt/V1— v?/c? Q)

TG locate the ray from the fixed frame the reverse
transformation happens
X1=X2+vt/N1- V?/c?

Y1=Y2+vt/V1— v?/c? 2
The time determined as
t'=t—vx/c2/V1— v2/c2 3)

We determine the values of 8 and a

Where o=v/c B=1/\1-V?/c?

The distance conserved under a coordinate rotation is
x’=xcos0+ysind y’=-xsinf+ycos0

X"2+y’? =(xcosH+ysin®)*+(-xsinf+ycos0)?

X"2+y? =x? c0s20+2xycosOsinf+y’sin20+x%sin20
+2xycosOsind+y” cos26.

X"2+y’? = x?(cos20+sin20)+y*(sin20+cos20)

X2+y'2 =x2+y2 (4)

If the ray of light is refracted/reflected in the reference
frame the ray gets reflects or refracted.

The coordinate values are (t1,x1,y1) (t2,x2,y2).

The speed of the ray of light in the reference frame of
the system are determined as

X’=x2-x1/12-t1=Ax/At

Y =y2 —y1/t2 —t1 = Ay/At (5)

The relativity between the different speeds are
Ux= Ax/At



= (AX*+VALYN1- VIS (AU +HvAX /PN T - VPc?)
=AX /At +v/1 + VAX /At c2 (6)

Speculative Time Dilation: The time gap between the
spawning of the speculative thread and the spawning
pair if it happens in the same coordinate system is
referred as correct time of spawning. The correct time
is determined as

At=t2-t1

=(t2-vx2/c?/N1-V3c? )- (t1-vx1/c2/\1- VP/c?)
=t2-vx2/c? —t1+vx1/ c¥/1- V?/c?

=t2-t1/N1- V?/c?

=At/V1 — v2/c2 (7

Speculative Distance Contraction: The distance
between the spawned speculative thread and the
nonspeculative thread is determined as the contraction.
The correct distance between the spawned speculative
thread and nonspeculative thread L=x2-x1
T = (x2-v2N1-V2c?) - (x1-vt1/\1- Vi/c?)
=x2-x1/\1- V¥/c?

=L/NV1— v2/c2 (8)

3.2. A Regular Sturm-Liouville’s Equation

The Sturm-Liouville explains a finite dimensioriy!
vector space. We consider the inner product of two
vectors X=(X1,X2,X3) Y=(Y1,Y2,Y3) which inner
product is X.Y=(X,Y)=X1Y1+X2Y2+X3Y3. The two
nonzero vectors X and Y are said Orthogonal if X.Y=0.
A set of nonzero vectors is said to be orthogonal if arij
two distinct vectors from this set are orthogonal, Ziae
Sturm-Liouville consists of the general class, of
boundary value problems with sets of solutions,thagaré
mutually orthogonal.

A Sturm-Liouville problem is a boungary value
problem on a closed finite interval [a,blf the¥orm

P&y T +[aEx) + r®)]y = Gy was< b 9)
cly(a) +#2y" ) N0 (20)
dly(b) &2y =0 (11)

Where c1,c2 and al leayt &1,d2 are nonzero and is a
parameter.

The nonzero solutioris=gr a Sturm-Lioville problem are
called the Eigen functions of the problem and the
values which consist of the nonzero solutions are
referred as Eigen values.

The Eigen values and Eigen functions of the sturm-
lioville problem is defined as

Y+ Ay=0 y(0)=y(m)=0.

This equation is similar to the equation (8) with p(x)=1,
g(x)=0 r(x)=1.

The boundary conditions a=0 ,b=n with cl=dl=1
c2=d2=0.

Considering the three cases for the solution of the
sturm-lioville solution is:

e Case 1. when A<0, so A=a®> where o> 0.
the equation becomes y”- o® y=0 the solution is
y=cl sinh ax+c2cosh ox. When y=0,c2=0 when
y(m)=0 the equation will be O=clsinha © as sinhx
1=0 so there are no nonzero solution.

e Case 2. when A=0, the solution of the equation is
y=clx+c2 , the boundary conditions c1,c2=0 as
there exists no nonzero solution.

e Case 3. when A>0, A= o and o>0 so the equation
becomes y”+ o?y=0. The solution is y=clcos ox+c2
sin ox. When y(0)=0 then 0=clcos0+c2 sin0
$0 y=c2sin ox.

The other boundary condition is ¢2!=0 then we get sin
o =0 it has the eigen valucyas

yl=sinx, y2=sin2x, y3=Cin2x ..

According to the®3_ceses, @dnsidering the values of A,
when A<0 andf/wheiyA=9 there exists no solution but
when A>0, thyrefexisis solution to the problem and
eigen valdes alsowexists.

We oOrigider the sphere equation that provides
quatyatic eguation as

X2b+44% -4ac/2a X=-b-\b* -4ac/2a

it is shmilar to representing and replacing b? -4ac by A
amehyconsideringythetcases for finding the roots of the
equatien. ficcopding to the sturm-lioville equation,
there ¢x15is efsolution when A <0 and A=0. because
when A% 0,"A4=0 the eigen values remains at nonzero
solution,, S0 the ray intersects or passes through the
objece*when A>0 as the boundary values for the
seluiion exists or the solution itself exists [2].

vhe ray is represented as an origin and direction i.e.,
vector. Origin O=[X0,Y0] Direction D=[Xf, Yf].

The ray consists of points R(K)=0+Xf*K.

The ray object intersection is determined by the
equation f(O+Xf*K)=0.

The ray sphere intersections with center and radius is
determined as (X1-A)’+(Y1-B)’=R? where A,B,C are
the centres of the Sphere, R is radius and X1,Y1 are
the points on the sphere.

The parametric equation for ray are X=X0+Xf*K
Y=Y0+Yf*K where X0,Y0 is the origin of the ray
Xf,Yf are the camera rays direction. To find the
intersection, the ray equation into sphere equation is
(XO+Xf*K-A)*+(Y0+Yf*K-B)’=R ? which is equal to
(XF+YF)?* K+ [2[XFH(X1-A)+Y (Y 1-B)]]*t+[(XF-
A)’+(Yf-B)%-R?]=0

The quadratic equation is also in the form of
MX?+NX+C=0. Where

M= [(XF+YF)]

N= [2[Xf*(X1-A)+Yf*(Y1-B)]]

C= [(X1-A)*+(Y1-B)*-RY]

Considering the sphere equation above b’-4ac is
discriminant. Based on the values of the discriminant,

e Case 1. The solution b%-4ac <0 it leads to imaginary
value, the ray and sphere do not intersect in real

plane. /CS



e Case 2. The solution b%4ac=0 leads to the boundary
conditions with nonzero solutions.

e Case 3. If b®-4ac>0 exists in real roots where ray and
sphere intersect with each other. _6.

The intersection point of a ray with the plane surface is
determined as AX+BY+D=0.

The ray equation with the origin and the distance d is
represented into  the plane  equation  as
A(X0+Xf*K)+B(Y0+Yf*K)+D=0.
AX0+AXf*K+BY0+BYTf*K+D=0 [2].

In this paper, we substitute the discriminant with the
value A. considering the 3 cases of the A from equations
the rays are cast.

Since the discriminant itself is replaced with A, the
computing one square root, 2 multiplications and one
subtraction is reduced for each and every computation
for computing the color of each pixel in the object
which  tremendously reduces the computation
comparatively.

Considering the values of A is implemented for tracing
the rays. The speculative time dilation and contraction
is also considered for optimizing the performance.

3.3. Speculative parallel Ray Tracing

A nonspeculative thread is computing the execution of
the ray tracing program where a ray is cast from the
eye/camera through the scene which is a image file.

If the ray hits an object, the color of the object is
assigned and it gets reflected/refracted. These rays ard
called secondary rays. The secondary rays are traasgrsy
speculative threads parallely.

When the secondary rays are traced by_spegculative
threads, the color of each pixel is not €omputedsbut
background color is defined. Hence when tfisecondary
rays are tracing the rays there is no negesto cornpute the
background colour.

In a speculative parallel ray trecer“the algorithm is
divided among number oitthreydsn GPU. Since the
numbers of processsors on<GFY are significantly more,
can compute fine grainéd pasallelism to compute the
color of the each 4f theypixel on the image or object
simultaneously. Thgdata/'s distributed from the CPU to
the GPU threads. To Keep track of the timing events the
start and end of the spawning of the threads on non
speculative threads. CUDAEVENT () to keep track of
the spawned threads to calculate time contraction
between start and end of the event.

Hits an object

Allocate task to GPU

G:P) GP

Sends the color of the pixel

Misses object

Figure 6.

The steps are as follows. The primary rays shot by
the camera or the viewport are stored in the buffered
array of the CUDA program and a tree of splay trees
are formed and splaying operation is carried out when
the rays which are in the moving frame of the rays
which hits an object are determined and after splaying
operation the rays are traced by the threads on GPU.
The rays which hits an object may either gets reflected
or refracted such that the speculative threads spawn
secondary rays are traced by them. Each time splaying
operation is carried for the rays that hit an object. Each
of the ray traces the path of the rays and determines
the color of the pixels.

For defining the image, QPENGL programming and
for ray tracing program, £he*CUDA is being used. The
program is run onp “GHAUOCELOT, a parallel
programming similatar for CUDA programming is
used for the rgsults ag analysis.

The steps for“¥e speculated parallel ray tracer are
provideg_ below.

| Primary rays |

!

Splaying Transformation

vt

| Rays hit/miss |

v

| Shadow Rays |

!

| Color of each pixel |

*

| CPU combines tasks |

Figure 7.

During the execution of the ray tracing program,
the load balancing of the threads is carried out
through the technique of splaying operation on GPU’s
which is discussed in the section 1.1 of this paper. The
algorithm of the speculative parallel ray tracer is
provided.

Algorithm 3: The algorithm for the speculative parallel ray
tracer.

Stepl. The image file is created through OPENGL

Step 2. For each pixel of the object

{ color =0;

For (row=0;row< nrows;row+=blocksize

For (col=0;col<ncols; col+=blocksize

{

Step 3. Construct the primary rays.

Step 4. Call splay transform function.

Step5. The nonspeculative thread spawns speculative threads.
Step 6. The rays intersects the object called object intersection.
Step 7. The rays from the camera either hit or miss the objects.
Step 8. The CUDAEVENT records the speculative time dilation
and contraction.

Step 9. If the rays hit an object, secondary rays are formed and
they either reflect or refract.



Step 10. The GPU processors collect the color of each pixel and
group them, finally the CPU determines the colors of the pixels.

}

Algorithm 4: Code for intersection using strum-liouville
Equation.

Step 1. Scene is designed using OPENGL with objects, the
camera and the light sources are set up.
Step 2. Ray tracer function.
__global__void raytracing (start, direct)
{CUDA_EVENT_T begin, end;

Float M,N,C,D;
CUDA_EVENT CREATE (begin)
CUDA_EVENT RECORD (begin,0)
M= Xf*+Yf
N=2(Xf[X1-A]+Yf[y1-B])
C=(X1-A)*+(Y1-B)*~(r*r)
D=N*N-4*M*C
If (D <0)
Return false
Dsgr =sqrt(D)
Dsqr=2
If (2>0)
S0=-(N-1)/2.0
Else
S1=- (N+1)/2.0
If A==0] 2<0)
Return false
CUDA_EVENT_SYNCHRONIZE (end)
Float executed time
CUDA_EVENT_ELAPSED_TIME (&executed time)

4. Experimental setup

The algorithm is run on the Inspiron5050 using the
simulator GPUOCELOT simulator. The efficiency ot
the algorithm is determined. The amortized compiakity
of the algorithm is determined as follows.

4.1. Analysis

Amortized Cost: Many of the onlinesaigorithm works
whose time complexities are Aetogmihed by the
Amortized Time complexities. €¥Amurtization is the
process of determining thigyacqarscost involved for
insertions, deletions and ratatign uperations. The time
complexities remain_in &, (Iogn) for the average time
complexities. In the worgt ttme analysis remains to be
amortized. The avenage ti'ne complexity of the splaying
operation follows the Amortized time complexity of O
(logn) instead of O(n) and the cost incurred for the
insertions and deletions remains the constant or
amortized. So this technique is efficiently balances the
load without incurring extra time for any primitive
operations on the tree. Consider an empty tree and start
S splay operations on the tree, the total time of running
is O(S logn) but the average time for the operation is O
(logn).
The total amortized cost for splaying operation is the
sum of all the amortized cost for splay steps.
Amortized cost=) cost of splay steps.

=" 3(ra (root)-ra(S))+1

=>" 3logn+1

=0 (logn).
ra(root) is the rank of the root node is logn.
ra(S) rank of the node after splaying.
The performance efficiency of the splay operations on
the amortized cost is always O(1) as it is self
balancing, self optimized, no storage of data reducing
memory requirement and it is very efficient with the
uniform accessing of the data.

5. Conclusions

The splay thread cooperation for load balancing
results in good performance comparatively on the
graphics processors. The amortized time complexities
reduce the time of executiog task comparatively. The
GPU consist of thousands.f trireads the application of
the above techhiguy ocefnparatively reduces the
memory access anaihaiancing the work of the active
nodes can be 1qakized tnrough the graph.

6- Re‘>UI;Q
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Figure 6. graph of nthreads vs logn

7ne above graph describes as the n number of
tireads increases for splaying on the GPU’s the x axis
consists of the n threads and y axis consists of log n
resulting in linear speedup.

Figure 7. Initial scene for Ray tracing.

Figure 8. Scene with transformations



Figurel0. Ray tracing image
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