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Abstract: Data mining and machine learning techniques have been used in several scientific applications including software 
fault predictions in large space systems. State-of the-art research revealed that existing space systems succumb to enigmatic 
software faults leading to critical loss of life and capital. This article presents a novel approach to solve this issue of 
overlooking software faults by utilizing both features selection and classification techniques to accurately predict software 
defects in aerospace systems. The main objective was to identify the preeminent feature selection and prediction technique that 
enhanced the software fault prediction accuracy with the optimal set of features. The investigations affirmed that a novel 
hybrid feature selection method revealed the most optimal set of predictive features although no particular predictive 
technique was suitable to predict faults in all space system datasets. Besides, the exploration of data mining techniques in fault 
prediction on the NASA Lunar space system software data clearly portrayed the improved fault prediction accuracy (~82% to 
~98%) with the feature set selected by the proposed Hybrid Feature Selection method. Also, the random sub sampling method 
revealed an improved mean Matthew’s Correlation Coefficient (MCC) and accuracy ranging from ~0.7 to ~0.9 and ~86% to 
~98% respectively. This we believe generates further scope for future investigations on the most contributing space system 
features for fault prediction thus enabling design of aerospace systems with minimal faults and enhanced performance.  
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1. Introduction 
Software source code defect prediction has been an 
economically important field in software engineering 
for more than 20 years [10]. A defective module in 
software causes high repair and development cost and 
reduces quality of the software [2]. The growing 
demand for higher operational efficiency and safety in 
defence systems has resulted in a growing interest in 
fault-detection techniques [1, 3, 4, 19, 21, 23]. Hence, 
this research aimed at evolving a suitable and less 
complex software fault prediction framework that 
could yield higher accuracy in fault prediction with 
minimum number of optimal system features. Data 
mining [7, 25] is the task of analyzing data from 
various perspectives and consolidating/summarizing 
the data into relevant and meaningful information. 
Data mining techniques viz, feature selection and 
classification have proved very effective in predicting 
biological defects, irregularities in clinical data and 
revealing significant medical facts that raised interest 
in exploring such avenues for drug therapy and clinical 
decision making. Feature selection [7, 9, 17] is the 
method of deciding on a subset of important features 
for building reliable learning models. Classification 
[20] is a data analysis technique that is used to 
distinguish important data classes/categories. This  

 
paper aims at identifying the optimal and minimal set 
of software features that could predict the fault-
proneness of software in aerospace systems with 
improved accuracy. The performance measures used to 
evaluate the proposed approach include the Matthew’s 
Correlation Coefficient (MCC) [20, 21], accuracy, 
sensitivity and specificity. 

Software errors are usually not found until the late 
stages of the development cycle, when it turns 
expensive to return and fix them [2, 8, 14, 23]. 
Addressing these errors is highly essential failing 
which, software developers build a reputation for 
delivering faulty products or, create life-critical 
situations when the software is part of larger systems 
or devices, such as defence equipments or medical 
treatment plants [3]. Hence, detecting and predicting 
fault-proneness in software systems (aerospace 
systems) to improve the quality of software utilized in 
designing defence equipments was the rationale for 
this research.  

Several papers on mining software faults through 
prediction techniques have been proposed in literature 
[4, 15, 18]. Some of the papers discussed include 
methods for fault prediction such as size and 
complexity metrics, multivariate analysis, and multi-
co-linearity using Bayesian belief networks. NB [7, 22, 
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23] is widely used for building classifiers. When 
developing a defect predictor, the probability of each 
class is calculated, given the attributes extracted from a 
module, using metrics such as Halstead and McCabe 
ones etc., (i.e., metrics that are relevant to predicting 
faulty modules). Menzies et al. [15] developed 
predictors with Naïve Bayes (NB) classifier for fault 
characteristics. They discovered more predictive power 
in combined or hybrid predictors than in the mono 
metrics. They found that NB was the best faulty model 
predictor reported so far. 

Vandecruys et al. [23] used the Ant Colony 
Optimization (ACO) algorithm, and the max-min ant 
system to develop the AntMiner+model that classifies 
the dataset into either faulty or non-faulty modules. 
This algorithm achieved a predictive accuracy that was 
competitive to other methods. Predictors that were 
built using the previous techniques, suffered from high 
possible errors in assigning records to the correct class. 
NB provides high number of incorrectly classified 
modules [11]. As a result, many algorithms were built 
[5, 13, 18] to overcome the significant drawbacks of 
NB. One of those algorithms that demonstrated the 
accuracy of NB technique was Lazy Bayes Rules 
(LBR) [18] . However, LBR had high computational 
overheads. A group of researchers conducted manual 
software reviews to find defective modules [5]. They 
found that approximately 60 percent of defects could 
be detected manually. Reviews and inspections found 
over 50% of the defects in artefacts, regardless of the 
lifecycle phase applied.  

Twala [23] worked on four publicly available 
NASA datasets and stated the NB classifier to yield 
more robust software fault prediction while most 
ensembles with a decision tree classifier as one of its 
components also achieved higher accuracy rates 
according to their study. Evidence records that most of 
the ensembles improved the prediction accuracy of the 
baseline classifiers Decision Tree (DT), K-Neighbours 
(k-NN), Naïve Bayes Classifier (NBC) and Vector 
Machines Classifiers (SVM). Surprisingly, most of the 
ensembles with NBC as one of its components did not 
perform as good as when NBC was just a single 
classifier. In addition, the overall performance of 
feature selection for all the ensembles was very poor 
[23]. According to the above study, it appeared that 
there was currently no reasonable data to model 
software fault prediction. Secondly, method-level 
metrics appeared to be dominant in software fault 
prediction with class-level metrics being hardly 
utilised.  

This paper placed focus on a recent article [23] on 
NASA datasets using ensemble classifiers. We chose 
this paper for three main reasons: The paper is recent 
and the data is publicly available; the accuracy 
reported by ensemble techniques revealed great scope 
for improvement; and design of more accurate fault 
prediction techniques could greatly enhance the quality 

of software currently being used in defence systems. 
This research focussed on three main objectives: 
Utilizing feature selection techniques to identify the 
optimal set of software features for fault prediction; 
identify a suitable predictive technique that yields 
maximum accuracy in classification; and formulate a 
software fault prediction framework for space systems. 
The proposed methodology and the space system 
dataset utilized in this research are detailed in the 
subsequent section.  

The rest of the paper is organized as follows: 
Section 2 describes the data mining framework and 
investigations. Section 3 presents the experimental 
results. Section 4 discusses the improvements claimed 
by the current research findings while section 5 
concludes the paper with a clear idea of possible 
extensions to this work. 

2. Materials and Methods  
The publicly available datasets of the NASA MDP 
repository was utilized for this research. NASA’s 
Metrics Data Program (MDP) Repository [14, 15, 16] 
is a database that stores problem, product, and metrics 
data. The primary goal of this data repository is to 
provide project data to the software community. In 
doing so, the MDP collects artefacts from a large 
NASA dataset, generates metrics on the artefacts, and 
then generates reports that are made available to the 
public at no cost. The main characteristics of the data 
are tabulated in Table 1. 

Table 1. Desciption of the NASA aerospace system datasets. 
Data Set Attributes Instances Language Description 

CM1 38 344 C NASA spacecraft instrument 
JM1 22 9593 C Real time predictive ground system 
KC3 40 200 Java Satellite-image data 

MW1 38 264 C Zero-gravity experiment related to 
combustion 

PC1 38 759 C Flight software for earth orbiting 
satellite 

PC2 37 1585 C Dynamic simulator for altitude control 
systems 

PC3 38 1125 C Flight software for earth orbiting 
satellite 

PC4 37 1399 C Flight software for earth orbiting 
satellite 

The eight NASA datasets (CM1, JM1, MW1, KC3, 
PC1, PC2, PC3 and PC4) contain static code measures 
[14, 16, 23] (LOC, Halstead, MaCabe etc.,) along with 
their defect rates in numeric form. The metrics are 
based on product’s size, complexity and vocabulary. 

2.1. Software Fault Prediction Methodology 
The methodology proposed in this paper for software 
defect prediction comprises of two phases: Training 
phase; and validation phase. The former involves data 
pre-processing, feature selection and classification of 
the training data. The latter phase comprises of 
validating the performance of the classifiers 
investigated in this study using cross-validation and 
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random sampling techniques and ranking the 
performance of the classifiers based on the 
classification accuracy and MCC. The computational 
framework for software defect prediction using data 
mining techniques is portrayed in Figure 1. 

 
 Figure 1. Proposed software fault prediction framework. 

2.2. Data Pre-Processing 
The data pre-processing phase [20, 21] comprised of 
data cleaning and transformation for easy and efficient 
processing on software tools for software prediction. 
The attributes of each space system dataset were 
loaded onto Excel spreadsheets and saved as Comma 
Separated Version (CSV) files for execution on 
WEKA data mining suite [25]. Missing values were 
eliminated from further processing. This phase resulted 
in the clean training data for further processing using 
feature selection and classification algorithms 

2.3. Hybrid Feature Selection 
The authors of this research paper attempted to 
investigate the feature selection capability of their 
novel HFS method [20] (proposed to mine biological 
data) in order to extract contributing features for 
software defect prediction. This phase involved 
executing the Hybrid Feature Selection (HFS) method 
proposed by the authors Ramani and Jacob [19] that 
attempted to automate the process of finding the 
minimal and optimal set of features, by combining the 
ranking feature selection algorithms with feature subset 
selection methods yielding features highly correlated to 
the class and least correlated to each other. Since both 
the ranking (Gain Ratio Criterion) and subset selection 
methods (Correlation Feature Subset) were utilized to 

obtain the optimal feature set, this was termed the 
Hybrid Feature Selection strategy.  

The information gain ratio was calculated as the 
ratio between the Information Gain (InfoG) and the 
Intrinsic Value (IntrinV), according to Equation 1. 

                    ( , ) /IGRatio r f InfoG IntrinV=                (1)              

The attributes were then ranked in the descending 
order of the gain ratio score and were used for the CFS 
Subset selection method. The CFS criterion [6] is 
defined as follows: 
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Where rcfi and rfifi variables were referred to as 
correlations. The attributes that portrayed a high 
correlation to the target class and least relevance to 
each other were chosen as the best subset of attributes.  

2.4. Classification 
The main objective of classification [8, 12, 13, 18] is to 
accurately predict the target class for each record. The 
best performing classification algorithms in this study 
are briefly explained in the following sub-sections. 

2.4.1. Bayesian Belief Network Learning Algorithm 

A Bayesian network [19, 20, 21] over a set of variables 
U was a network structure Bs, a Directed Acyclic 
Graph (DAG) over the set of variables U and a set of 
probability tables given by [19]: 

                          { ( ( )) }p u pa u u UB P = ∈          ( 3 ) 

Where pa(u) was the set of parents of u in BS and the 
network represented a probability distribution given 
by: 

                     ( ) ( ( ))u UP U p u pa u∈∏=      (4) 

The inference made from the Bayesian Network was to 
allocate the category with the maximum probability. 
The simple estimator with the K2 local search method 
using Bayes Score was utilized for the execution of the 
algorithm. 

2.4.2. Nearest-Neighbour Algorithm 

The Nearest-Neighbour Algorithm (NNA) [1, 10, 11, 
13] was also investigated to build the prediction model 
for NASA space system data. NNA calculates 
similarities between the test sample and all the training 
samples. In the current study, the distance between 
vector px and py is defined as following [13]: 
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In Equation 5 px.py denotes the inner product of px and 
py. ||p|| denotes the module of vector p. The smaller the 

 

 

 

 

 

 . . . . 

.  

 

 

. . . 

 

 

 

  

 . . . 

 

 

 

NASA Space System 
Training Data 

Data Pre-processing 

Hybrid Feature Selection (HFS) 

Training 
Data: CM1 

Training 
Data: JM1 

Training 
Data: MW1 

Training 
Data: PC4 

CFS Subset: 
CM1 

CFS Subset: 
JM1 

 

CFS Subset: 
MW1 

 

CFS Subset: PC4 

 

Classification 

Performance Evaluation 
MCC 

Accuracy 

Best Software Fault 
Detection Classifier 

(5) 



Software Defect Prediction in Large Space Systems through Hybrid Feature...                                                                         211 
 

D(px.py) is, the more similar px to py is. In NNA, given 
a vector pt and training set P={p1, …, pn, ..., pN}, pt will 
be designated to the same class of its nearest neighbour 
pn in P, i.e., the vector having the smallest D(pn, pt). 
NN algorithms have three defining general 
characteristics [1, 13]; a similarity function, a typical 
instance selection function and a classification 
function. 

2.4.3. Ensemble Classifier  

AdaBoost [5, 11, 21, 25], a meta-learning ensemble 
classifier combines a series of ‘k’ learned models with 
the aim of creating a composite model. Initially, 
Adaboost assigned each training instance an equal 
weight that equalled 1/number of training instances. A 
number of iterations were executed wherein, instances 
from the dataset were sampled by weight to form the 
training set. A classifier model was derived and its 
error rate was computed with the training set that later 
served as the test set. The instance weights were 
adjusted according to the error-rate. For each class, the 
sum of the weights of each classifier that assigned 
class ‘c’ to an instance ‘X’ was determined. The class 
with the highest sum was considered as the category of 
the instance X. The performance evaluation methods 
and parameters are briefed about in the subsequent 
section. 

2.4.4. Jack-knife Cross-Validation Method 

In Jack-knife cross-validation [21], each one of the 
statistical samples in the training dataset was in turn 
singled out as a test sample and the predictor was 
trained by the remaining samples. The following 
indexes were adopted to test our proposed predictors.  

   
FNTNFPTP

TNTP
ACC +++

+
=ℜ                 (6) 

  ( ) ( )

( ) ( ) ( ) ( )MCC

TP TN FP FN

TP FN TN FP TP FP TN FN

× − ×
=ℜ

+ × + × + × +

                (7)  
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                            (8) 
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TN FP
=ℜ +

                           (9) 

WhereℜMCC reflected the Mathews Correlation 
Coefficient; ℜACC  reflected the accuracy, i.e., the rate 
of correctly predicted records, ℜSEN reflected the 
sensitivity, i.e., the rate of defective records correctly 
predicted; ℜSPE reflected the specificity, i.e., the rate of 
non-defective records that were correctly predicted. 
TP, TN, FP and FN denoted the number of true 
positives, true negatives, false positives and false 
negatives, respectively.  

3. Experimental Results 
The performance of the HFS and classification 
algorithms was evaluated on the WEKA machine-
learning toolkit [25]. The results are discussed in two 
sections. The first section reveals the results of the 
HFS method while the latter section describes the 
performance of the classification algorithms.  

3.1. HFS Method 
The HFS method was executed on all the eight NASA 
datasets and was found to reduce the feature set size to 
nearly one-third of the original data set. However, the 
ten-fold cross-validation technique was used to 
evaluate the predictor performance on the JM1 dataset 
in view of the massive size of the data. The 
performance of the proposed HFS algorithm was 
further evaluated as described in the ensuing section. 
The feature set size and the description of the NASA 
datasets are tabulated in Table 2. 

Table 2. Feature set of NASA datasets pre- and post- feature selection. 

Dataset Entire Feature 
Set (EFS) Size 

HFS Feature 
Set Size HFS Selected Features 

CM1 38 8 Loc_Comments, Cyclomatic_Density, Loc_Executable, Halstead_Content,Num_Unique_Operands, 
Num_Unique_Operators,Percent_Comments, Loc_Total 

JM1 22 7 Loc_Blank,Loc_Code_And_Comment,Loc_Comments,Cyclomatic_Complexity,Halstead_Content,Halstead_Volume,Loc_Tot 

KC3 40 4 Loc_Blank,Branch_Count,Loc_Code_And_Comment 
Normalized_Cylomatic_Complexity 

MW1 38 8 Loc_Blank,Loc_Comments,Edge_Count, Halstead_Content, Modified_Condition_Count,Node_Count, 
Num_Unique_Operands, Number_Of_Lines 

PC1 38 10 
Loc_Blank,Loc_Code_And_Comment,Loc_Comments,Cyclomatic_Density, Loc_Executable, Parameter_Count, Halstead_Content, 
Node_Count, 
Normalized_Cylomatic_Complexity, Num_Unique_Operands 

PC2 37 5 Loc_Comments,Cyclomatic_Density,Halstead_Content, Modified_Condition_Count,Percent_Comments 
PC3 38 7 Loc_Blank,Loc_Code_And_Comment,Loc_C,Per_Comments, Halstead_Content, Halstead_Length, Num_Unique_Operands, 
PC4 37 4 Loc_Code_And_Comment,Condition_Count,Essential_Complexity, Percent_Comments 

3.2. Performance of Prediction Algorithms 
A comparison of seven classification algorithms (BN-
Bayesian Network; NB-Naïve Bayes; AD-Adaboost; 
NN-Nearest-Neighbour; RF-Random Forest; RT- 
 
 

Random Tree; J48-Decision Tree) was performed on 
the NASA datasets. The comparative results of the  
predictor performances before and after feature 
selection are tabulated in Table 3. 
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Table 3. Comparison of predictor performance on NASA datasets 

 
The tabulated results clearly reveal the improvement 

in software defect prediction accuracy on the space 
system datasets even in the presence of the reduced 
feature set, with the feature set being reduced to nearly 
one–third of the original feature set size. 

Moreover, in terms of computational complexity, 
the nearest neighbor algorithm proved to be executing 
in minimum time closely followed by the Bayesian 
approaches. In order to prove the unbiased nature of 
the results and to better reflect the strength of the 
chosen feature set and the predictive power of the 
formulated fault prediction framework, the calculations 
were also done on many randomly sampled balanced 
sets and the results on the trials reported as mean 
accuracy and MCC in Table 5 and the optimal 
predictor performance is graphically portrayed in 
Figure 2.  

  
Figure 2. Optimal Predictor Performance on the NASA Datasets 

1 Entire Feature Set 
2 Hybrid Feature Selection Feature Set 

The comparative results of the decision tree 
predictor performances’ are tabulated in Table 4. 

Table 4. Comparison of decision tree predictors’ performance on 
NASA datasets.  

Dataset Feature 
Selection Measures RF RT J48 

CM1 
EFS Accuracy 86.3 82 82.3 

MCC 0.05 0.193 0.109 

HFS Accuracy 86.9 82 85.5 
MCC 0.072 0.176 -0.05 

JM1 
EFS Accuracy 80.7 76.1 79.9 

MCC 0.269 0.207 0.211 

HFS Accuracy 80.2 75.1 81.9 
MCC 0.26 0.177 0.166 

KC3 
EFS Accuracy 82.5 77 77.5 

MCC 0.262 0.204 0.212 

HFS Accuracy 81.5 77 85 
MCC 0.295 0.204 0.449 

MW1 
EFS Accuracy 87.9 85.6 88.6 

MCC 0.154 0.216 0.212 

HFS Accuracy 87.5 84.1 90 
MCC 0.176 0.039 0.455 

PC1 
EFS Accuracy 90.9 88.5 90.1 

MCC 0.184 0.195 0.199 

HFS Accuracy 91.4 88.9 90.5 
MCC 0.31 0.24 0.226 

PC2 
EFS Accuracy 98.9 98.1 99 

MCC -0.0 -0.01 0 

HFS Accuracy 98.9 97.9 99 
MCC -0.00 -0.01 0 

PC3 
EFS Accuracy 87.6 84 85.4 

MCC 0.275 0.27 0.2 

HFS Accuracy 87.8 85.2 87.6 
MCC 0.295 0.308 0 

PC4 
EFS Accuracy 90.6 87.6 88.6 

MCC 0.543 0.434 0.465 

HFS Accuracy 89.3 88.8 88.8 
MCC 0.503 0.493 0.36 

 
The classifiers were chosen based on their 

performance on the original dataset. 

Table 5. Predictor performance on randomly sampled HFS datasets. 

Dataset Classifier Mean 
Accuracy 

Mean 
MCC 

Mean 
Sensitivity 

Mean 
Specificity 

CM1 BN 86.367 0.73 0.8637 0.766 
JM1 BN 86.983 0.72 0.869 0.505 
KC3 J48 91.5 0.83 0.915 0.789 
MW1 J48 96.28 0.93 0.962 0.705 
PC1 NN 98.23 0.97 0.982 0.92 
PC2 BN 98.9 0.96 0.989 0.352 
PC3 RT 97.58 0.95 0.975 0.892 
PC4 RF 98.13 0.96 0.981 0.925 

4. Discussions 
Precise prediction of software faults in space systems 
is very valuable to engineers, especially those dealing 
with software development processes. This is 
important for minimizing cost and improving 
effectiveness of the software testing process. The 
results of the proposed methodology on the eight 
NASA space system datasets suggest that the Bayesian 
and Decision Tree approaches could be successfully 
applied in software fault prediction with HFS feature 
sets yielding overall significant increase in prediction 
performance. 

4.1. HFS Method vs Feature Ranking 
Approaches  

The HFS method combines the power of both ranking 
and feature subset selection approaches. The algorithm 

Dataset Feature 
Selection Measures BN NB AD NN 

CM1 
EFS1 Accuracy 66.6 82.6 87.8 77.9 

MCC 0.211 0.219 0 0.011 

HFS2 Accuracy 82.8 85.5 87.8 80.8 
MCC 0.269 0.263 0 0.003 

JM1 
EFS Accuracy 70.7 81.4 81.7 77.1 

MCC 0.247 0.226 0 0.223 

HFS Accuracy 75.2 81.2 81.7 76.4 
 0.266 0.277 0 0.203 

KC3 
EFS Accuracy 77.5 78.5 84 75.5 

MCC 0.094 0.231 0.399 0.123 

HFS Accuracy 79 81 83.5 78.5 
MCC 0.126 0.268 0.374 0.214 

MW1 
EFS Accuracy 81.4 81.8 84.8 83.7 

MCC 0.304 0.31 -0.07 0.155 

HFS Accuracy 87.1 85.6 84.8 83.7 
MCC 0.384 0.373 -0.07 0.127 

PC1 
EFS Accuracy 70.2 88.5 92 89.9 

MCC 0.276 0.274 0 0.287 

HFS Accuracy 75.1 88.7 92 90.6 
MCC 0.219 0.288 0 0.323 

PC2 
EFS Accuracy 86 95.5 98.5 98 

MCC 0.156 0.078 -0.07 -0.01 

HFS Accuracy 96.2 95.8 99 98.4 
MCC 0.186 0.114 0 0.125 

PC3 
EFS Accuracy 65.1 32.6 87.6 85.7 

MCC 0.271 0.124 0 0.308 

HFS Accuracy 74.8 82.4 87.6 84.4 
MCC 0.33 0.293 0 0.291 

PC4 
EFS Accuracy 74.5 87.3 88.2 86.6 

MCC 0.346 0.364 0.283 0.398 

HFS Accuracy 79.3 88.6 89.3 87.4 
MCC 0.462 0.401 0.378 0.434 
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automatically defines the number of features in the 
extracted feature subset. This is an improvement over 
the feature ranking algorithms that generate a rank of 
all the features based on a predefined criterion. The 
number of features to be selected for classification has 
to be decided by the user who sets the threshold for 
feature selection. This may often result in more 
number of features being selected for classification and 
may lead to extensive time being consumed before the 
optimal feature set is identified. 

4.2. Comparison to Previous Work 
The improvements put forth by this research analysis 
in comparison to previous work is reported in Table 6 
based on the results of Song et al. [22, 23] who have 
reported on fault prediction in NASA space system 
datasets.  

Table 6. Comparison of predictor performance to previous work. 

S.No NASA Dataset Previously Reported 
Accuracy (%) 

Currently Reported 
Accuracy (%) 

1 CM1 74.9 82.8 
2 JM1 76.6 81.2 
3 KC3 70.8 85 
4 MW1 66.5 90 
5 PC1 78.7 90.6 
6 PC2 79.7 96.2 
7 PC3 71.1 82.4 
8 PC4 82.2 89.3 

However, the previous work did not report on the 
MCC measure of the predictor techniques. The 
comparisons clearly reveal the improved classification 
performance with comparison to previous work, with 
reduced computational complexity. The optimal 
feature sets identified by this research generates further 
scope for design investigations on the detected 
software space system attributes for fabrication of 
improved and fault-free space systems. 

This research has achieved three main objectives: 
The utilization of feature selection techniques has 
unearthed the relevance of the most contributing 
properties in space system software for fault 
prediction; reduction in the number of features for 
prediction greatly minimized the computational 
complexity in terms of time and memory requirements; 
and the obtained classification accuracy and MCC is 
much higher compared to the previous reports on the 
NASA datasets with the MCC (stated to be more 
precise in ranking the predictor techniques on 
unbalanced binary class datasets) being reported for 
the first time on NASA space system datasets. 

5. Conclusions 
The goal of fault prone modules’ prediction using data 
mining techniques aims at improving the software 
development process. This enables the software 
manager to effectively allocate project resources 
toward those modules that require more effort. This 
will eventually enable the developers to fix the bugs 
before delivering the software product to end users. 

This research placed focus on identifying the optimal 
set of predictive features in NASA space system 
datasets to enable design of fault-free space systems 
for utilization in defence purposes. This research has 
revealed the most contributing features for fault-
prediction in space system software with the highest 
reported accuracy thus far, consequently paving way 
for further investigations on the possible design 
enhancements for space systems. 
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