
Named Entity Recognition for Automated Test case
Generation

Guruvayur Mahalakshmi1, Vani Vijayan2, and Betina Antony3

1,3Department of Computer Science, Engineering, Anna University, India
2Department of Information Technology, Easwari Engineering College, India

Abstract: Testing is the process of evaluating a software or hardware against its requirement specification. It helps to verify
and grade a given system. Recent emphasis on Test Driven Development (TDD) has increased the need for testing from the
early stages of software development. System test cases can be obtained from a number of user specifications such as
functional requirements; UML diagrams and use case specification. This paper focuses on automating the test process from
the early stages of requirement elicitation in the development of software. It describes a semi-supervised technique to generate
test cases by identifying named entities in the given set of use cases. The named entities along with flow listing of the use cases
serves as the source for scenario matrix from which a number of test cases can be obtained for a given scenario. The Named
Entity Recognizer (NER) is trained by a set of features extracted from the use cases. The automated generation of entity list
was found to increase the efficiency of the overall system.

Keywords: Named Entity Recognition, Test case Generation, Scenario matrix, Decision table

Received July 14, 2014; accepted December 16, 2014

1. Introduction
Software testing plays an important role in estimating
reliability of a system, assuring software quality and for
verifying and validating the functionalities of software.
As the complexity and size of software grow, the time
and effort required to do effective testing increase.
Studies indicate that more than 50% of the cost of
software development is devoted to testing [7].

The main concern in software testing is the
generation of test cases. Designing and execution of
test cases for any software is highly time consuming
and labour intensive. The increasing size of software
only escalates the complexity of creating test cases.
Hence automation of test cases has become an
inevitable process in the course of software testing.

There are essentially two main approaches to
automatic design of test cases. One approach attempts
to design test cases from requirement and design
specification and the other from code. Since generation
of test cases from code is cumbersome, the alternate
approach is given more importance in research point of
view. The process of generating tests from design will
often help the test engineer to discover problems with
design itself. If this step is done early, the problems can
be eliminated early, saving time and resources.

Generating tests during design also allows testing
activities to be shifted to an earlier part of the
development process, allowing for more effective

planning of test cases.Another advantage is that the test
data is independent of any particular implementation.
Generating test cases at early stages is a good supplement
to testing. These test cases can be tested at later stages

coding. Though testing essentially starts at the design
phase, the error in understanding or design can be
carried on to consecutive phases. Hence it is essential
to commence the examination modules right from the
requirement phase. This leads to a more stable system
covering aspects of both user specification and
developer understanding.

In a software development project, use cases define
system software requirements. Use case development
begins early on, so real use cases for key product
functionality are available in early iterations [21]. A
use case fully describes the sequence of actions
performed by a system to provide an observable result
of value to a person or another system using the
product under development. Use cases tell the customer
what to expect, the developer what to code, the
technical writer what to document, and the tester what
to test. Thus use cases can be deployed effectively in
the development of test cases. These test cases identify
and communicate the conditions that will be
implemented in test and are necessary to verify

successful and acceptable implementation of the
product requirements. They are all about making sure
that the product fulfils the requirements of the system.

Named-Entity Recognition (NER) also known as
entity identification and entity extraction is a subtask of
information extraction that seeks to locate and classify
atomic elements in text into predefined categories.
The Named Entities refer to one or more rigid
designators which includes proper nouns as well as
certain kinds of natural terms. The ability of
recognizing previously unknown entities is an
essential part of NERC systems [36]. These abilities

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

depend on recognizing and classifying based on
distinctive features associated with positive and
negative examples.
In this paper, the authors provide a semi supervised
method of extracting named entities from use cases.
Different features like orthographic and semantic
features are extracted from the dataset along with
general features such as POS tags and word frequency.
These entities along with flow specification can be used
to generate test cases from the given set of use cases.

2. Related Work
Data mining has found its application in a wide range
of fields [26] such as data modelling like language
modelling [9], XML document modelling [32] meta
learning [41]; knowledge discovery [48], Knowledge
Management [14]; neural networks [54] medical system
[24], CRM [36], web education [43] etc., A data mining
project has a list of phases such as business
understanding, data understanding, data preparation,
modelling and deployment. A number of data mining
techniques are applied in various applications. Some of
these techniques include clustering, classification,
pattern matching, data summarization and deviation
detection [17].

2.1. Intelligent Approaches for Test Case
Generation

Generating Test cases via machine learning techniques
[5] is two-decade old. Applying metaheuristic search
techniques and genetic Algorithms [53] have been
extensively used to automate the process of generating
test cases, and thus providing solutions for a more cost-
effective testing process. SBST is a branch of Search-
Based Software Engineering (SBSE) [18], in which
optimisation algorithms are used to automate the search
for test data that maximises the achievement of test
goals, while minimising testing costs. SBST has been
applied to a wide variety of testing goals including
structural [19, 30, 31, 33, 47], functional [49], non-
functional [50] and state-based properties [11].
Lakhotia et al. [25] used a local search to augment the
Pex DSE-based testing tool from Microsoft, while [45]
augmented ‘standard’ constraint solving with a Particle
Swarm optimiser to improve the performance of
Symbolic PathFinder. Ali and Briand [1] provide a
good review of the existing attempts to test case
generation. de et al. [10] presented a methodology,
Solimv, which aims at model-based test case generation
considering NL requirements deliverables. The
methodology is supported by a Semantic Translation
Model in which, among other features, a word sense
disambiguation method helps in the translation process.
Application of Constraint Logic Programming to Test
Case Generation is also experimented [34].

2.2. Mining in Software Engineering
Software engineering is a wide domain packed with
textual artifacts written in natural language such as
requirement specification documents, design
documents, code, execution logs, test suites and bug
logs. Various sources of software engineering data
include documentation, SCM documents, Source
code, issues and bugs database and mailing list [22].
Mining of these units is one of the key requisite for
automating the activities of software development.

Mining activities may include tracing of requirements;
retrieval of components from a repository; extracting
functional and non functional attributes; conversion of
design to action, identify and eradicate bugs etc., [20].

Text mining done in software documents have also led
to ontology building. Here the software data
documents are mined at semantic level and the extracted
information is used in automated population of
documentation ontology [51].

2.3. Mining Techniques in Software Testing
Testing plays a major role software development
process. It is but natural to try and automate this
process to optimise the development. Before actually
generating test cases, researches were carried out to
study software behaviour. An active learning
technique was suggested by [8] where a Morkov
classifier was built and trained to predict the
behaviour of program execution. Data mining
techniques such as cluster analysis played a major role
in operation-based testing [12]. The filtering of these
clusters based on certain metrics improved the
efficiency of the system to identify more failures in
the execution profile.

Works on automating the process of software
testing started as early as in 2000’s. Initial works
included automated input-output analysis of data-
driven software systems where an Info-Fuzzy
Network (IFN) was constructed [26]. The network
was employed to automatically generate non-
redundant set of test cases for execution data with the
help of Legacy systems and Random Test Generator.
A number of different techniques to generated test
cases from functional requirements that are presented
in natural language were studied [16]. Test cases can
also be generated from state charts drawn using SRS.
Here a rule based classifier is used to identify
functional and non-functional requirements which are
used to produce state diagrams. These in turn are used
to produce test suites on which DM techniques such as
association, clustering etc are done for optimization
[40].

Test cases can be generated from dynamic models
such as control flow graphs and sequence diagrams by
considering full predicate coverage criteria [46]. The
test cases thus formed can be used to identify object
interaction and operational faults. The test cases

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

produced can be prioritized by k-means clusters and
code complexity metrics [2].

2.4. Named Entity Recognition
 (NER) is one of the subtasks of Information
Extraction. NER aims at locating the Named Entities
(NE’s) in a given context and classifying them into
different categories. NER finds its application in text
summarization, machine learning, information retrieval
etc., [15]. NER is employed in a number of applications
some of which are shown in Table 1.

Table 1. Applications of NER.

Application Method used Author

Newswire MEM model Mikeev, A; 1999
[35]

Multi-lingual
Semi-CRF model Kim, S; 2012 [23]
Gazeetter based

classification
Nothman, J; 2013

[38]

Tweet
LabeledLDA Ritter, A; 2011 [42]

KNN with Linear CRF Liu, X; 2011 [28]

Biomedicine

Semi-CRF model Yang, L; 2013 [52]
SVM model Song, Y ; 2004 [44]
MEM model Patrick, J;2005 [39]

SVM with HMM model Atkinson, J; 2012
[3]

Diverse
domain

General Architecture for
Text Engineering

(GATE)

Maynard, D; 2001
[29]

SVM with HMM model Etter, D; 2013 [13]

3. System Description
The process of generating test cases from use cases
follows a given set of tasks. Flow analysis and scenario
listing are two main components needed for generating
test case matrix.

Figure 1. Test case generation.

3.1. Scenario Matrix Generation
Scenario matrix plays a major role in test case
generation from use cases. The creation of scenario
matrix is done in three steps:

• Alternate flow identification
• Decision table construction
• Scenario matrix generation

3.1.1. Alternate Flow Identification

Alternate flows are a conditional set of steps that are
an alternative to one or more steps in another flow
after which the use case continues to pursue its goal.
The alternate flow can be option flow, exception flow
or recovery flow. These alternate flows are identified
from the given set of use cases. Redundant flows are
eliminated and the final set of alternate flows is saved.
These form the basis for the scenario matrix.

3.1.2. Decision Table Construction

The decision table is a multidimensional data structure
which gives information about the set of
characteristics that lead to the success or failure of a
scenario. The table contains a list of scenarios and the
set of entities used in that application. The flow steps
in each scenario are mapped against the entity in it.
Finally the success or failure of the use case is denoted
in the result section. The decision table plays an
important role in test case generation. That is the
nature of input data and system response for each test
scenario can be obtained. The decision table however
does not gives details about the required sequencing of
flows or which data to test for.

3.2.2. Scenario Matrix Generation

The scenario matrix is a deductive method useful for
constructing scenarios in volatile and uncertain
situations. The matrix describes the alternate flows
taken in each scenario when the basic flow fails. The
final state of the system is also indicated. The change
in flow depends on the input action performed.

3.2. Named Entity Recognition from use Cases
The domain related named entities that are used in the
construction of decision table can be generated from
the uses cases by machine learning techniques. The
NE’s thus found are saved in the NE dictionary in
their domain which can be referred in future for other
set of use cases. However the NER module is domain
independent. Named Entity Recognition uses four
different features namely n-gram frequency, term
frequency scoring, gazetteer reference and certain
minor features. Using these features, the use cases are
trained by machine learning algorithms.

3.2.2. Feature Set

When it comes to NER, a number of features such as
contextual, lexical, morphological and shallow
syntactic features play a prominent role [4]. For
training the model both orthographic and semantic
features are extracted from the data set.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

• N-gram Frequency Analysis
N-grams are two or more adjacent elements in a
string of tokens that represent a single word. They
are used to provide better representation of
document than Bag-Of-Words (BOW). N-grams
provide conditional probability of a token given
its preceding and succeeding token (BIO tags). The
analysis done uses Enhances-SVM approach to
identify frequency of n-grams where in addition to
the frequencies, the positions of the terms are also
considered [6].

• Term frequency scoring
For term scoring, tf-idf is used which serves as a
weighing factor for information retrieval and central
tool for scoring and ranking frequently occurring
words and a document relevant to a query.

• Dictionary reference scoring
A simple way to guess the sense of a particular
phrase is to look it up in a local dictionary. Look-up
systems with large entity lists work pretty well if the
entities are not ambiguous. Princeton’s word net1
provides various details such as the sense of a word
and their meaning to resolve ambiguity to an extent.
It also provides various other details such as
synonyms, antonyms, hyper and hyponyms for the
given term and also the domain to which they may
belong. The dictionary provides an additional grade
called familiarity which has values such as very
familiar, familiar, common, uncommon, rare and
very rare based on the number of forms the word
takes for a given sense. Thus the word net reference
scoring calculates a value based on the number of
senses. The terms with a positive score have higher
possibility of being a named entity.

• Minor features
Other minor features include identifying words with
special characters (eg., ‘_’,’*’ etc.,) and capitalized
words.

3.2.2. Training by Machine Learning

The features thus obtained are used to train an NER
identification model. The authors employ Maximum
Entropy Model (MEM) to train the dataset. MEM is
also known as multinominal logistic regression model
that assigns conditional probabilities on the hidden
structures in the given data. This model assigns to each
feature a weight. A positive weight indicates the
configuration is likely to be correct whereas the
negative weight indicates the configuration is possibly
incorrect.

1 http://wordnet.princeton.edu/

Figure 2. Named entity recognition for use cases.

3.3. Test Case Generation
The generation of test cases involves identifying test
conditions or data elements for a given functionality,
identifying all possible scenarios in the given
operation and finally identifying data element states in
each scenario and their corresponding output. The
generated test case contains information such as the
input to provided, expected result and actual result for
each scenario in a given functionality. The system
uses finite-state automation technique where each
input sequence transit to finite number of states.

3.3.1. Identify Data Elements

The data elements or the data conditions are the
entities that are used in a use case. They can take up
different values which determine the success or failure
of the system. These entities are obtained by matching
the input data against a domain based NE dictionary.

3.3.2. Identify Possible Scenarios

Dividing the use case into set of scenarios enhances
the number of test cases generated. Each scenario is
formed by considering different values for the data
elements and the corresponding result of the system.
The results are listed in the form of a scenario matrix.
The different states of data elements are termed as
alternate flows. Thus a scenario matrix generated
above contains list of scenarios, their set of basic and
alternate flows and the nature of the output for that
scenario.

3.3.3. Identify State of Data Elements and
Corresponding Output

From the data elements and the scenarios identified,
the last step in creating use case is providing values
for the data elements. As shown in the finite-state
diagram, the outcome of a given scenario depends
upon the value of these data elements or conditions.
The possible values for these elements are found from
the given use case sequences. The test cases are
written for all possibilities where each case shows the
values taken by the data elements and their expected
output.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

http://wordnet.princeton.edu/

Tabulating the data obtained from the above steps will
yield the set of test cases for the given functionality of
the system under study. These test cases can further be
optimized by reducing redundant data and identifying
missing test conditions.

Figure 3. Detailed design of test case generation.

4. Results and Discussion
The experiment was conducted in two stages; Named
entity recognition and Scenario matrix construction.
The testing and discussion mainly focuses on the NER
section that serves as the baseline for scenario matrix
and decision table.

4.1. Dataset
The input corpus for training had 80 domain
independent use cases. Each use case was described in
detail and was expressed in Jacobson template. From
these use cases 354 constituent entities were obtained
among which 262 were positive and 92 were negative.
The test set was divided into 2 sets: set 1 contained 10
domain dependent use cases and 87 constituent terms;
set 2 contained 49 domain independent use cases and
237 constituent terms. The details of the datasets used
are depicted in Table 2.

Table 2. Domain details of dataset for Classification.

Dataset

N
o

of
 u

se

ca
se

s

N
o

of

D
om

ai
n

List of Domain

Training data 80 3 Hotel management
Stock maintenance
Weather forecast

Test set 1 (domain
dependent)

10 1 Stock maintenance

Test set 2
(domain

independent)

49 8 Hotel management
Employee database

management
Restaurant service
Reservation system

Logistics management
Healthcare

Security and maintenance
Inventory management

4.2. Feature Extraction
The four features considered here are N-grams
frequency count, term frequency scoring, sense-based
scoring and minor feature scores. These features are
identified separately and are integrated to form the
training set. Here the number of terms in N-gram is
limited to 2 and their frequency is calculated using E-
SVM method [42]. For term frequency scoring, tf-idf
value was calculated for frequently occurring terms in
a document and the value for a term was normalized2.
For sense-based scoring, the number of senses for a
given constituent term was found. A weighted value
was given for each sense (noun, verb, adjective and
adverb) and a final score was calculated.

4.3. NER Classifier
The scores thus calculated were used to train a MEM
classifier. The classifier was trained using 354
constituent terms. The model built had an f-measure of
70.4. The model had high TP-rate (recall) of about
94.5% for positive classification. This model was then
test with the 2 different test sets. The classifier
produced good results for both the sets. The results of
the classifier on various dataset are shown in table 3.

Table 3. Evaluation of NER classifer.

Dataset Precision Recall F-score

Training data 0.716 0.751 0.704
Test set 1 0.714 0.968 0.822
Test set 2 0.675 0.934 0.783

Two minor challenges were encountered during the
testing of this model. Firstly only noun and noun
phrases were considered constituent terms for
classification. Here the incorrect tagging of POS
tagger is carried on to the next stages. For example,
“displays_NNS” is a verb tagged as noun. Secondly
sense based scoring was mainly used to avoid
ambiguity of the sense of the word in the given
context. This however was not completely successful.
For instance, the word “case” has a familiarity rating
of very familiar for noun sense and rare familiarity
rate in verb sense. Based on the sense-score, the word
falls into the category of named entity but the actual
word is not an entity. Hence additional features may
have to be included to improve the efficiency of the
system. The minor features considered in the model are
capitalization and specific set of special characters.
Being positive in most of the cases, they also
contributed to incorrect tagging. For example,
capitalization at the beginning of a sentence need not
necessarily be an entity. The greatest challenge of this
model was high specificity rate (nearly 0.3 for test set
2). The model lacked few discriminating features to
correctly reject non-entity terms.

2Average value of the score for a term in all possible documents was
calculated.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Figure 4. Evaluation of NER classifier.

4.4. Test Case Using Named Entities
The named entities thus obtained are used by the test
case generation module. In this module, the list of
entities indicates the data elements of the system. When
an entity is identified in the use case, possible states
taken by the entity is obtained. For example, an entity
‘password’ can be valid, invalid, correct, incorrect,
empty etc. Hence a test statement is formed to check
each of these different states. Also the scenario matrix
is obtained which gives flow of events for each
scenario. Test condition is identified for each of these
events. Finally, all the test conditions for a scenario are
tabulated to form a test suit for the given scenario.

The steps can be explained using the example of
login use case Algorithm 1. It is to be noted that the list
of named entities form the basis for the artifacts
created. Without them, the data elements cannot be
identified. Hence automation of this step has a greater
impact on the test case generation. The states of the
data element are obtained from the given set of use
cases. Hence it is very essential to identify all possible
alternate flows for a given module. Thus this method of
testing from the requirement elicitation phase ensures
that a proper system is built from the first phase of
development. The test cases thus produced for login use
case are shown in Table 4. This method is extended to
different use cases from a wide range of domain.

Table 4. Test cases for Login use case
S no Username Password Verification

code
Expected

output

1 Correct Correct N/A Success

2
Incorrect N/A N/A Re-enter

username

3
Correct Incorrect N/A Re-enter

password
4 Correct Forgot Correct Success
5 Correct Forgot Incorrect Failure
6 Null Null N/A New user

Example 1. Test Condition from Use Case

Named Entities:
Username, Password, Verification code, Register,
Result
Flow of events:
 Correct user name
 Correct password
 Incorrect user name
 Incorrect password

 Forgot password
 Correct verification code
 Incorrect verification code
Result: Success, Failure.
No of Scenarios: 6
Scenario 1:
 Correct Username -> Correct Password -> Success
Test condition for scenario 1:
 if(username == correct)
 then
 if(password == correct)
 then
 success;
 else
 then
 error(not expected value);
 end if
 else
 then
 error(not expected value);
 end if

5. Conclusions
This paper provides a break through attempt in
employing a very effective data mining technique to
automate the process of generating test cases during
the initial stage of software development life cycle. A
domain independent NER system was built to
optimize a test case generation system. Though the
system had to surf through a voluminous list of
entities when scanning individual use cases, the effort
is less when compared to manually identifying tagging
entity names from individual use cases. Also error in
tagging shall be avoided. The system however can be
expanded with different sets of feature that may
overcome the drawbacks of ambiguity and improve
the efficiency of classification. The NER system can
also be used in different stages of software
development.

References
[1] Ali, S.; Briand, L.C.; Hemmati, H.; Panesar-

Walawege, R.K., “A Systematic Review of the
Application and Empirical Investigation of
Search-Based Test Case Generation, Software
Engineering”, IEEE Transactions on , vol.36,
no.6, pp.742,762, Nov.-Dec. 2010.

[2] Arafeen, M., & Do, H., “Test Case Prioritization
Using Requirements-Based Clustering.” In
Software Testing, Verification and Validation
ICST, 2013 IEEE Sixth International
Conference, pp. 312-321. IEEE, 2013.

[3] Atkinson, J., & Bull, V. “A multi-strategy
approach to biological named entity
recognition.” Expert Systems with Applications,
3917, 12968-12974, 2012.

[4] Benajiba, Y., Diab, M. T., & Rosso, P. (2009).
Using Language Independent and Language
Specific Features to Enhance Arabic Named

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Entity Recognition.Int. Arab J. Inf.
Technol., 6(5), 463-471.

[5] Bergadano. “Test case generation by means of
learning techniques” SIGSOFT Softw. Eng. Notes
18, 149-162, 1993.

[6] Bhakkad A, S. C. Dharamadhikari, Kulkarni P.
“Efficient Approach to find Bigram Frequency in
Text Document using EVSM”. International
Journal of Computer Applications 6819:9-11,
April 2013.

[7] Binder, R. “Testing object-oriented systems:
models, patterns, and tools.” Addison-Wesley
Professional, 2000.

[8] Bowring, J. F., Rehg, J. M., & Harrold, M. J.,
“Active learning for automatic classification of
software behavior.” In ACM SIGSOFT Software
Engineering Notes. Vol. 29, No. 4, pp. 195-205.
ACM, 2004.

[9] Chen, Y. “Constructing language model by using
data mining technique”. 2004.

[10] de Santiago Jr, Alexandre,V., and
Vijaykumar,N.L., "Generating model-based test
cases from natural language requirements for
space application software." Software Quality
Journal 20, no. 1: 77-143, 2012.

[11] Derderian, K., Hierons, R., Harman, M. and Guo,
Q., “Automated Unique Input Output sequence
generation for conformance testing of FSMs.”
The computer Journal 493, 331–344, 2006.

[12] Dickinson, W., Leon, D., & Podgurski, A.
“Finding failures by cluster analysis of execution
profiles.” In Proceedings of the 23rd international
conference on Software engineering, pp. 339-348.
IEEE Computer Society, 2001.

[13] Etter, D., Ferraro, F., Cotterell, R., Buzek, O.,
“Nerit: Named entity recognition for informal
text”. Technical Report 11, Human Language
Technology Center of Excellence, Johns Hopkins
University, July. 2013.

[14] Fesharaki, M., Shirazi, H., & Bakhshi, ”A., ”A.
Knowledge acquisition from database of
information management and documentation
softwares by data mining techniques.”
Information Sciences and Technology, 262, 259–
283, 2011.

[15] Grishman, R. “Information extraction:
Techniques and challenges.” In Information
Extraction A Multidisciplinary Approach to an
Emerging Information Technology, pp. 10-27.
Springer Berlin Heidelberg, 1997.

[16] Gutiérrez, J. J., Escalona, M. J., Mejías, M., &
Torres, J. “Generation of test cases from
functional requirements”. A survey. In 4ş
workshop on system testing and validation. 2006.

[17] Halkidi, M., Spinellis, D., Tsatsaronis, G., &
Vazirgiannis. “Data mining in software
engineering.” Intelligent Data Analysis, 153, 413-
441, 2011.

[18] Harman, M. S., Mansouri,A., and Zhang,Y.,
“Search-based software engineering: Trends,
techniques and applications”. ACM Comput.
Surv. 45, 1, Article 11, 61 pages, 2012.

[19] Harman, M. and McMinn,P., “A theoretical and
empirical study of search based testing: Local,
global and hybrid search”. IEEE Transactions on
Software Engineering 362, 226–247, 2010.

[20] Hayes, J. H., Dekhtyar, A., & Sundaram, S.
“Text mining for software engineering: how
analyst feedback impacts final results.” In ACM
SIGSOFT Software Engineering Notes Vol. 30,
No. 4, pp. 1-5. ACM, 2005.

[21] Heumann, J. "Generating test cases from use
cases." The rational edge 6.01 (2001).

[22] Ismail, N., Ibrahim, R., & Ibrahim, N.,
“Automatic generation of test cases from use-
case diagram.” In International Conference on
Electrical Engineering and Informatics. Institut
Teknologi, Bandung, Indonesia, pp. 17-19, June
2007.

[23] Kim, S., Toutanova, K., & Yu, H. “Multilingual
named entity recognition using parallel data and
metadata from Wikipedia”. In Proceedings of the
50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-
Volume 1 pp. 694-702. Association for
Computational Linguistics. 2012.

[24] Kusiak, A., Kernstine, K. H., Kern, J. A. “Data
mining: medical and engineering case studies.”
In Proceedings of the industrial engineering
research 2000 conference, pp. 21-23, 2000.

[25] Lakhotia, K., Tillmann, N., Harman, M., de
Halleux, J., “Flopsy - Search-based floating
point constraint solving for symbolic execution.”
In: Proc. of the 23rd IFIP International
Conference on Testing Software and Systems
ICTSS’10, pp. 142–157, 2010.

[26] Last, M., Friedman, M., & Kandel, A. “The data
mining approach to automated software testing”.
In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge
discovery and data mining, pp. 388-396. ACM,
2003.

[27] Liao, S. H., Chu, P. H., & Hsiao, P. Y. "Data
mining techniques and applications–A decade
review from 2000 to 2011." Expert Systems with
Applications 39.12: 11303-11311, 2012.

[28] Liu, X., Zhang, S., Wei, F., & Zhou, M.
“Recognizing named entities in tweets.” In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics:
Human Language Technologies-Volume 1 pp.
359-367. Association for Computational
Linguistics. 2011.

[29] Maynard, D., Tablan, V., Ursu, C. “Named
entity recognition from diverse text types”. In

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Recent Advances in Natural Language Processing
Conference pp. 257-274, 2001.

[30] McMinn, P., Harman, M., Hassoun, Y., Lakhotia,
K. and Wegener, J., “Input domain reduction
through irrelevant variable removal and its effect
on local, global and hybrid search-based
structural test data generation”. IEEE
Transactions on Software Engineering 382, 453–
477, 2012.

[31] McMinn, P., Shahbaz, M. and Stevenson, M.,
“Search-based test input generation for string data
types using the results of web queries.” In: Proc.
of the 5th International Conference on Software
Testing, Verification and Validation ICST’12,
2012.

[32] Mei, D., & Zhang, X. “Data mining techniques
for structure of single XML document.” Shiyou
Huagong Gaodeng Xuexiao Xuebao/Journal of
Petrochemical Universities, 201, 94–98, 2007.

[33] Michael, Christoph C., Gary McGraw, and
Michael A. Schatz., “Generating software test
data by evolution”. IEEE Transactions on
Software Engineering 2712, 1085–1110, 2001.

[34] Miguel, G., Albert,E., and Puebla,G., “Test case
generation for object-oriented imperative
languages in clp*”. Theory Pract. Log. Program.
10, 4-6 2010, 659-674.

[35] Mikheev, A., Moens, M., & Grover, C. “Named
entity recognition without gazetteers”. In
Proceedings of the ninth conference on European
chapter of the Association for Computational
Linguistics pp. 1-8. Association for
Computational Linguistics. 1999.

[36] Nadeau, D., & Sekine, S. "A survey of named
entity recognition and classification." Lingvisticae
Investigationes 30.1: 3-26, 2007.

[37] Ngai, E. W., Xiu, L., & Chau, D. C. “Application
of data mining techniques in customer
relationship management: A literature review and
classification.” Expert systems with applications,
362, 2009, 2592-2602.

[38] Nothman, J., Ringland, N., Radford, W., Murphy,
T., & Curran, J. R. “Learning multilingual named
entity recognition from Wikipedia”. Artificial
Intelligence, 194, 151-175, 2013.

[39] Patrick, J., & Wang, Y. “Biomedical named entity
recognition system”. In Proceedings of the Tenth
Australasian Document Computing Symposium
ADCS 2005.

[40] Raamesh, L., & Uma, G. V. “Knowledge Mining
of Test Case System.” International Journal on
Computer Science & Engineering, 21,2010.

[41] Radosavljevic, V., Vucetic, S., & Obradovic, Z.
“A data-mining technique for aerosol retrieval
across multiple accuracy measures” IEEE
Geoscience and Remote Sensing Letters, 72, 411–
415, 2010.

[42] Ritter, A., Clark, S., & Etzioni, O. “Named
entity recognition in tweets: an experimental
study”. In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing pp. 1524-1534. Association for
Computational Linguistics. 2011.

[43] Romero, C., & Ventura, S. “Educational data
mining: a review of the state of the art Systems,
Man, and Cybernetics”, Part C: Applications and
Reviews, IEEE Transactions on, 406, 601-618,
2010.

[44] Song, Y., Yi, E., Kim, E., Lee, G. G., & Park, S.
J. “POSBIOTM-NER: a machine learning
approach for bio-named entity recognition.”
Korea, 305, 350. 2004.

[45] Souza, M., Borges, M. d’Amorim, M. and
Pasareanu, C. S., “CORAL:Solving complex
constraints for symbolic pathfinder.” In: M. G.
Bobaru,K. Havelund, G. J. Holzmann, and R.
Joshi eds., NASA Formal Methods Third
International Symposium NFM’11, LNCS 6617,
pp. 359–374.Springer, 2011.

[46] Swain, S. K., Mohapatra, D. P., & Mall, R.
“Test case generation based on use case and
sequence diagram.” International Journal of
Software Engineering, IJSE, 32, 21-52, 2010.

[47] Tonella, P., “Evolutionary testing of classes.” In:
Proc. of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis
IS-STA ’04, pp. 119–128, 2004.

[48] Wasan, S. K., Bhatnagar, V., & Kaur, H. “The
impact of data mining techniques on medical
diagnostics.” Data Science Journal, 5, 119–126,
2006.

[49] Wegener, J. and Buhler, O., “Evaluation of
different fitness functions for the evolutionary
testing of an autonomous parking system”.
In:Genetic and Evolutionary Computation
Conference GECCO 2004, LNCS 3103., pp.
1400–1412. Springer, 2004

[50] Wegener, J. and Grochtmann, M., “Verifying
timing constraints of real-time systems by means
of evolutionary testing.” Real-Time Systems
153, 275 – 298, 1998.

[51] Witte, R., Li, Q., Zhang, Y., & Rilling, J.,
“Ontological text mining of software
documents”. In Natural Language Processing
and Information Systems, pp. 168-180. Springer
Berlin Heidelberg, 2007.

[52] Yang, L., & Zhou, Y. “Exploring feature sets for
two-phase biomedical named entity recognition
using semi-CRFs.” Knowledge and Information
Systems, 1-15, 2013.

[53] Yuehua, D. Jidong, P., “Automatic generation of
software test cases based on improved genetic
algorithm”, Multimedia Technology ICMT,
2011 International Conference on , vol., no.,
pp.227,230, 26-28 July 2011.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

[54] Zhang, C., & Ramirez-Marquez, J. E.
“Approximation of minimal cut sets for a flow
network via evolutionary optimization and data
mining techniques”. International Journal of
Performability Engineering, 71, 21–31, 2011.

 Guruvayur Mahalakshmi is an
Assistant Professor (Senior Grade) in
the Department of Computer Science
and Engineering, College of
Engineering, Anna University,
Chennai. She completed her B.E.
(Computer Science and Engineering)
from R.V.S. College

of Engineering and Technology, Dindigul and M.E.
(Computer Science and Engineering) and Ph.D. from
College of Engineering, Anna University, Chennai.
She has numerous international journal and conference
publications to her credit. She is also the author of
Tamil Edition of B.E. course - text books -
Fundamentals of Computing and Computer Practice of
Anna University. She has authored many book chapters
and derives 100+ citations to her credit. Her research
interests include Reasoning, Knowledge Sharing and
representation, Text Mining, Social Network Analysis,
bibliometrics, and Natural Language Computing.

Vani Vijayan is a Senior Assistant
Professor in Department of
Information Technology in Easwari
Engineering College, Anna
University, Chennai, Tamilnadu.
She completed her Masters from
Anna University in 2009 in

Computer Science and Engineering and Bachelors from
Bharathiar University, Coimbatore, Tamil Nadu in
2002 in Information Technology. She is currently
working towards pursuing Ph.D.degree from Anna
University, Chennai in Faculty of Information and
Communication Engineering, registered in July 2010.
She has experience of 10 years in the field of teaching.
She has guided around 20 UG/PG projects and has
published few papers in National and International
Conferences. Her primary research interest is Natural
Language Processing, Text mining and Software
Engineering.

Betina Antony is a Research
Scholar in the Department of
Computer Science and Engineering
in Anna University, Chennai,
Tamilnadu, India. She finished her
Bachelors (Computer Science and
Engineering) in Sri Sivasubramania

Nadar College of Engineering and her Post graduation
(Software Engineering) in College of Engineering,
Guindy, Anna University, in which she secured gold
medal for being the first rank holder. She has
presented many papers in national and international
conferences. She is currently working on Named
Entity Recognition for Tamil Biomedical texts. Her
research interests are Natural Language Processing,
Text and Data mining.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

	Named Entity Recognition for Automated Test case Generation
	Intelligent Approaches for Test Case Generation
	Mining in Software Engineering
	Mining Techniques in Software Testing
	Named Entity Recognition
	Scenario Matrix Generation
	Alternate Flow Identification
	Alternate flows are a conditional set of steps that are an alternative to one or more steps in another flow after which the use case continues to pursue its goal. The alternate flow can be option flow, exception flow or recovery flow. These alternate ...
	Decision Table Construction
	The decision table is a multidimensional data structure which gives information about the set of characteristics that lead to the success or failure of a scenario. The table contains a list of scenarios and the set of entities used in that application...
	Scenario Matrix Generation

	Named Entity Recognition from use Cases
	Feature Set
	N-gram Frequency Analysis
	Term frequency scoring
	Dictionary reference scoring
	Minor features

	Training by Machine Learning

	Test Case Generation
	Identify Data Elements
	Identify Possible Scenarios
	Identify State of Data Elements and Corresponding Output

	Dataset
	Feature Extraction
	NER Classifier
	Test Case Using Named Entities

