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Abstract: Testing is the process of evaluating a software or hardware against its requirement specification. It helps to verify 
and grade a given system. Recent emphasis on Test Driven Development (TDD) has increased the need for testing from the 
early stages of software development. System test cases can be obtained from a number of user specifications such as 
functional requirements; UML diagrams and use case specification. This paper focuses on automating the test process from 
the early stages of requirement elicitation in the development of software. It describes a semi-supervised technique to generate 
test cases by identifying named entities in the given set of use cases. The named entities along with flow listing of the use cases 
serves as the source for scenario matrix from which a number of test cases can be obtained for a given scenario. The Named 
Entity Recognizer (NER) is trained by a set of features extracted from the use cases. The automated generation of entity list 
was found to increase the efficiency of the overall system.  
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1. Introduction 
Software testing plays an important role in estimating 
reliability of a system, assuring software quality and for 
verifying and validating the functionalities of software. 
As the complexity and size of software grow, the time 
and effort required to do effective testing increase. 
Studies indicate that more than 50% of the cost of 
software development is devoted to testing [7].  

The main concern in software testing is the 
generation of test cases. Designing and execution of 
test cases for any software is highly time consuming 
and labour intensive. The increasing size of software 
only escalates the complexity of creating test cases. 
Hence automation of test cases has become an 
inevitable process in the course of software testing.  

There are essentially two main approaches to 
automatic design of test cases. One approach attempts 
to design test cases from requirement and design 
specification and the other from code. Since generation 
of test cases from code is cumbersome, the alternate 
approach is given more importance in research point of 
view. The process of generating tests from design will 
often help the test engineer to discover problems with 
design itself. If this step is done early, the problems can 
be eliminated early, saving time and resources.  

Generating tests during design also allows testing 
activities to be shifted to an earlier part of the 
development process, allowing for more effective   

planning of test cases.Another advantage is that the test 
data is independent of any particular implementation. 
Generating test cases at early stages is a good supplement 
to testing. These test cases can be tested at later stages 

coding. Though testing essentially starts at the design 
phase, the error in understanding or design can be 
carried on to consecutive phases. Hence it is essential 
to commence the examination modules right from the 
requirement phase. This leads to a more stable system 
covering aspects of both user specification and 
developer understanding.  

In a software development project, use cases define 
system software requirements. Use case development 
begins early on, so real use cases for key product 
functionality are available in early iterations [21]. A 
use case fully describes the sequence of actions 
performed by a system to provide an observable result 
of value to a person or another system using the 
product under development. Use cases tell the customer 
what to expect, the developer what to code, the 
technical writer what to document, and the tester what 
to test. Thus use cases can be deployed effectively in 
the development of test cases. These test cases identify 
and communicate the conditions that will be 
implemented in test and are necessary to verify 

successful and acceptable implementation of the 
product requirements. They are all about making sure 
that the product fulfils the requirements of the system.  

Named-Entity Recognition (NER) also known as 
entity identification and entity extraction is a subtask of 
information extraction that seeks to locate and classify 
atomic elements in text into predefined categories. 
The Named Entities refer to one or more rigid 
designators which includes proper nouns as well as 
certain kinds of natural terms. The ability of 
recognizing previously unknown entities is an 
essential part of NERC systems [36]. These abilities 
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depend on recognizing and classifying based on 
distinctive features associated with positive and 
negative examples. 
In this paper, the authors provide a semi supervised 
method of extracting named entities from use cases. 
Different features like orthographic and semantic 
features are extracted from the dataset along with 
general features such as POS tags and word frequency. 
These entities along with flow specification can be used 
to generate test cases from the given set of use cases. 

2. Related Work 
Data mining has found its application in a wide range 
of fields [26] such as data modelling like language 
modelling [9], XML document modelling [32] meta 
learning [41]; knowledge discovery [48], Knowledge 
Management [14]; neural networks [54] medical system 
[24], CRM [36], web education [43] etc., A data mining 
project has a list of phases such as business 
understanding, data understanding, data preparation, 
modelling and deployment. A number of data mining 
techniques are applied in various applications. Some of 
these techniques include clustering, classification, 
pattern matching, data summarization and deviation 
detection [17]. 

2.1. Intelligent Approaches for Test Case 
Generation 

Generating Test cases via machine learning techniques 
[5] is two-decade old. Applying metaheuristic search 
techniques and genetic Algorithms [53] have been 
extensively used to automate the process of generating 
test cases, and thus providing solutions for a more cost-
effective testing process. SBST is a branch of Search-
Based Software Engineering (SBSE) [18], in which 
optimisation algorithms are used to automate the search 
for test data that maximises the achievement of test 
goals, while minimising testing costs. SBST has been 
applied to a wide variety of testing goals including 
structural [19, 30, 31, 33, 47], functional [49], non-
functional [50] and state-based properties [11]. 
Lakhotia et al. [25] used a local search to augment the 
Pex DSE-based testing tool from Microsoft, while [45] 
augmented ‘standard’ constraint solving with a Particle 
Swarm optimiser to improve the performance of 
Symbolic PathFinder. Ali and Briand [1] provide a 
good review of the existing attempts to test case 
generation. de et al. [10] presented a methodology, 
Solimv, which aims at model-based test case generation 
considering NL requirements deliverables. The 
methodology is supported by a Semantic Translation 
Model in which, among other features, a word sense 
disambiguation method helps in the translation process. 
Application of Constraint Logic Programming to Test 
Case Generation is also experimented [34]. 

2.2. Mining in Software Engineering 
Software engineering is a wide domain packed with 
textual artifacts written in natural language such as 
requirement specification documents, design 
documents, code, execution logs, test suites and bug 
logs. Various sources of software engineering data 
include documentation, SCM documents, Source 
code, issues and bugs database and mailing list [22]. 
Mining of these units is one of the key requisite for 
automating the activities of software development. 

Mining activities may include tracing of requirements; 
retrieval of components from a repository; extracting 
functional and non functional attributes; conversion of 
design to action, identify and eradicate bugs etc., [20]. 

Text mining done in software documents have also led 
to ontology building. Here the software data 
documents are mined at semantic level and the extracted 
information is used in automated population of 
documentation ontology [51]. 

2.3. Mining Techniques in Software Testing 
Testing plays a major role software development 
process. It is but natural to try and automate this 
process to optimise the development. Before actually 
generating test cases, researches were carried out to 
study software behaviour. An active learning 
technique was suggested by [8] where a Morkov 
classifier was built and trained to predict the 
behaviour of program execution. Data mining 
techniques such as cluster analysis played a major role 
in operation-based testing [12]. The filtering of these 
clusters based on certain metrics improved the 
efficiency of the system to identify more failures in 
the execution profile. 

Works on automating the process of software 
testing started as early as in 2000’s. Initial works 
included automated input-output analysis of data-
driven software systems where an Info-Fuzzy 
Network (IFN) was constructed [26]. The network 
was employed to automatically generate non-
redundant set of test cases for execution data with the 
help of Legacy systems and Random Test Generator. 
A number of different techniques to generated test 
cases from functional requirements that are presented 
in natural language were studied [16].  Test cases can 
also be generated from state charts drawn using SRS. 
Here a rule based classifier is used to identify 
functional and non-functional requirements which are 
used to produce state diagrams. These in turn are used 
to produce test suites on which DM techniques such as 
association, clustering etc are done for optimization 
[40]. 

Test cases can be generated from dynamic models 
such as control flow graphs and sequence diagrams by 
considering full predicate coverage criteria [46]. The 
test cases thus formed can be used to identify object 
interaction and operational faults. The test cases 
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produced can be prioritized by k-means clusters and 
code complexity metrics [2]. 

2.4. Named Entity Recognition 
 (NER) is one of the subtasks of Information 
Extraction. NER aims at locating the Named Entities 
(NE’s) in a given context and classifying them into 
different categories. NER finds its application in text 
summarization, machine learning, information retrieval 
etc., [15]. NER is employed in a number of applications 
some of which are shown in Table 1. 

Table 1. Applications of NER. 

Application Method used Author 

Newswire MEM model Mikeev, A; 1999 
[35] 

Multi-lingual 
Semi-CRF model Kim, S; 2012 [23] 
Gazeetter based 

classification 
Nothman, J; 2013 

[38] 

Tweet 
LabeledLDA Ritter, A; 2011 [42] 

KNN with Linear CRF Liu, X; 2011 [28] 

Biomedicine 

Semi-CRF model Yang, L; 2013 [52] 
SVM model Song, Y ; 2004 [44] 
MEM model Patrick, J;2005 [39] 

SVM with HMM model Atkinson, J; 2012 
[3] 

Diverse 
domain 

General Architecture for 
Text Engineering 

(GATE) 

Maynard, D; 2001 
[29] 

SVM with HMM model Etter, D; 2013 [13] 

3. System Description 
The process of generating test cases from use cases 
follows a given set of tasks. Flow analysis and scenario 
listing are two main components needed for generating 
test case matrix. 

 
Figure 1.  Test case generation. 

3.1. Scenario Matrix Generation 
Scenario matrix plays a major role in test case 
generation from use cases. The creation of scenario 
matrix is done in three steps:  

• Alternate flow identification 
• Decision table construction 
• Scenario matrix generation 

 

 
 
 

3.1.1. Alternate Flow Identification 

Alternate flows are a conditional set of steps that are 
an alternative to one or more steps in another flow 
after which the use case continues to pursue its goal. 
The alternate flow can be option flow, exception flow 
or recovery flow. These alternate flows are identified 
from the given set of use cases. Redundant flows are 
eliminated and the final set of alternate flows is saved. 
These form the basis for the scenario matrix. 

3.1.2. Decision Table Construction 

The decision table is a multidimensional data structure 
which gives information about the set of 
characteristics that lead to the success or failure of a 
scenario. The table contains a list of scenarios and the 
set of entities used in that application. The flow steps 
in each scenario are mapped against the entity in it. 
Finally the success or failure of the use case is denoted 
in the result section. The decision table plays an 
important role in test case generation. That is the 
nature of input data and system response for each test 
scenario can be obtained. The decision table however 
does not gives details about the required sequencing of 
flows or which data to test for. 

3.2.2. Scenario Matrix Generation  

The scenario matrix is a deductive method useful for 
constructing scenarios in volatile and uncertain 
situations. The matrix describes the alternate flows 
taken in each scenario when the basic flow fails. The 
final state of the system is also indicated. The change 
in flow depends on the input action performed. 

3.2. Named Entity Recognition from use Cases 
The domain related named entities that are used in the 
construction of decision table can be generated from 
the uses cases by machine learning techniques. The 
NE’s thus found are saved in the NE dictionary in 
their domain which can be referred in future for other 
set of use cases. However the NER module is domain 
independent. Named Entity Recognition uses four 
different features namely n-gram frequency, term 
frequency scoring, gazetteer reference and certain 
minor features. Using these features, the use cases are 
trained by machine learning algorithms. 

3.2.2. Feature Set  

When it comes to NER, a number of features such as 
contextual, lexical, morphological and shallow 
syntactic features play a prominent role [4]. For 
training the model both orthographic and semantic 
features are extracted from the data set. 
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• N-gram Frequency Analysis 
N-grams are two or more adjacent elements in a 
string of tokens that represent a single word. They 
are used to provide better representation of 
document than Bag-Of-Words (BOW). N-grams 
provide conditional probability of a token given 
its preceding and succeeding token (BIO tags). The 
analysis done uses Enhances-SVM approach to 
identify frequency of n-grams where in addition to 
the frequencies, the positions of the terms are also 
considered [6]. 

• Term frequency scoring  
For term scoring, tf-idf is used which serves as a 
weighing factor for information retrieval and central 
tool for scoring and ranking frequently occurring 
words and a document relevant to a query. 

• Dictionary reference scoring  
A simple way to guess the sense of a particular 
phrase is to look it up in a local dictionary. Look-up 
systems with large entity lists work pretty well if the 
entities are not ambiguous. Princeton’s word net1 
provides various details such as the sense of a word 
and their meaning to resolve ambiguity to an extent. 
It also provides various other details such as 
synonyms, antonyms, hyper and hyponyms for the 
given term and also the domain to which they may 
belong. The dictionary provides an additional grade 
called familiarity which has values such as very 
familiar, familiar, common, uncommon, rare and 
very rare based on the number of forms the word 
takes for a given sense. Thus the word net reference 
scoring calculates a value based on the number of 
senses. The terms with a positive score have higher 
possibility of being a named entity.  

• Minor features  
Other minor features include identifying words with 
special characters (eg., ‘_’,’*’ etc.,) and capitalized 
words. 

3.2.2. Training by Machine Learning  

The features thus obtained are used to train an NER 
identification model. The authors employ Maximum 
Entropy Model (MEM) to train the dataset. MEM is 
also known as multinominal logistic regression model 
that assigns conditional probabilities on the hidden 
structures in the given data. This model assigns to each 
feature a weight. A positive weight indicates the 
configuration is likely to be correct whereas the 
negative weight indicates the configuration is possibly 
incorrect.   

1 http://wordnet.princeton.edu/  

 
Figure 2.  Named entity recognition for use cases. 

3.3. Test Case Generation 
The generation of test cases involves identifying test 
conditions or data elements for a given functionality, 
identifying all possible scenarios in the given 
operation and finally identifying data element states in 
each scenario and their corresponding output. The 
generated test case contains information such as the 
input to provided, expected result and actual result for 
each scenario in a given functionality. The system 
uses finite-state automation technique where each 
input sequence transit to finite number of states. 

3.3.1. Identify Data Elements  

The data elements or the data conditions are the 
entities that are used in a use case. They can take up 
different values which determine the success or failure 
of the system. These entities are obtained by matching 
the input data against a domain based NE dictionary. 

3.3.2. Identify Possible Scenarios  

Dividing the use case into set of scenarios enhances 
the number of test cases generated. Each scenario is 
formed by considering different values for the data 
elements and the corresponding result of the system. 
The results are listed in the form of a scenario matrix. 
The different states of data elements are termed as 
alternate flows. Thus a scenario matrix generated 
above contains list of scenarios, their set of basic and 
alternate flows and the nature of the output for that 
scenario. 

3.3.3. Identify State of Data Elements and 
Corresponding Output  

From the data elements and the scenarios identified, 
the last step in creating use case is providing values 
for the data elements. As shown in the finite-state 
diagram, the outcome of a given scenario depends 
upon the value of these data elements or conditions. 
The possible values for these elements are found from 
the given use case sequences. The test cases are 
written for all possibilities where each case shows the 
values taken by the data elements and their expected 
output. 
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Tabulating the data obtained from the above steps will 
yield the set of test cases for the given functionality of 
the system under study. These test cases can further be 
optimized by reducing redundant data and identifying 
missing test conditions.  

 
Figure 3.  Detailed design of test case generation. 

4. Results and Discussion 
The experiment was conducted in two stages; Named 
entity recognition and Scenario matrix construction. 
The testing and discussion mainly focuses on the NER 
section that serves as the baseline for scenario matrix 
and decision table. 

4.1. Dataset   
The input corpus for training had 80 domain 
independent use cases. Each use case was described in 
detail and was expressed in Jacobson template. From 
these use cases 354 constituent entities were obtained 
among which 262 were positive and 92 were negative. 
The test set was divided into 2 sets: set 1 contained 10 
domain dependent use cases and 87 constituent terms; 
set 2 contained 49 domain independent use cases and 
237 constituent terms. The details of the datasets used 
are depicted in Table 2. 

Table 2. Domain details of dataset for Classification. 

Dataset 

N
o 

of
 u

se
 

ca
se

s 

N
o 

of
 

D
om

ai
n 

List of Domain 

Training data 80 3 Hotel management 
Stock maintenance 
Weather forecast 

Test set 1 (domain 
dependent) 

10 1 Stock maintenance 

Test set 2 
(domain 

independent) 

49 8 Hotel management 
Employee database 

management 
Restaurant service 
Reservation system 

Logistics management 
Healthcare 

Security and maintenance 
Inventory management 

 

4.2. Feature Extraction 
The four features considered here are N-grams 
frequency count, term frequency scoring, sense-based 
scoring and minor feature scores. These features are 
identified separately and are integrated to form the 
training set. Here the number of terms in N-gram is 
limited to 2 and their frequency is calculated using E-
SVM method [42]. For term frequency scoring, tf-idf 
value was calculated for frequently occurring terms in 
a document and the value for a term was normalized2. 
For sense-based scoring, the number of senses for a 
given constituent term was found. A weighted value 
was given for each sense (noun, verb, adjective and 
adverb) and a final score was calculated. 

4.3. NER Classifier 
The scores thus calculated were used to train a MEM 
classifier. The classifier was trained using 354 
constituent terms. The model built had an f-measure of 
70.4. The model had high TP-rate (recall) of about 
94.5% for positive classification. This model was then 
test with the 2 different test sets. The classifier 
produced good results for both the sets. The results of 
the classifier on various dataset are shown in table 3. 

Table 3. Evaluation of NER classifer. 

Dataset Precision Recall F-score 

Training data 0.716 0.751 0.704 
Test set 1 0.714 0.968 0.822 
Test set 2 0.675 0.934 0.783 

Two minor challenges were encountered during the 
testing of this model. Firstly only noun and noun 
phrases were considered constituent terms for 
classification. Here the incorrect tagging of POS 
tagger is carried on to the next stages. For example, 
“displays_NNS” is a verb tagged as noun. Secondly 
sense based scoring was mainly used to avoid 
ambiguity of the sense of the word in the given 
context. This however was not completely successful. 
For instance, the word “case” has a familiarity rating 
of very familiar for noun sense and rare familiarity 
rate in verb sense. Based on the sense-score, the word 
falls into the category of named entity but the actual 
word is not an entity. Hence additional features may 
have to be included to improve the efficiency of the 
system. The minor features considered in the model are 
capitalization and specific set of special characters. 
Being positive in most of the cases, they also 
contributed to incorrect tagging. For example, 
capitalization at the beginning of a sentence need not 
necessarily be an entity. The greatest challenge of this 
model was high specificity rate (nearly 0.3 for test set 
2). The model lacked few discriminating features to 
correctly reject non-entity terms.  

2Average value of the score for a term in all possible documents was 
calculated. 
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Figure 4.  Evaluation of NER classifier. 

4.4. Test Case Using Named Entities 
The named entities thus obtained are used by the test 
case generation module. In this module, the list of 
entities indicates the data elements of the system. When 
an entity is identified in the use case, possible states 
taken by the entity is obtained. For example, an entity 
‘password’ can be valid, invalid, correct, incorrect, 
empty etc. Hence a test statement is formed to check 
each of these different states. Also the scenario matrix 
is obtained which gives flow of events for each 
scenario. Test condition is identified for each of these 
events. Finally, all the test conditions for a scenario are 
tabulated to form a test suit for the given scenario. 

The steps can be explained using the example of 
login use case Algorithm 1. It is to be noted that the list 
of named entities form the basis for the artifacts 
created. Without them, the data elements cannot be 
identified. Hence automation of this step has a greater 
impact on the test case generation. The states of the 
data element are obtained from the given set of use 
cases. Hence it is very essential to identify all possible 
alternate flows for a given module. Thus this method of 
testing from the requirement elicitation phase ensures 
that a proper system is built from the first phase of 
development. The test cases thus produced for login use 
case are shown in Table 4. This method is extended to 
different use cases from a wide range of domain.  

Table 4. Test cases for Login use case 
S no Username Password Verification 

code 
Expected 

output 

1 Correct Correct N/A Success 

2 
Incorrect N/A N/A Re-enter 

username 

3 
Correct Incorrect N/A Re-enter 

password 
4 Correct Forgot Correct Success 
5 Correct Forgot Incorrect Failure 
6 Null Null N/A New user 

Example 1. Test Condition from Use Case 

Named Entities:  
Username, Password, Verification code, Register, 
Result 
Flow of events:  
 Correct user name 
 Correct password 
 Incorrect user name 
 Incorrect password 

 Forgot password 
 Correct verification code 
 Incorrect verification code 
Result: Success, Failure. 
No of Scenarios: 6 
Scenario 1:  
 Correct Username -> Correct Password -> Success 
Test condition for scenario 1: 
 if(username == correct) 
 then 
  if(password == correct) 
  then  
   success; 
  else  
  then 
   error(not expected value); 
  end if 
 else  
 then 
  error(not expected value); 
 end if 

5. Conclusions 
This paper provides a break through attempt in 
employing a very effective data mining technique to 
automate the process of generating test cases during 
the initial stage of software development life cycle. A 
domain independent NER system was built to 
optimize a test case generation system. Though the 
system had to surf through a voluminous list of 
entities when scanning individual use cases, the effort 
is less when compared to manually identifying tagging 
entity names from individual use cases. Also error in 
tagging shall be avoided. The system however can be 
expanded with different sets of feature that may 
overcome the drawbacks of ambiguity and improve 
the efficiency of classification. The NER system can 
also be used in different stages of software 
development. 
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