Method-level Code Clone Detection for Java
through Hybrid Approach

Egambaram Kodhai' and Selvadurai Kanmani?
'Department of Computer Science and Engineering, Pondicherry Engineering College, India
?Department of Information Technology, Pondicherry Engineering College, India

Abstract: A Software clone is an active research area where several researchers have investigated techniques to
automatically detect duplicated code in programs. However their researches have limitations either in finding the structural or
functional clones. Moreover, all these techniques detected only the first three types of clone:. In this paper, we propose a
hybrid approach combining metric-based approach with textual analysis of the source code for the detection of both
syntactical and functional clones in a given Java source code. This proposal is also used *i detec! all four types of clones. The
detection process makes use of a set of metrics calculated for each type of clones. A t¢al 1.omed CloneManager is developed
based on this method in Java for high portability and platform-independency. Th< variou. types of clones detected by the tool
are classified and clustered as clone clusters. The tool is also tested with seven exis:*.g open source projects developed in Java

and compared with the existing approaches.

Keywords: Clone Detection, Functional Clones, Source code metrics, <ring-mc*ching.

Received October 21, 2013; accepwad vdne 24, 2014

1. Introduction

Copying code fragments and then re-use by pasting
with or without minor modifications or adaptations
is called Code Cloning and the pasted code
fragment is called a *“clone”. Clone detection is®
research problem where there is no precise definition.
Code clones are the source of heated deboes
among software maintenance researchers [3I.
Clones are compared on the basis of <ne nrearam
text that has been copied. A related Gafinition of
cloning was described by Bellon et 2!, whc defined
the types of code clones based on the fegree and type
of similarities [1].

e Type 1. is an exact ccpv witiiout modification
(except for whitespace ziid co mments)

o Type 2. is a synincucally identical copy; only
variable, type, for fuiction identifiers have been
changed

e Type 3. is copied fragments with further
modifications. Statements can be changed, added or
removed in addition to variations in identifiers,
literals, types, layout and comments

e Type 4. Two or more code fragments that perform
the same computation but implemented through
different syntactic variants

The granularity of clones can be free with no syntactic
boundaries or fixed within predefined syntactic
boundaries such as method or blocks. Clone
granularity is fixed at different levels such as files,
classes, functions/methods, begin-end blocks,
statements or sequences of source lines.

In the iitercture there are number of clone detection
technitwies has been proposed with free granularity.
Only= Innited detectors used function clones as
oranuiaisty. The techniques that return only function
clones are useful for architectural refactoring [9].
Muieover, function clones are the meaningful clones
which are more useful for software maintenance and
evolution phases [19].

In this paper, we propose a code clone detection
method through hybrid approach. It is the combination
of textual analysis using metrics to detect all the four
types of clones. We also implemented a tool in Java
using this approach. Our tool, detects function clones
found in either the given Java source code projects at
method level efficiently and accurately.

This paper is divided into four major sections. Section
2 presents the literature review for clone detection.
Section 3 describes the implementation of the proposed
method. Section 4 discusses the results obtained using
our proposed method. Finally, section 5 describes the
conclusion of the paper.

2. Motivation for Clone Detection

There has been more than a decade of research in the
field of software clones. To understand the growth and
trends in different dimensions of clone research, the
research has been carried out with a quantitative
review of related publications. In literature, Bellon et
al. [1] has classified and defined four types of clones.
A number of techniques have been proposed for the
detection of type-1, type-2, and type-3 clones as per
the definition of clone literature. However, for type-4

clones called semantic clones, very few attempts were
made with limitations to detect them [10, 17]. So far,
there is a lack of technique for the detection of all four
types of clones in literature.

Table 1. An example for the four types of clones.

Source | Typel | Type2 Type 3 Type 4
code(a) | clone(b) | clone(c) | clone(d) | clone(e)
int main() {'”t Main(fint func20)| int main() |int funca()

{ =1 {
intx=1; i:ﬂt X__Xl; intp=1;| ints=1; | intn=5;
inty=x y5—. intq=p+|intt=s+5; retun
*5; return’ /i 5 Uris; o,
return y; Y- veturn g; | returnt; [}
output
)) j j

In this paper, we propose a code clone detection

method through hybrid approach. It is the combination
of textual analysis using metrics to detect all the four
types of clones. We also implemented a tool in Java
using this approach. Our tool, detects function clones
found in either the given Java source code projects at
method level efficiently and accurately.
This paper is divided into further into four major
sections. Section 3 presents the literature review for
clone detection. Section 4 describes the
implementation of the proposed method. Section.5
discusses the results obtained using our proposeu
method. Finally, section 6 describes the conclusion of
the paper.

3. Literature Review

Code cloning or the act of copying code fragments a~4
making minor alterations is a well-known probixm
leading to duplicated code fragments or clores |10,
15]. Of course, the normal functioning of Zne tyswar is
not affected, but without counter measu.7s, further
development may become prohibitive!y. expensive [4,
5].

Effective code clone detection «vilinsupport for the
perfective maintenance. koarihorar, S in his paper
identified some key parame.rs .hat would help to
identify plagiarism [13}: Up.to the present, several
code clone detecticii metheds have been proposed [2,
14, 18, 23, 25]. Se ‘eral clone detection methods have
used the Abstract Syriax Tree (AST) representation of
a program to find clones [7, 8,12]. Generally, a clone
detection tool uses an AST that is generated by a pre-
existing parser.

Baker [11] describes one of the earliest applications of
suffix trees to the clone detection process. In this work,
instead of AST nodes, a token-like structure produced
after the lexical analysis is used to find duplicates. The
use of biological sequence matching algorithms is
evident in [12]. It uses string alignment algorithm that
inspired by dynamic programming methods. These
methods are useful in the detection of near exact
clones.

Godfrey and Zou [11] chose cyclomatic complexity as
the corroboration metric. On a very small test set they
have shown this approach can work for locating the
clone segments across several versions of a software
system. Thummalapenta et al. [25] indicated that in
most of the cases clones are changed consistently and
for the remaining inconsistently changed cases, clones
mainly undergo independent evolution.

Ducasse et al. describe a clone detection algorithm
with two steps [6]. The first step is to transform the
code. Further normalization was considered by
Ducasse et al. They found that these forms of
normalization dropped precision from 94% to 70% in
one case study and from«/2% to 11.5% in another.
This normalization impreved recall by as much as
20%.

Merlo et al. [18].prooosed a technique to detect
function clorcs. Heiaentified type-1 and type-2
clones. He man*tuins a high precision and a low recall.
His tool<1d not dezect type-3 and type-4 clones.
Chancnal <. Roy et al. [22] proposed a technique to
detecy functiun clones. However, he did not classify
the clonc types 1,2 or 3 as specified in the literature.
Insteac of that. hetool fixed some threshold value. If
tie wresholz=vaiie 1s 0.0 then exact match (type-1)
and it scarts.maiches with threshold value 0.10, 0.20,
0.30. »*'me2ns 10%, 20%, 30% of dissimilarity in the
clorca. Ivie able to detect near-missed clones (type-3)
but fails o detect type2 clones.

“he {imitations in existing methods show a way to
‘nvestigate hybrid or combinational techniques to
overcome them. Our proposal is the detection of
function clones using textual analysis and metrics
approach. It also detects all four types of clones as
specified in the literature.

4. Implementation of Clone Detection

A method is proposed to detect function code clones in
Java source codes through textual analysis and metrics.
It is implemented in Java. The tool accepts a Java
source project as the input and identifies various
functions/methods present in it. Then a built-in
hand-coded parser [24] is used to analyze the
various methods following an island-driven parsing
approach [24]. Having identified the methods,
different source code metrics are computed for each
method and stored in the database. With the
help of these metric values the possible potential
clone pairs are extracted and are further put forth for
the textual comparison.

Path to input project Pre-processing

Comment &
white space

|-

removal

Statement
standardization

%
o
c
=
o
@
I
@
w
A

Template

conversion
Method

identification

y

Selection of
candidates

Metrics
computation

1
Type-1 clones matching
Type-2 clones matching

Type-3 clones matching |
- Type-4 clones matching
9

Figure 1. Overall Block Diagram

Clone
pairs &
clusters

In the following subsections, we explain the design

of the tool using the proposed method for the detection
of four types of clones. The detection tool is thus
lightweight i.e., it doesn’t employ any external
parsers and requires a less overhead compared to
other methods.
The detection process is carried out in three imayar
steps: A pre-processing, detection .2nG. peat-
processing. Figure 1 is the overall bloc.: dizgraii of
the proposed system.

I* */ ’ VO

void setdatetime(chdate,chtime) sew atetim {chdate,chtime)

/*set up char buffers <oar cdatef];

with the date and time */ char chtime[];
char chdate[]; — J— 5{

char chtime[]; { L/
char *timeech,*ctime();
time(&Itime):
timech = ctime(&Itime);
smove(chdate,8,timech,20,4);

char *timech, *ctime();
time(&Itime);

timech — ctime(<ime);
move(chdate,8,timech,20,4);

smove(chtime,0,timech,11,8);

smove(chtime,0,timech,11,8); return;

return; } }

Figure 2. Comment and White Space Removal and standardized
source code for pre-processing

4.1. Pre-Processing

This phase includes the processes of comment and
white space removal and source code standardization.
In this step all the files are scanned for the removal of
comments, whitespaces. The final step is re-structuring

of the code into a standard form which is important for
establishing clone fragments similarity [6]. These steps
help in identification of the cloned methods thus
yielding a significant gain in the recall. Figure 2
illustrates the comment and white space removal
and statement standardization for pre-processing
phase.

4.2. Template Conversion

This Template conversion converts the original source
code into a new form having a uniform notation for the
permitted equivalent constructs between the clone
pairs of same type. In this tool we have employed
variant part for the purrosc. of detection of type-2,
type-3 and type-4 clonss.

4.2.1. Templute co.vevsion for Type-1 and Type-2

For type .2 as ner the definition of literature the
functior :dentifiers, variable names, types etc., are the
only. allov.ad difference in functions. Hence to
maim. e the differences between the code fragments
due @ tie editing activities of the programmer we
2ring-out a uniforn.intermediate representation of the
source codr. Tigire 3 shows a sample template
conversion far.ypel and type2.

punlic c*2tic void main(String args[]) { DAT
inc23b,c; FUNCT()
ZJzanner in = new Scanner(System.in); DAT X;
a = in.nextInt(); DAT X;
b = in.nextInt(); DAT X;
¢ = in.nextInt(); | N SCAN;
if((a>b)&&(a>c)) |: SCAN;
{ —1f SCAN;
System.out.printin("A is SELECTION;
Greater"+a); CONDITION;
} PRINT;
elseif(b>a&&b>c) SELECTION;
System.out.printin("B is CONDITION;
largest."+b); SELECTION;
else(c>a&&c>h) CONDITION;
System.out.printIn("C is PRINT;

Figure 3. Template Conversion for type 1 and type 2

4.2.2. Template conversion for Type-1 and Type-2

In type-3 and type-4 clone detection, various
constructs like iterations and branches may also change
between clone methods. A slightly different form of
representation is needed to be generated. Thus the
following representations help in generalizing the
various deviations and constructs and in identifying the
various types of cloned methods.

o lterative equivalence: The control looping structures
are for, while and do while. In looping statements,
the three patterns present in looping are
initialization, condition and increment/decrement
are separated and they are printed each in separate
line. The common template form iteration is used.
Both open braces and close braces are neglected in

printing due to the change in order and nested
statements in the source code.

Table 2. Type of variants among the source code patterns

Possible
Name of the variations in Proposed
S.No the source
pattern template form
code
presentation
for iteration
Iterative - <initial>
1 : while L
equivalence : <condition>
do-while)
<incre/decre>
Conditional it selection
2 . else L
equivalence . <condition>
else-if
Input system.in .
- . - < >
3 equivalence |input.readline read <variable
4 Qutput system.out | write <variable>
equivalence
int Multlp!e
declaration
char . -
float To Slngle_llne
declaration
. double
5 Dec_laratlon string Ex_ample
equivalence Example :gtx
int x,y,z Inty
int z
charc,s
charc
chars
Braces are
6 Braces {} removed in the
code

o Conditional equivalence: The conditional structures
are if, else and else if. In these nested statements, the
conditions are separately printed in new line
following the template form selection. The
operations are split separately and rewritten iriezcr
new line.

e Input equivalence: The input statemerts ore
system.in, input.readline, etc. In thesc. st7iemcnts,
the variable alone will follow the temg'ate form
read. For the multiple inputs whicn are given in a
single input statement are separzialy br.nted in each
line.

o Output equivalence: Tho. octout statements are
system.out, etc. In thce2 [tatements, the output
variables alone arz=nriateafollowing the template
form write. Th: priri: satements which are just
printing any com.ment, or statements are neglected.
Also the multiple outputs which are printed in a
single print statement are separately printed in each
line.

e Declaration equivalence: The declarations
statements starts with keywords such as char,
int, long int, double, float, string, etc. In this
case, multiple declarations in a single
statement are split and reprinted in each line as
a single declaration statement. The table 2
shows the conversion of multiple declarations
into single declaration.

4.3. Method Detection

The standard form of source code is scanned for
detecting various methods by adopting an ‘island-
driven parsing’[24] approach and the method
definitions are extracted and collected by means of a
hand-coded parser and saved for further reference.
The end positions of the method and the total no. of
lines in each method are also noted.

4.4. Metrics Computation

A set of 12 count metrics are proposed for the
detection of these cloned methods. Metric sets are
proposed for each type of cloned methods based on the
necessity. They are as shown in the Table 3.

Table 3. Metricsap,.'ied to methods

S.No M _trics
1 [Mu.ofines

‘No.1 Arguments

No. of Local Variables

Mlw(N

No. of function Calls

No. of conditional statements

No. of iteration statements

Nu. of Iriput Statements
N¢. or Output Statements

6
7 N2, ¢f Return Statements
8

7)

}_‘O 0. of Assignments from Function Calls
11 [No. of Selection Statements

|r 12 |No. of Assignment Statements

Apart from the above 12 count metrics 4 more

mietrics as shown in equations 1 to 4 are also used. The
features examined for these metric computations are,
Global and local variables defined or used, Functions
called, Files accessed, 1/0 operations and defined/used
parameters passed by reference and by value.
Let S be a code fragment. The description of the four
metrics used is given below. A detailed description is
given in [38-40]. Note that these metrics are computed
compositionally from statements, to functions and
methods.

13. S COMPLEXITY(s) = FAN OUT(s) Q)

Where FAN OUT(s) is the number of individual
function calls made within s.

14. D COMPLEXITY(5)=GLOBALS(S)/(FAN OUT(s)+1) (2)

Where GLOBALS(s) is the number of individual
declarations of global variables used or updated within
s. A global variable is a variable which is not declared
in the code fragment s.

15. MCCABE(s) = 1 +d, (©))

where d is the number of control decision statements in

s.
p1*VARSUSEDANDSET(s)+
p2*GLOBALVARSSET(s)+

16. ALBRECHT(s)=" p3* USER INPUT(s) 4)

p4* FILE INPUT(s)

Where VARSUSEDANDSET(s) is the number of data
elements set and used in the statement s,
GLOBALVARSSET(s) is the number of global data
elements set in the statement s,

USERINPUT(s) is the number of read operations in
statement s,

FILEINPUT(s) is the number of files accessed for
reading in s.

The factors pl, .., p4, are weight factors. The values
chosenare pl =5, p2=4, p3=4and p4 =7. The
values are chosen as given in the literature [1].

The computed metric’s values for each method are
stored for comparison and extraction processes. For
type-1, type-2 and type-4 we pose a constraint that a
cloned method pair must have an identical set of
metric’s values. Thus the database records containing
identical metric’s values are short-listed for the type-1
and type-2 clone detection. The metric’s are computed
for each of the methods and are compared to be short-
listed by the formulas. Table 1 gives the list of metrics
used for the detection of clones.

4.5. Clone Detection

With the short-listed set of methods, a textua
comparison of the method pairs in the formatted and
normalized code is done to identify the exactness of
the extracted pairs. The detection method used for the
identification of the clone types are tabulated in Tabl~
4. The comparison in the template identifies type-1
cloned method along with type-2 cloned methods.. ‘50
they need to be listed separately. For this reasen
textual comparison with original source ceaa 1o mede
to identify the differences in the parameteiz

Table 4. Criteria for Clones Type dztaction.

Standardized Source '+ T npl: te
Clone Code Code
Type Metrics Textoal Template
Comparison|Col. »aris |Comparison

Typel Same ~San -
_ Diffe.2nce in
Type 2 Sar arameters Same
Ralge 1>= = Range 2>=
ypesl e L - 85%
Type 4 Same | No match Same

Fortype -3 clone detection, Range values are
calculated. Rangel is the ratio of the actual metric
value to the Average metric values in the methods.

i.e.,
range1= Actualmetricvalueofamethod *100 (5)
Averagemetricvaluesofthemethods

If any method having more than 90% value for rangel,
they are short-listed under the possibilities for type-3
method clones. Then range2 is calculated as the ratio
of equal no of lines in a method to the total no of lines
in a method.

i.e.,

range2= [

No.ofsimilarline sin amethod *100 (6)
Tota In o.ofline sin amethod

The methods having more than 85% values of range2
in template methods are declared as type-3 clones.

For type-4, first the two considered methods are taken
and their metric values are calculated. If the two
methods are having all its metrics values equal then
they are compared with the template methods. If they
are also the same then the textual comparison of the
source code is checked. If they are completely different
then they are categorized under Type-4.

4.6. Post-processing

The results of the coc= ciune detection are given as
clone pairs and cloin ciusters. The identified clone
methods called. ~“potential clone pairs”, are then
clustered separate'y for each type and the clustered
separaely for each type and the clusters are uniquely
numbcored. The association of similar pairs into a
singi> g.nup called a cluster or a class. Each clone
cluster may be cierined as a unique set of methods that
a'e cimilar withia themselves. These clone pairs and
clusters'are “tored each in a text file separately.

5. Exnesiment and Results

n thic-experiment we have applied CloneManager to
find- function clones in a number of open source
s, stems. We have then used a set of metrics to analyze
the results. We manually verify all detected clones and
provide a complete catalogue of different clones in a
variety of formats. This section introduces the systems
we have studied and the metrics used, including a brief
overview of our definition and methodology for
manual verification of the detected clones.

5.1. Experimental Setup and Datasets

The proposed method is implemented and
experimented with seven Java Projects. Table 3 lists a
statistical overview of open source projects which are
taken for the performance analysis of our
CloneManager tool. We have only considered .Java
files in the calculations. All clones detected in this
study were validated by hand.

In Table 5, the second column is the list of open source
project names as input project. The third column is the
no. of files. The fourth column is the no. of lines in the
source code in thousands. The last column is the no. of
methods in each project.

Table 5. Projects chosen as dataset for CloneManager

S.No |Input projects #files LOC in K [# methods
1 Eclipse-ant 161 35 1754

2 EIRC 54 11 588

3 Java Netbeans-Javadoc |97 14 972

4 Eclipse-jdtcore 582 148 7383

5 JHotDraw 5.4b1 233 40 2399
6 Spule 50 13 420
7 J2sdk-swing 414 204 10971

The effectiveness of clone detection by any tool is
basically measured by two key parameters namely,

e Recall: Fraction of actual clones identified as
candidates

e Precision: Fraction of candidates that are actually
clones

5.2. Results

In Table 6, the third column is the clone type-1, which
has the no. of clones detected and the no. of clone
clusters. Column 4, 5 and 6 has the same set of data for
type 2, 3 and 4 respectively.

From the Table 6 results we observed that J2sdk-swing
with only 204,000 of lines have 27559 clones in total.
This shows that the no. lines are not directly
propositional to the no. of clones in the code.

We can notice that there is significantly more function
cloning in our open source Java. On average, about
15% of the methods in open source Java programs are
type-1 clones—those with no changes at all (except
changes in formatting, whitespace and comments).
After detecting clones we noticed this in large part due
to the large number of small accessor and iterator
methods in Java programs.

When we plot the percentage of type-1 clones, we can
see that Java show similar percentages of clones for
similar clone sizes. While it is difficult to provide the
exact statistics for the types of smaller methods furian
the systems, we manually examined the small cloiias of
the systems and found that there are in~facue.meny
accessor methods in Java systems.

It is interesting to notice that most sysiams have
significantly fewer clone classes t'iar> clone pairs,
indicating the fact that there s maiy pairs of
functions in the systems that are _imiar to each other
with higher numbers for (ava systems. It is also
interesting to see that whiic.avrage number of clone
pairs per clone class-icemcre or less consistent for Java
systems for differe/it clon > types.

5.3. Evaluation of CloneManager tool with
Parameters

In comparison with a reference set obtained from
the standard set of results gathered from the other
detection tools the precision (PREC) and recall
(REC) of the tool for all 4 type of clones has been
estimated as in Tables 7,8, 9 and 10.

The table 7 shows the precision and recall of
typel clones for all the projects. The column 2
holds [A] the number of actual clones detected
for all the datasets. The Column 3 holds [D] the
number of detected <clones by our tool
CloneManager. The column 5 holds [C] the

number of correctly detected clones by our tool.
These values are used to calculate the two
parameters precision and recall for evaluation.
The formula to calculate Precision=[C]/[D]*100
and Recall=[C]/[A]*100.

From the above calculated values for precision and
recall as shown in Figures 4 and 5, we come to know
that our system shows high values in precision and
recall. Thus our tool proves to provide high in
precision and recall, which are the best parameters for
the evaluation of clone detection tools. Finally, we are
able to get results for the J2sdk-swing system also
which is larger in size. This proves that our system is
also scalable.

Table 6. No. of detected cinea.aia clone clusters for all the
datasets.

S. Projects _T‘|J€Zi.r |e-'_ N %fone o e(;:I”one o e(_:‘Ilone
No Clonc o~ sters|©'2S| clusters| "8 | Clusters|©'O™S| Clusters
1 | eclipse | 363 | 2 |372| 96 |42 | 119 | 0 | 4

2| EIRC 117 | 35 [119 | 35 | 149 | 47 | 6 3
et ns| 193 | 80 | 199 | 83 | 304 | 110 | 8 3

JL"ad(t\

I_A_ EIE'LS; 14274 320, | 5573 | 587 |4378| 660 | 15 | 7
|5 JH;_Z'?LT egiL 107 | 299 | 142 | 508 | 208 | 10 | 4

6] sule 6o 11 | 69 | 14 | 113 | 19 | 4 2

7 szg 8.15| 516 |8205| 558 [11209| 843 | 30 | 14

Table 7 Precision and recall of type-1 clones for all the projects.

Actual Detected Correctly
Proiect Clones Clones Detected | Precision |Recall
) [A] D] Clones % %
_ [C]
Belipse 580 | 374 363 97 95
ant
EIRC | 124 117 117 100 94
Java
N?g’_ea 196 | 205 193 94 98
Javadoc
Eclipse1 1503 | 1585 | 1427) 89
jdtcore
JHotDr
aw 303 296 291 98 96
5.4b1
Spule 61 60 60 100 98

Table 8. Precision and recall of type-2 clones for all the projects.

/Actual |Detected Correctly

Project [Clones [Clones Detected |Precision |Recall

Clones (% %0
Ao

Eclipselyyg lazs laze 100 95

ant

EIRC [161 [152 [149 08 92

Java

nN;tbea 304 (330 (304 92 100

Javadoc

Eclipse-yacs 378 |a37s |100 90

dtcore

JHotDr

aw 643|629 [598 95 93

5.4b1

Spule [126 [113 |113 100 39

J2sdk-

swing 12052 (12737

11209

88

93

Table 9. Precision and recall of type-3 clones for all the projects

Correctly
. Actual Detected Detected |Precision |Recall

Project |Clones |Clones

Clones (% %

A D1 g

Eclipsed,y 1o o 100 100
ant
EIRC |6 6 6 100 100
Java
Netbea |q 8 8 100 g8
ns-
Javadoc
Eclipse-l;; 17 15 88 88
dtcore
JHotDr
aw 11 11 10 90 90
5.4b1
Spule |4 4 4 100 100
Jasdi- a1y 20 92 95
swing

Table 10. Precision and recall of type-4 clones for all the projects

Correctly
. Actual |Detected Detected |Precision |Recall
Project |Clones |Clones
Clones (% %
AP g
f:t"pse'sw 422 372 88 08
EIRC |126 132 119 90 94
Java
r’:'se_tbea 207 199 (199 100 96
Javadoc
Eclipse-ig57 |segs 5573 |98 92
dtcore
JHotDr
aw 321 299 299 100 93
5.4b1
Spule |71 73 69 94 96
100
95 il B
gu - OType 1
BType 2
85 H DType 3
DTyped
80
& J o o
o o ﬁ‘y © 3
& -tv
@“@ ¥

Figure 4. Precision in % for all the projects

100 +
95 —
90
85
80
& S P @
&Q@ & 551’3&:& o ‘:\ ‘:@ﬁ_ﬁ’?
@‘ S
&
9§

aType 1

mTypel

aType3

aTyped

Figure 5. Recall in % for all the projects

5.4. Comparison with existing tools

The first tool considered for analysis is the CLAN
clone detection with metrics based clone detection
technique developed by Merlo [18] with the method-
level granularity. The second is NICAD [22], a parser-
based, language specific, lightweight approach using
simple text -line comparison which finds functional
clones with the aid of TXL. Even though there are
number of tools developed for clone detection, we
chose only these two existing tools because they detect
the functional clones as our CloneManager tool does.

In case of Eclipse-ant we have obtained 1171
clone pairs for type 1.2, 3 altogether using our
standardization and norm.'ization techniques while
Merlo has obtained onlv 2R “iatch clone fragments.
Moreover we have aic9 classified the clones as clone
clusters and deecte ! tii2 type 4 clones. The results
obtained by ti.2se (00ls are computed as in the Table
11. NICAD havii.a obtained 1154 of clone fragments.

Table 11. Clo. = Fragments and Clone Clusters for Eclipse-ant

TYPE !CLAN Nicad | CloneManger
CF |CF|CC]| CF CC
Tpr‘T 20 36392 | 363 | 92

fype2 (54 |365| 94 | 372 | 9%
| nen | 24 |426|119] 426 | 119
|_ ype4d - -l - 10 4
| Total | 88 Ju154[305| 1171 311

N cad tool did not classify the clones types 1,2 or 3
o> specified in the literature. Instead of that, the tool
fixed some threshold value. If the threshold value is
0.0 then exact matches (type-1) and it starts matches
with threshold value 0.10, 0.20, 0.30. It means 10%,
20%, 30% of dissimilarity in the clones. It is able to
detect near-missed clones (type-3) but fails to detect
type-2 clones. We have compared the results of all the
projects with these two existing tools like weltab.

Table 12. Comparison of run-time with NICAD

Proiects NICAD in |CloneManager
) minutes in minutes
Eclipse-
ant 157 1.35
Java
Netbeans| 0.42 0.38
-Javadoc
Eclipse-| 17 43 16.02
jdtcore
JHotDra
W 5.4b1 2.48 2.05
J2sdk- | a5 54 30.37
swing

From the Table 12 we compared the run-time of our
with the NICAD tool. Second and third column shows
the results for time taken by NICAD in minutes and by
our tool CloneManager respectively. It is easier to
notice from the table that the time taken by our tool is

lesser than NICAD. Thus our tool proves to have good
time complexity.

Table 13 shows the comparison of the precision and
recall parameters of the tool CLAN with our tool
CloneManager. We have taken only the projects which
have precision and recall data from the standard bench
bellon et al. Moreover, the data was available for type-
1, 2 and 3 alone. From the table we observed that our
tool is very high in precision and recall.

Table 13. Comparison of the tool CLAN with the tool
CloneManager

CLAN CloneManager

Projects | Precision
%
T1{T2|T3|TL|{T2|T3|T1| T2 | T3 [T1|T2|T3

11/9)|0|5|20({ 0|97 88 [100|95|98|95

Recall % | Precision % | Recall %

Eclipse-
ant
Java
Netbeans-{ 7 | 6 | 6 |33 9 [13|94|100| 92 |98]|96|100
Javadoc
Eclipse-
jdtcore
J2sdk-
swing

414108]4|53{12|90| 98 [100|89|92|90

7(7102(69(25|1(99| 92| 88 |92|94|93

6. Conclusions

In this paper we have proposed a light-weig: *
technique to detect method-level clones for both
textual similarity and functional similarity types with
the computation of metrics combined with simple
textual analysis technique. We could improve the
precision and reducing the total comparison cost b,
avoiding the exponential rate of comparison by usira
the metrics. Since the string matching/tex:al
comparison is performed over the short-hated
candidates, a higher amount of reca'l c¢ouid be
obtained. The early experiments provathat this
method can do atleast as well as the existing systems in
finding and classifying the function clares.in Java.

As a future work we have .nlarned. 1 enhance the
technique for web static ©xages. Secondly, we also
planned to enhance the tool 1.* cisne modification by
using the refactoring t<chiique. Finally, we have
planned to detect the cicnec.in incremental process for
next revision of prciects.

References

[1] Bellon.S., “Detection of software clones — tool
comparison experiment”,
http://www.bauhaus-stuttgart.de/clones, 20009.

[2] Bellon.S, Koschke.R, Antoniol.G, Krinke.J, and
Merlo.E, “Comparison and Evaluation of Clone
Detection Tools IEEE Transactions on
Software Engineering, Vol. 33, no.9, pp. 577-
591, September 2007.

[3] Bettenburg.N, Shang.W., Ibrahim.M., Adams. B.,
Zou.Y., Hassan.E., “An empirical study on
inconsistent changes to code clones at the release

level. Science of Computer Programming, vol.77,
pp. 760-776, 2012.

[4] Cataldo.M, Mockus.A, Roberts.A, Herbsleb.D,
“Software Dependencies, Work Dependencies
and Their Impact on Failure,” IEEE Transactions
on Software Engineering, vol. 35, no. 6, pp. 864-
878, November/December 2009.

[5] Demeyer.S., Ducasse.S. and Nierstrasz.O.,
“Object-Oriented Reengineering Patterns”,
Morgan Kaufmann and DPunkt, 2002.

[6] Ducasse.S., Nierstrasz.O. and Rieger.M., “On the
effectiveness of clone detection by string
matching”, Journal on Software Maintenance
and Evolution, vol. 12, no.1, January 2006.

[7] Evans.S. , Fraser.\W.: ,"Ma.F., “Clone Detection
via Structural /Absuaction”, Software Quality
Journal,Vol. 27, :n. 5U9-330, 20009.

[8] Evans. V. and \’raser. C., “Clone Detection via
Structuraiabstraction” Technical Report MSR-
TR2005-10-~, Microsoft Research, Redmond,
WA, 2005.

[9). Fowler. M., Refactoring: improving the design of
axicting code, Addison Wesley, 1999.

110] G bel, M{ lJiang, L. and Su, Z., “Scalable
Detecticn. . of Semantic Clones”, 30th
Inernatior al Conference on Software
tagn ~ering, ICSE 2008, pp. 321-330, 2008.

[11¥Caairey.W. and Zou.L., “Using origin analysis to
dewcct merging and splitting of source code
entities” IEEE Transactions on Software
Engineering, 31(2):166-181, 2005.

[L2] Greenan. K., “Method-Level Code Clone
Detection on Transformed Abstract Syntax Trees
using Sequence Matching Algorithms”, Student
Report, University of California - Santa
Cruz,2005.

[13] Hariharan. S., “Automatic Plagiarism Detection
Using Similarity Analysis”, The International
Arab Journal of Information Technology, Vol. 9,
No. 4, July 2012. Pp. no. 322-326.

[14] Kamiya.T., Kusumoto.S. and Inoue.K.,
“CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale
Source Code” IEEE Computer Society
Transactions on Software Engineering, vol. 28,
no. 7, pp. 654-670, 2002.

[15] Kapser.C and Godfrey.W. “Cloning considered
harmful: Patterns of cloning in software”.
Empirical Software Engineering, vol. 13, no. 6,
pp. 645-692, 2008.

[16] Kapser.J and Godfrey.W , “Supporting the
analysis of clones in software systems: Research
articles,” Journal of Software Maintenance:
Research and Practice, vol. 18, no. 2, pp. 61-82,
2006.

[17] Liu. C., Chen.C., Hanl. and Yu.P., “GPLAG:
Detection of Software Plagiarism by Program
Dependence Graph Analysis”, 12th ACM

SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD
2006, pp. 872-881, 2006.

[18] Mayland.J., Leblanc.C. and Merlo.E.,
“Experiment on the Automatic Detection of
Function Clones in a Software System Using
Metrics,” International Conference of Software
Engineering 96, pp. 244- 253,1996.

[19] Nguyen.H, Nguyen.T, Pham. N.H., Al-Kofahi.J,
Nguyen. T.N, “Clone Management for Evolving
Software” IEEE Transactions on Software
Engineering, 2011.

[20] PateJd., Tairas. R. and Kraft.N.,, “Clone
Evolution: a Systematic Review”, Journal of
Software Maintenance: Research and Practice,
Vol. 25, no.3, pp.261-283, 2013.

[21] Petersen, H., “Clone detection in Matlab
Simulink models”, Master’s thesis, Tech. Univ.
Denmark, 2012.

[22] Roy.C. and Cordy.J.,, "NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code
Normalization,” The 16th IEEE International
Conference on Program Comprehension, pp.172-
181, 2008.

[23] Roy.C., Cordy.J , Koschke.R , “Comparison an.
evaluation of code clone detection techniques
and tools: A qualitative approach” Science of
Computer Programming, Vol.74, no.7, pp. 470-
495, 2009.

[24] Satta.G. and Stock.O., “Bidirectional context-free
grammar parsing for natural language process™
Artificial Intelligence, vol.69, pp. 123-164, 19.4.

[25] Thummalapenta. S, Cerulo.L, Aversano L;.anu Di

Penta.M, “An empirical stidy 'onwihe
maintenance of source code clones, cmpirical
Software Engineering, vol.15.+10.1, pp.1-34,

2009.

[26] Zibran. M. and Roy. C.;*“Cunflict-aware Optimal
Scheduling of Code" Zlu e Refactoring”, IET
Software, Vol. 7, no.2, p.»167 — 186, 2013.

Egambaram Kodhai is currently
working as Associate Professor in
the Department of Computer
Science and Engineering at Sri
Manakula Vinayagar Engineering
§ College affiliated to Pondicherry
3 ymee 4 University, Puducherry, India. She
has completed her M.C.A from Cauvery College for
women, Trichy affiliated to Bharathidasan University,
Trichy and M.E. in Computer Science and Engineering
from Vinayaka Mission’s Kirupananda Variyar
Engineering College, Salem. She has more than 15
years of experience in teaching in various engineering
colleges. Her Research «interests include Software
Clones. She has published "more than 40 papers in
international conferenca aiiu “ournals.

Se'vadurai Kanmani received her
BE and ME degree in Computer
Science and Engineering from
Bharathiar University and PhD
from Anna University, Chennai.
| She has been the faculty of the
0 Department of Computer Science
200 Englnef iny,. Pondicherry Engineering College
since 1992. She has published about 150 papers in
internc*iori.!. conferences and journals. Her research
intercats ware software engineering and data mining
techriques. She is a member of Computer Society of
wdie: ISTE and Institute of engineers, India.

http://www.cis.uab.edu/tairasr/
http://steel.cs.ua.edu/%7Enkraft/

	Egambaram Kodhai1 and Selvadurai Kanmani2

