
Efficient Segmentation of Arabic Handwritten
Characters Using Structural Features

Mazen Bahashwan, Syed Abu-Bakar, and Usman Sheikh
Department of Electronics and Computer Engineering, Universiti Teknologi Malaysia, Malaysia

Abstract: Handwriting recognition is an important field as it has many practical applications such as for bank cheque
processing, post office address processing and zip code recognition. Most applications are developed exclusively for Latin
characters. However, despite tremendous effort by researchers in the past three decades, Arabic handwriting recognition
accuracy remains low because of low efficiency in determining the correct segmentation points. This paper presents an
approach for character segmentation of unconstrained handwritten Arabic words. First, we seek all possible character
segmentation points based on structural features. Next, we develop a novel technique to create several paths for each possible
segmentation point. These paths are used in differentiating between different types of segmentation points. Finally, we use
heuristic rules and neural networks, utilizing the information related to segmentation points, to select the correct segmentation
points. For comparison, we applied our method on IESK-arDB and IFN/ENIT databases, in which we achieved a success rate
of 91.6% and 90.5% respectively.

Keywords: Arabic handwriting, character segmentation and structural features.

Received November 17, 2014; accepted September 10, 2015

1. Introduction
Automatic handwriting recognition has many
applications, such as for bank cheque processing,
address and zip code recognition on envelopes, and
handwriting analysis [9, 13, 25]. As a result, studies
had been conducted on handwriting recognition for
many languages such as English, Chinese, Japanese,
and Arabic, among others [4, 21]. This paper focuses
on Arabic text recognition. The Arabic language is an
official language in over 25 countries and is spoken by
approximately 234 million people [22]. Arabic
characters are similar to characters in other languages
such as Jawi, Farsi, Urdu, and Kardi [8, 24].
Approximately 7 to 10 million manuscripts were
written in Arabic script between the seventh and
fourteenth centuries [17]. Hence, a high-performance
offline Arabic script recognition is needed for certain
tasks, such as preservation of old manuscripts.

A large gap exists between the research on Latin
script and the research on Arabic script. Among the
reasons for this gap are lack of adequate support in
terms of financial funding, coordination, and other
utilities, such as comprehensive Arabic text databases
and dictionaries [14]. This situation could also be
attributed to difficulties associated with characteristics
of Arabic script, which will be described in Section 3.

The recognition of unconstrained cursive Arabic
handwriting is still low because of poor character
segmentation. This finding is an indication that
segmentation plays a vital role in the character
recognition process [2, 18].

Segmentation approaches can be divided into two
categories: holistic approach and analytical approach
[27]. Systems that are based on the holistic approach
(also called as global approach) try to recognize entire
words without splitting them into individual characters.
The disadvantage of the holistic approach is that it
needs a large dictionary (lexicon), which, in turn,
makes the searching process costly [1]. On the other
hand, systems based on the analytical approach try to
segment a word into characters or graphemes (part of
the character) and does not require the use of a large
dictionary. In this work, the analytical approach is
adopted. The technique consists of three stages:
preprocessing, generating candidate segmentation
points, refining and verifying all candidate points.

This paper is organized into six sections. Section 2
explains some works related to Arabic character
segmentation. Section 3 illustrates the characteristics
of Arabic language scripts. Section 4 describes our
proposed method to generate the segmentation points,
segmentation paths and the process of refining and
verifying the segmentation points. Section 5 presents
the results and discussion. Finally, we conclude our
paper in Section 6 and suggest several directions for
future works.

2. Related Works
For the last few decades, an increasing number of
empirical studies have been conducted on handwriting
recognition. However, findings on recognizing
unconstrained cursive handwriting remain limited. One
of the major reasons for this lack of findings can be

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

attributed to poor character segmentation [18]. The
suitable features for character segmentation can be in
the form of segmentation points such as local minima
[5], branch points, cross points, loop points [11], or
pen thickness[20]. These features may not be detected
in all segmentation points because some of them might
be lost during the writing or the preprocessing stage.

Bouafif, et al. [7] used Harris corner method to
detect possible segmentation points in words, and only
corners that lie between 5 pixels above and below the
baseline were taken as valid segmentation points.
Obviously, many valid segmentation points that were
outside this range were ignored. The main
disadvantage of this technique is its high dependency
on the baseline.

 Elnagar and Bentrcia [10] used six agents and a
baseline for detecting segmentation points. They
mentioned some limitations of their algorithm, such as
missing segmentation points due to weakness in agents
and dependency on the endpoints, branch points, and
cross points as features. Moreover, the detection of the
agents was error prone because of its high dependency
on the accuracy of the baseline detection.

Al-Hamad introduced an algorithm for
segmentation and validation of Arabic handwritten
words [3]. His method involved three major steps.
First, segmentation points are obtained from a
modified vertical histogram of a thinned word–image.
Then, the initial segmentation points are validated by
using a neural-based segmentation point validation
scheme. Finally, the fusion confidence value is
obtained to validate segmentation points. According to
Al-Hamad [2], the modified vertical histogram has a
limited ability to identify some characters, such as the
character baa (ب) and similar character shapes.
Moreover, such characters are not detected as
characters because they look like ligatures in the
histogram. The main limitation is the presence of
numerous incorrect local minima and maxima, which
often result in a large number of incorrect ligatures.

Elzobi, et al. [11] used a histogram to detect
possible segmentation points and applied heuristic
rules to refine the result. They reported the occurrence
of missed segmentation points because of the
overlapping characters and over-segmentation points in
characters such as seen (س(and sheen (ش). In
addition, the rules cause missed and over-segmentation
points because of the dependency on cross points,
branches, and loop points.

Thus, we propose a new segmentation method
based on using a corner detector, branch points, and
cross points. We also propose a novel verification
technique of the segmentation points using heuristic
rules and neural network.

3. Characteristics of Arabic script
The Arabic script consists of 28 characters and is
written from right to left. Each character has at least
two to four shapes that depend on the position of the
character within the word. In addition, a single word
may consist of one or more than one sub words. This is
because the following characters cannot be joined
 from the left side. More than half of the (و,ز,ر,ذ,د,ا)
characters contain one to three dots. These dots may be
at the top, middle, or bottom of the character. These
dots distinguish between characters that may otherwise
have the same shape. Usually, the characters are
connected horizontally, but in some cases, characters
may be connected vertically. Overlapping normally
occurs between the sub-words or between the sub-
word and characters in the same word, which are
mostly found in the vertical direction.

4. Proposed Method
The general block diagram of the proposed method is
shown in Figure 1. Initially, an image will be loaded
into the system followed by some operations at the
preprocessing stage before the segmentation stage is
initiated.

Binarization Filtering &
Smoothing Thinning

Identifying word
components

Removing
overlapping

Remove incorrect segmentation points by
heuristic rules

Pre-processing Stage

Detect possible
segmentation points:

• Branch points
• Cross points
• Corner points

Segmentation Stage

Feature extraction for
corner points,branch

and cross points

Classify the branch and
cross point into correct or

incorrect segmentation
points by neural network

Classify the corner
point into correct or

incorrect segmentation
points by neural network

Figure 1. Block diagram of character segmentation.

4.1. Preprocessing
The operations applied in the preprocessing stage are
for general images. However, all the images in the
database we used, i.e., the IESK-arDB and IFN/ENIT
datasets, underwent binarization, smoothing, dilation
operation.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Generally, an Arabic word contains one or more
main components. The main component contains a
single character or some connected characters. More
than half of the characters in the Arabic script have a
secondary component such as a dot and hamza, and the
size of the secondary component is usually very small
compared with the main component and is quite far
from the center of the main component, as shown in
Figure 2. In this figure, the main component is
represented by a rectangular box, while the secondary
component is represented by an ellipse.

Baseline detection is a method that is used to
identify word components. The baseline corresponds to
a simple horizontal projection that contains the
maximum number of foreground pixel count. A box is
first drawn in each connected component, and then the
main connected component is intersected with the
baseline (as depicted in Figure 2).

Figure 2. Arabic word that contains two main components and two
secondary components with a baseline drawn.

Each secondary component is assigned to one main
component. If the secondary components are inside,
above, or below the main component without
overlapping, then they will be assigned to that main
component. In case of overlapping between two main
components, the distance will be measured depending
on the location of the secondary components.
According to this distance, the secondary components
are assigned to the nearest main components [11].

Finally, we apply thinning operation based on the
approach used by Zhang and Suen [28]. This method
has been widely used in previous researches [15, 16,
19]. Figure 3 shows an example of the thinning
operation.

a) original binary image. b) result after the thinning

process.

Figure 3. An example of Zhang and Suen thinning algorithm.

4.2. Candidate Segmentation Points
Usually, the connection point between two characters
is considered a branch point or a cross point. However,
the connection point (branch point or cross point)
might not be present due to the writing style or as a
result of the preprocessing operation. The missed

connection point can still be captured using a corner
detector as shown in Figure 4. Therefore, to avoid
missing the connection point, our approach uses the
corner points as the candidate segmentation points.

a) due to preprocessing stage b) due to writing style; these

missing points are indicated
with small squares.

Figure 4. Missing segmentation points.

In our work, we adopted the contour-based detector
method with the chord-to-point distance accumulation
(CPDA), which is found in [6] to detect the corners as
candidate segmentation points. CPDA discrete
curvature estimation is less sensitive to local variations
and noise on the curve and it does not use any
derivatives. We generate short curves by removing
branch points and the loop points from the thinned
word. We then apply the corner detector to each curve
separately.

To detect the corner in the curve using the CPDA
[6], the curve is first smoothened, and then three
chord-lengths (L1=10, L2=20, L3=30) are used to
estimate the curvature value at each point n in the
curve. The CPDA curvatures (h1(k), h2(k),h3(k)) that
correspond to the three chord lengths are then
computed by using Equation (1). The CPDA discrete
curvature hL(k) at the point K with the chord length L
is calculated by taking the summation of all
perpendicular distances from the point K to the chord
length at all possible chord length locations.

 () ()∑
−

+−=

=
1k

1Lkj
k,jL dkh (1)

Then, the CPDA discrete curvature for each chord
length is normalized by using Equation (2)

 ()
() 311

max
)(' ≤≤<<= j & nk for ,

h
kh

kh
j

j
j (2)

All these curvatures are then multiplied to produce a
single value, which is called the curvature product,
H(k), as given in Equation (3).

 () () () () nk1 for khkhkhkH jjj ≤≤= ,.. ''' (3)

The curvature product curve is then smoothened, and
the candidate corners are located by detecting the
maxima H(k). Finally, our proposed method adopts the
algorithm in [12] to measure the angle at each
candidate corner point by using two tangent lines.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

4.3. Construction of the Segmentation Path
In this study, we propose a segmentation path based
method to extract features which are related to
segmentation points. The proposed segmentation path
is a curve that starts from a point on the thinned word
to one of the three ends: either to the top boundary of
the image, bottom boundary of the image, or back to
the start point for a closed-loop path. Before creating a
path, a preprocessing step is applied on the background
of the image. This preprocessing step will change the
value of the background pixels based on some
conditions. We use four different values of base 2 (2n),
where n is an integer, to assign the background values.
These values have the following characteristics: 1)
summation of any two values from a set of four values
will always be different from the sum of the remaining
values; 2) summation of any three out of a set of four
values will always be different from the last remaining
value. These characteristics will ensure the creation of
a unique track path.

These four numbers are arranged in decreasing
order from the highest to the lowest with the following
labels: Pt, Pb, Pr, and Pl. The descending arrangement
from highest to lowest value is used to determine the
track path of either as top, bottom, right, or left,
respectively.

We then scan the image column by column from
top to bottom. During the scanning process, all
background pixels (255)1 are replaced by Pt until
foreground pixel (0) is reached or until the bottom of
the image is reached. This condition can be formulated
as follows;

Let AMxN be an image, and aij ϵ A denotes the pixel
value of row i and column j. The image is first scanned
from top to bottom in each column separately.

 ()

()








===

=

===

=

−−

−

2550255255

00

255255

,1,1

,1,1

jijiij

ij

jjiij

ij

a or a and a if

a if

a or Pta and a if Pt

a (4)

Then, the output image from the previous step is
scanned from the bottom to the top, and all pixels with
the value of 255 are replaced with Pb. The scan
continues until the foreground pixel (0) or Pt in the
image is reached. This can be described as follows:

()

()











===

=

=

===

=

++

=+

25502552

00

255255

,1,1

,,1

jijiij

ij

ij

jmijiij

ij

a or a & a if 55

Pta if Pt

a if

a or Pba & a if Pb

a (5)

The procedure is repeated from right to left, with
pixels with a value of 255 being replaced with Pr. This
condition is described as follows:

1 In this implementation, we use the value of 255 instead of 1 for
the binary image.

()
()














===

====

=

=

=

=

++

+++

25502552

255

00

1,1,

1,1,1,

jijiij

jijijiij

ij

ij

ij

ij

a or a & a if 55

 Pra ro Pba or Pta & a if Pr

Pta if Pt

a if

 Pba if Pb

a (6)

Finally, the image is scanned from left to right, with
pixels with a value of 255 being replaced with Pl until
the foreground pixel (0) is reached. This step is
expressed as follows:

()
()
















===

====

=

=

=

=

=

−−

−−−

 a or a & a if

 Pla or Pba or Pta & a if Pl

 Pr a if Pr

Pta if Pt

a if

 Pba if Pb

a

jijiij

jijijiij

ij

ij

ij

ij

ij

2550255255

255

00

1,1,

1,1,1,

 (7)

For easy explanation, the converted background pixels
are referred to as the “guiding pixels.”
Once the scanning procedures are done, the
background pixels will have either one of these
guiding pixel values (255, Pt, Pb, Pr, Pl), and they are
grouped into five classes that define their respective
direction path, as shown in Table 1.

Table 1. Path direction based on guiding pixel value

Background pixel value Path direction

Pt Top-bound

Pb Bottom-bound

Pr Right-bound

Pl Left-bound

255 Move with reference point

To find the starting point for each path, a 3x3
window is used with the candidate segmentation point
placed at its center. An anticlockwise scanning
mechanism is performed starting from the upper right
corner of the window. The scanning will continue until
all the guiding pixels that surround the foreground
pixels are grouped together. Depending on the type of
the segmentation point (i.e., corner point, branch point,
or cross point), two, three, or four groups can exist, as
shown in Figure 6.

 (a) (b) (c)

Figure 6. Dashed boxes represent groups in (a) corner point - 2
groups (b) branch point - 3 groups (c) cross point - 4 groups.

The starting point of the path for each group (Stp_grp)
will be the last guiding pixel before the foreground
pixel (reference point), with respect to the
anticlockwise scanning mechanism. Initially, the

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

reference point (Ref_grp) refers to the first foreground
pixel after the starting point in the anticlockwise
direction. An example for the branch point case is
shown in Figure 7.

 Group 1

Group 2

Group 3

Stp_grp_1

Stp_grp_2

Stp_grp_3Ref_grp_1

Ref_grp_3

Ref_grp_2

(a) (b)

(c)
Figure 7. An example of a branch point with its related reference
points and starting points; (a) Branch point – at the center of the
window, (b) number of available groups, and (c) location of the
respective start and reference points for tracing each path where
Stp_grp is the start point in the group and Ref_grp is the reference
point in the group.

We begin tracing in each path from the start point.
The next move is determined by checking the value of
the current pixel. If it is equal to one of these guiding
pixel values (Pt, Pb, Pr, Pl), then the path moves
according to the direction specified by these values
(refer to Table 1).Otherwise, if it is equal to 255, then
the path will move according to the reference point,
and the current reference point will be changed. The
reference point has four possible positions with respect
to the current path point, as shown in Figure 8. To
determine the next step for the path, the location of the
next reference point needs to be determined. First, the
starting scanning point (marked as x in Figure 8) needs
to be located. Equation 8 is used to determine the
initial scanning.

 ()
()refcpcpsc

refcpcpsc

xxyy

yyxx

−+=

−−=

 (8)

where xsc and ysc are the coordinates for the initial
scanning point, xcp and ycp are the coordinates of the
current path point, and xref and yref are the coordinates
of the current reference point. Here, we follow the
convention of the right-hand rule for the coordinates
system. Anticlockwise scanning will then begin from
this initial scanning point. During the scanning, several
cases may occur as follows:

• Case 1. If the next pixel encountered is one of the 4
guiding pixels, then the path will proceed as
indicated in Table 1, where it will eventually reach
either the top or the bottom of the image. In this
case, the path will be completed.

• Case 2. If the next pixel encountered is 255, then
the scan will proceed until it reaches the next black
pixel. In this case, this black pixel will become the

next reference point, and the pixel just before this
black pixel (in the scanning direction) becomes the
new current path point.

This process of searching for the current path point and
the current reference point will continue until either
case 1 above is met or the path returns to the initial
scanning path (i.e., making a closed loop).

Ref_grp_1

Ref_grp_3

Ref_grp_2
Current path

point

Reference
point

Current path
point

Reference
point

Current path
point

Reference
point

Current path
point

Reference
point

The supposed location of the new reference point

The starting point for the scan
Current point

path The last pixel of the path at that instant

Figure 8. An example of four possible locations of the reference
point with the current path point.

4.4. Feature Extraction
The segmentation paths, corner detection (CPDA),
binarized and thinned images produce useful
information which can be used as features for the
refinement and verification of candidate segmentation
points.
The features extracted from the corner points are listed
below:

• The curvature product and angle of each corner is
used as features.

• The thickness of the corresponding coordinate of
the corner point in the image before the thinning
process is also used as feature.

• For a given corner point located in between two
connected points (which may be a branch, corner,
cross or end point), the type of the two connected
points and their respective distance to the corner
point are used as features.

• The vertical distance from the baseline to a
candidate segmentation point is used as feature.

• The number of the secondary components in both
sides of the connected candidate segmentation point
is used as features.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

The features extracted from the branch and cross
points are listed below:

• The number of top-bound, bottom-bound and loop
paths at each candidate segmentation point are used
as features.

• The measured width between the two segmentation
paths moving in the same direction is used as
feature.

• The number of the foreground pixels located
between the two segmentation paths moving in the
same direction is used as feature.

• For a given candidate segmentation point located in
between two connected points (which may be a
branch, corner, cross or end point), the type of the
two connected points and their respective distance
to a given candidate segmentation point are used as
features.

• The vertical distance from the baseline to a
candidate segmentation point is used as feature.

• The number of the secondary components in both
sides of the connected candidate segmentation point
is used as features.

4.5. Refinement and Verification
We proposed to refine and verify the candidate
segmentation points by two steps; first refining
candidate segmentation points by using some heuristic
rules, secondly, we use neural networks to verify the
rest of candidate segmentation points, as explained in
the following subsections:

4.5.1. Segmentation Point Refinement by
Heuristic Rules

In order to reduce the consumption time for the
training process, heuristic rules are used to remove
candidate segmentation points which in practice cannot
be correct segmentation points. We apply five heuristic
rules based on empirical studies that cover the most
probable segmentation point scenarios. These rules are
given as follows:

• If a branch point has three paths and two of them are
closed-loop paths, then this branch point is removed
from the list of segmentation point candidates.

• If a segmentation point is located five pixels from
either end of the curves, then this segmentation
point is removed from the list of segmentation point
candidates.

• If a branch point has two bottom-bound paths and
one top-bound path, located next to a branch point
with a closed-loop path, and the distance between
them is less than five pixels and the x-coordinate of
the end point is equal to or less than the x-

coordinate of the branch point, then this branch
point is removed from the list of segmentation point
candidates.

• If two adjacent branch points have two top-bound
paths with no secondary component centroid
coordinate between them, and the number of pixels
between the two top-bound path points is less than
25 pixels, then the two branch points are removed
from the list of segmentation point candidates.

• If a corner point has curvature product value less
than 0.09 and angle value larger than 150o, then this
corner point is removed from the list of
segmentation point candidates.

4.5.2. Segmentation Point Verification using
Neural Networks

The nature of the corner point structure is different
from the branch and cross point due to the fact that
features extracted are not similar. Therefore, the
proposed method uses two parallel back-propagation
neural networks with log-sigmoid activation function
to verify the correct and incorrect segmentation points;
one neural network is used to verify the corner point
and another to verify the branch and cross points. The
neural networks’ input layer consist of features
extracted from the candidate segmentation points,
while the output layer represents the classified
segmentation point as correct or incorrect
segmentation point.

5. Results and Discussion
We tested our proposed segmentation approach on
1,200 word images obtained from the IESK-arDB and
IFN/ENIT databases [11, 23], whereby the words were
handwritten by different people. For the purpose of
comparison, three criteria, i.e., correct segmentation,
over-segmentation, and under-segmentation were
evaluated to measure the performance of the
segmentation technique.

Correct segmentation refers to points that divide the
two characters correctly. Over-segmentation refers to
unnecessary or excess points in segmenting two
characters, while under-segmentation refers to a
situation in which a missed correct segmentation point
exists between two characters. However, a notable
detail is that no unique position for correct
segmentation exists in Arabic characters. Therefore,
the results were validated by visual observation. As
seen from Table 2, our method significantly reduced
the under- and over-segmentation points, and the
correct segmentation accuracy has been improved
compared to other methods.

Table 2. Criteria for evaluating the segmentation rate (%)

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Authors Over-
segmentation %

Under-
segmentation %

Correct
segmentation % No. of words Database

Elzobi, et al. [11] 14.4 18.6 67 600 IESK-arDB

Xiu, et al. [26] 18.8 26.6 54.6 600 IESK-arDB
Al-Hamad and Abu-Zitar [3] 17.02% 4.60% 82.98 500 local database

Elnagar and Bentrcia [10] ≈13.7% 0.3% 86% 550 IFN/ENIT
Our method 8% 0.4% 91.6% 600 IESK-arDB database
Our method 8.9% 0.6% 90.5% 600 IFN/ENIT database

The construction of the segmentation path depends

on the values of the guiding pixels Pt, Pb, Pr, and Pl.
In our work, we use Pt =16, Pb =8, Pr=4, and Pl=2.
Figure 9(a) shows the result after constructing the
segmentation paths. As seen from the figure, some
segmentation points have paths that go to the top
boundary, bottom boundary, and a closed-loop path.
For example, the difference between the two
segmentation points (labels 8 and 9) is only in the
location of the closed loop path, i.e., either the closed
loop is located to the left or the right side of the
segmentation point. Some segmentation points (labels
3, 4, and 6) have only one path and two closed-loop
paths, and the difference in this case is the direction of
the path (either to the top or to the bottom).
Furthermore, a segmentation point (label 5) that has
three closed-loop paths exists. In addition, some
segmentation points (labels 7 and 10) have two top-
bound paths and one bottom-bound path. Finally, a
segmentation point (label 1) has two top-bound paths
and one bottom-bound path. The result of the proposed
method is shown in Figure 9 (b).

1
2
3

4
5

6

7 8 9 10

(a) Over-segmentation of points

(b) segmentation points after applying the proposed method.

* Segmentation points

 Path leading to top boundary

 Path leading to bottom boundary

 Path going in a closed loop path

 Candidate segmentation points

Figure 9. An example showing candidate segmentation points with
its paths Over-segmentation of points and segmentation points after
applying the proposed method.

 In addition, our method can handle different cases,
such as overlapping and cursively written words.

Figure 10 illustrates some of the correct word
segmentation, in which our proposed method can
detect the segmentation points in cases of overlapping
characters and cursively written words.

Figure 10. Segmentation of overlapping and cursively handwritten
words.

Our method is also capable of correctly detecting
the segmentation points for different writing styles
from different writers. Figure 11 shows some of the
results.

Figure 11. Segmentation of Arabic words written by five writers.

One of the strengths of our method is that it reduces
under-segmentation points, because our method can
detect valid segmentation points with a small curvature
as illustrated in Figure 12. In this figure, the method
[6] produced over-segmentation points in characters (ط
 and missed one segmentation point between (و,ن,
character (ش) and character (ن), because loops and the
curvature product (H(k)) (0.07) are less than the
threshold. Our method overcomes this limitation by
removing loop points and modifying the curve
extraction approach. Our approach manages to detect
the segmentation point between character (ش) and
character (ن) because the curvature product (H(k))
(0.98) is higher than the threshold value (0.09).

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

(d)(c)

(b)(a)

Figure 12. Results on corner point detection: (a) and (c) using our
proposed method , and (b) and (d) using Awrangjeb and Lu [6].
The small boxes in (a) and (c) indicate that the proposed method is
able to detect the proper corner point while the other method failed
to detect them as shown in (b) and (d).

Due to a similarity to another connected character in
terms of shape, over-segmentation points occur in
characters like Sad (ص). The proposed method is able
to remove the over-segmentation points by taking into
account secondary components such as dots, as shown
in Figure 13.

(a) (b)
Figure 13. Results on proper detection of segmentation point. (a)
shows detected segmentation points for the letter (ن) and (ص), (b)
shows the result after applying the proposed method. Note that the
segmentation point on the letter (ص) has been removed.

The main difference between the character seen (سـ)
and two or more connected characters lam (للل) is the
length of the spur and stem, respectively. The character
seen (س) consists of two or three small spurs, while the
connected character lam has two or three stems, as
shown in Figure 14(a). In our proposed method, we
measure the length of the spur and stem before
deciding the status of the segmentation points, as
shown in Figure 14(b).

(b)(a)
Figure 14. An example showing correct detection of segmentation
points. (a) shows all candidate segmentation points with
segmentation path in blue lines, (b) shows the result of
segmentation points after applying the proposed method.

Our method can also distinguish between the line
extension that belongs to the character and other

characters such as meem (Figure 15(a) shows the .(مـ
branch point with two bottom-bound paths and one
top-bound path. The proposed method can detect the
correct segmentation points, as shown in Figure 15(b),
by determining the direction of the line and the number
of pixels between them.

(b)(a)
Figure 15. An example showing proper segmentation points for
letter (م); (a) shows results of detected candidate segmentation
points with the segmentation path, (b) shows results after applying
the proposed method. Note that the proposed able to differentiate
proper segmentation points between the letter (م) and (ط).

Nevertheless, the proposed method would miss
some segmentation points in case the point does not
have the features of branch, cross, and corner points, as
shown in Figure 16. This issue can be solved by
studying the angles of those points.

Figure 16. Arabic words with missing segmentation points
(indicated by the box).

Likewise, our method still suffers from over-

segmentation points because it generates many corners
for cursive handwritten words, as shown in Figure 17.
To solve this problem, we can either add more rules or
extract new features to remove these unwanted points.

Figure 17 Arabic words with over-segmentation points due to
corners.

6. Conclusion and Future Works
This paper presents an offline Arabic handwriting
segmentation method based on structural techniques, in
which the segmentation points are categorized into
branch points, cross points, and corner points. This
paper introduces a method for generating all possible
segmentation points and a way of refining them. By
detecting the branch points and cross points as

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

segmentation points, the method divides the main
components into small curves to detect small curvature
corners as segmentation points. Finally, heuristic rules
and neural networks are applied to select the correct
segmentation points. The average accuracy of the
proposed method is 91.05%. For future work, we
suggest addressing issues such as establishing the
relationship between the secondary components and
segmentation points and using that in the refinement
and verification step to further improve the
segmentation point classification.

Acknowledgement
The authors would like to thank Universiti Teknologi
Malaysia (UTM) for the support in the research and
development of this work and the Ministry of Science,
Technology and Innovation, Malaysia (MOSTI),
(Science Fund Grant No. 01-01-06-SF1197,
R.J130000.7923.4S081).

References
[1] Abandah G. and Jamour F., "Recognizing

handwritten Arabic script through efficient
skeleton-based grapheme segmentation
algorithm," presented at the International
Conference on Intelligent Systems Design
and Applications (ISDA), 2010.

[2] Al-Hamad H., "Over-segmentation of
handwriting Arabic scripts using an
efficient heuristic technique," in Wavelet
Analysis and Pattern Recognition
(ICWAPR), 2012 International Conference
on, 2012, pp. 180-185.

[3] Al-Hamad H. and Abu-Zitar R.,
"Development of an efficient neural-based
segmentation technique for Arabic
handwriting recognition," Pattern
Recognition, vol. 43, pp. 2773-2798, 2010.

[4] Al-Jawfi R., "Handwriting Arabic
character recognition LeNet using neural
network," The International Arab Journal
of Information Technology, vol. 6, 2009.

[5] Alaei A., Nagabhushan P., and Pal U., "A
Baseline Dependent Approach for Persian
Handwritten Character Segmentation," in
2010 International Conference on Pattern
Recognition (ICPR),, 2010, pp. 1977-1980.

[6] Awrangjeb M. and Lu G., "Robust image
corner detection based on the chord-to-
point distance accumulation technique,"
Multimedia, IEEE Transactions on, vol.
10, pp. 1059-1072, 2008.

[7] Bouafif F., Maddouri S., and Ellouze N.,
"A hybrid method for three segmentation
level of handwritten Arabic script," the
international arab journal of information
technology, vol. 9, p. 10, 2012.

[8] Broumandnia A. and Shanbehzadeh J.,
"Fast Zernike wavelet moments for Farsi
character recognition," Image and Vision
Computing, vol. 25, pp. 717-726, 2007.

[9] Broumandnia A., Shanbehzadeh J., and
Rezakhah M., "Persian/arabic handwritten
word recognition using M-band packet
wavelet transform," Image and Vision
Computing, vol. 26, pp. 829-842, 2008.

[10] Elnagar A. and Bentrcia R., "A Multi-
Agent Approach to Arabic Handwritten
Text Segmentation," Journal of Intelligent
Learning Systems and Applications, vol. 4,
pp. 207-215, 2012.

[11] Elzobi M., Al-Hamadi A., Al-Aghbari Z.,
and Dings L., "IESK-ArDB: a database for
handwritten Arabic and an optimized
topological segmentation approach,"
International Journal on Document
Analysis and Recognition (IJDAR), pp. 1-
14, 2012.

[12] He X. and Yung N., "Curvature scale
space corner detector with adaptive
threshold and dynamic region of support,"
in Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International
Conference on, 2004, pp. 791-794.

[13] Jayadevan R., Kolhe S., Patil P., and Pal
U., "Automatic processing of handwritten
bank cheque images: a survey,"
International Journal on Document
Analysis and Recognition (IJDAR), vol.
15, pp. 267-296, 2012.

[14] Kabbani R., "Selecting most efficient
Arabic OCR features extraction methods
using Key Performance Indicators," in
Computing and Control Applications
(CCCA), 2012 2nd International
Conference on Communications, 2012, pp.
1-6.

[15] Khorsheed M., "Recognising handwritten
Arabic manuscripts using a single hidden
Markov model," Pattern Recognition
Letters, vol. 24, pp. 2235-2242, 2003.

[16] Lee H. and Chen B., "Recognition of
handwritten Chinese characters via short
line segments," Pattern Recognition, vol.
25, pp. 543-552, 1992.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

[17] Leydier Y., Ouji A., LeBourgeois F., and
Emptoz H., "Towards an omnilingual word
retrieval system for ancient manuscripts,"
Pattern Recognition, vol. 42, pp. 2089-
2105, 2009.

[18] Liang Y., Fairhurst M., and Guest R., "A
synthesised word approach to word
retrieval in handwritten documents,"
Pattern Recognition, vol. 45, pp. 4225-
4236, Dec 2012.

[19] Lu S., Ren Y., and Suen C., "Hierarchical
attributed graph representation and
recognition of handwritten Chinese
characters," Pattern Recognition, vol. 24,
pp. 617-632, 1991.

[20] Mansour M., Benkhadda M., and
Benyettou A., "Optimized Segmentation
Techniques for Handwritten Arabic Word
and Numbers Character Recognition,"
IEEE SITIS, pp. 96-101, 2005.

[21] Naz S., Hayat K., Razzak M., Anwar M.,
Madani S., and Khan S., "The optical
character recognition of Urdu-like cursive
scripts," Pattern Recognition, vol. 47, pp.
1229-1248, 2014.

[22] Parvez M. and Mahmoud S., "Arabic
Handwriting Recognition using Structural
and Syntactic Pattern Attributes," Pattern
Recognition, vol. 31, pp. 1997-2005, 2012.

[23] Pechwitz M., Maddouri S., Märgner V.,
Ellouze N., and Amiri H., "IFN/ENIT-
database of handwritten Arabic words," in
Proc. of CIFED, 2002, pp. 127-136.

[24] Razak Z., Zulkiflee K., Noor N., Salleh R.,
and Yaacob M., "Off-Line Handwritten
Jawi Character Segmentation Using
Histogram Normalization and Sliding
Window Approach for Hardware
Implementation," Malaysian Journal of
Computer Science, vol. 22, pp. 34-43,
2009.

[25] Touj S., Ben-Amara N., and Amiri H.,
"Arabic Handwritten Words Recognition
Based on a Planar Hidden Markov Model,"
The International Arab Journal of
Information Technology, vol. 2, pp. 318-
325, 2005.

[26] Xiu P., Peng L., Ding X., and Wang H.,
"Offline handwritten arabic character
segmentation with probabilistic model,"
Document Analysis Systems Vii,
Proceedings, vol. 3872, pp. 402-412,
2006.

[27] Zeki A., "The segmentation problem in
arabic character recognition the state of the
art," in First International Conference on
Information and Communication
Technologies, 2005, pp. 11-26.

[28] Zhang T. and Suen C., "A fast parallel
algorithm for thinning digital patterns,"
Communications of the ACM, vol. 27, pp.
236-239, 1984.

Mazen Bahashwan is currently a
postgraduate student at the
Computer Vision, Video and Image
Processing Lab (CvviP), Faculty of
Electrical Engineering, Universiti
Teknologi Malaysia. His research
interest is in the area of computer

vision, particularly in Arabic handwriting recognition.
He obtained his master degree from Universiti
Kebangsaan Malaysia in 2011.

Syed Abu-Bakar received his Ph.D.
degree from the University of
Bradford, England in 1997. He
joined Universiti Teknologi
Malaysia (UTM) in 1992. Currently
he is an associate professor in the
department of Electronics and

Computer Engineering, Faculty of Electrical
Engineering. His current research interest is in image
processing focusing in video security and surveillance,
medical imaging, biometrics, agricultural, and
industrial applications. He has published more than
150 scientific papers both at national and international
levels. He is a senior member of IEEE.

Usman Sheikh received his PhD
degree (2009) in image
processing and computer vision
from Universiti Teknologi
Malaysia. His research work is
mainly on computer vision and
embedded systems design. He is

currently a Senior Lecturer at Universiti
Teknologi Malaysia, Malaysia.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

