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Abstract: Handwriting recognition is an important field as it has many practical applications such as for bank cheque 
processing, post office address processing and zip code recognition. Most applications are developed exclusively for Latin 
characters. However, despite tremendous effort by researchers in the past three decades, Arabic handwriting recognition 
accuracy remains low because of low efficiency in determining the correct segmentation points. This paper presents an 
approach for character segmentation of unconstrained handwritten Arabic words. First, we seek all possible character 
segmentation points based on structural features. Next, we develop a novel technique to create several paths for each possible 
segmentation point. These paths are used in differentiating between different types of segmentation points. Finally, we use 
heuristic rules and neural networks, utilizing the information related to segmentation points, to select the correct segmentation 
points. For comparison, we applied our method on IESK-arDB and IFN/ENIT databases, in which we achieved a success rate 
of 91.6% and 90.5% respectively. 

Keywords: Arabic handwriting, character segmentation and structural features. 

Received November 17, 2014; accepted September 10, 2015 
 

1. Introduction 
Automatic handwriting recognition has many 
applications, such as for bank cheque processing, 
address and zip code recognition on envelopes, and 
handwriting analysis [9, 13, 25]. As a result, studies 
had been conducted on handwriting recognition for 
many languages such as English, Chinese, Japanese, 
and Arabic, among others [4, 21]. This paper focuses 
on Arabic text recognition. The Arabic language is an 
official language in over 25 countries and is spoken by 
approximately 234 million people [22]. Arabic 
characters are similar to characters in other languages 
such as Jawi, Farsi, Urdu, and Kardi [8, 24]. 
Approximately 7 to 10 million manuscripts were 
written in Arabic script between the seventh and 
fourteenth centuries [17]. Hence, a high-performance 
offline Arabic script recognition is needed for certain 
tasks, such as preservation of old manuscripts. 

A large gap exists between the research on Latin 
script and the research on Arabic script. Among the 
reasons for this gap are lack of adequate support in 
terms of financial funding, coordination, and other 
utilities, such as comprehensive Arabic text databases 
and dictionaries [14]. This situation could also be 
attributed to difficulties associated with characteristics 
of Arabic script, which will be described in Section 3. 

The recognition of unconstrained cursive Arabic 
handwriting is still low because of poor character 
segmentation. This finding is an indication that 
segmentation plays a vital role in the character 
recognition process [2, 18].  
 
 

 
Segmentation approaches can be divided into two 
categories: holistic approach and analytical approach 
[27]. Systems that are based on the holistic approach 
(also called as global approach) try to recognize entire 
words without splitting them into individual characters. 
The disadvantage of the holistic approach is that it 
needs a large dictionary (lexicon), which, in turn, 
makes the searching process costly [1]. On the other 
hand, systems based on the analytical approach try to 
segment a word into characters or graphemes (part of 
the character) and does not require the use of a large 
dictionary. In this work, the analytical approach is 
adopted. The technique consists of three stages: 
preprocessing, generating candidate segmentation 
points, refining and verifying all candidate points.  

This paper is organized into six sections. Section 2 
explains some works related to Arabic character 
segmentation. Section 3 illustrates the characteristics 
of Arabic language scripts. Section 4 describes our 
proposed method to generate the segmentation points, 
segmentation paths and the process of refining and 
verifying the segmentation points. Section 5 presents 
the results and discussion. Finally, we conclude our 
paper in Section 6 and suggest several directions for 
future works.  

2. Related Works 
For the last few decades, an increasing number of 
empirical studies have been conducted on handwriting 
recognition. However, findings on recognizing 
unconstrained cursive handwriting remain limited. One 
of the major reasons for this lack of findings can be 
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attributed to poor character segmentation [18]. The 
suitable features for character segmentation can be in 
the form of segmentation points such as local minima 
[5], branch points, cross points, loop points [11], or 
pen thickness[20]. These features may not be detected 
in all segmentation points because some of them might 
be lost during the writing or the preprocessing stage.  

Bouafif, et al. [7] used Harris corner method to 
detect possible segmentation points in words, and only 
corners that lie between 5 pixels above and below the 
baseline were taken as valid segmentation points. 
Obviously, many valid segmentation points that were 
outside this range were ignored. The main 
disadvantage of this technique is its high dependency 
on the baseline. 

  Elnagar and Bentrcia [10] used six agents and a 
baseline for detecting segmentation points. They 
mentioned some limitations of their algorithm, such as 
missing segmentation points due to weakness in agents 
and dependency on the endpoints, branch points, and 
cross points as features. Moreover, the detection of the 
agents was error prone because of its high dependency 
on the accuracy of the baseline detection. 

Al-Hamad introduced an algorithm for 
segmentation and validation of Arabic handwritten 
words [3]. His method involved three major steps. 
First, segmentation points are obtained from a 
modified vertical histogram of a thinned word–image. 
Then, the initial segmentation points are validated by 
using a neural-based segmentation point validation 
scheme. Finally, the fusion confidence value is 
obtained to validate segmentation points. According to 
Al-Hamad [2], the modified vertical histogram has a 
limited ability to identify some characters, such as the 
character baa (ب) and similar character shapes. 
Moreover, such characters are not detected as 
characters because they look like ligatures in the 
histogram. The main limitation is the presence of 
numerous incorrect local minima and maxima, which 
often result in a large number of incorrect ligatures. 

Elzobi, et al. [11] used a histogram to detect 
possible segmentation points and applied heuristic 
rules to refine the result. They reported the occurrence 
of missed segmentation points because of the 
overlapping characters and over-segmentation points in 
characters such as seen ( س(  and sheen (ش). In 
addition, the rules cause missed and over-segmentation 
points because of the dependency on cross points, 
branches, and loop points.  

Thus, we propose a new segmentation method 
based on using a corner detector, branch points, and 
cross points. We also propose a novel verification 
technique of the segmentation points using heuristic 
rules and neural network. 

 
 

3. Characteristics of Arabic script 
The Arabic script consists of 28 characters and is 
written from right to left. Each character has at least 
two to four shapes that depend on the position of the 
character within the word. In addition, a single word 
may consist of one or more than one sub words. This is 
because the following characters cannot be joined 
 from the left side. More than half of the (و,ز,ر,ذ,د,ا)
characters contain one to three dots. These dots may be 
at the top, middle, or bottom of the character. These 
dots distinguish between characters that may otherwise 
have the same shape. Usually, the characters are 
connected horizontally, but in some cases, characters 
may be connected vertically. Overlapping normally 
occurs between the sub-words or between the sub-
word and characters in the same word, which are 
mostly found in the vertical direction.   

4. Proposed Method  
The general block diagram of the proposed method is 
shown in Figure 1. Initially, an image will be loaded 
into the system followed by some operations at the 
preprocessing stage before the segmentation stage is 
initiated.   

Binarization Filtering & 
Smoothing Thinning 

Identifying word 
components 

Removing 
overlapping 

Remove incorrect segmentation points by 
heuristic rules

Pre-processing Stage

Detect possible 
segmentation points:

• Branch points
• Cross points
• Corner points 

Segmentation  Stage 

Feature extraction for 
corner points,branch 

and cross  points 

Classify the branch and 
cross point into correct or 

incorrect segmentation 
points  by neural network 

Classify the corner  
point into correct or 

incorrect segmentation 
points by neural network

 
Figure 1. Block diagram of character segmentation. 

4.1. Preprocessing  
The operations applied in the preprocessing stage are 
for general images. However, all the images in the 
database we used, i.e., the IESK-arDB and IFN/ENIT 
datasets, underwent binarization, smoothing, dilation 
operation. 
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Generally, an Arabic word contains one or more 
main components. The main component contains a 
single character or some connected characters. More 
than half of the characters in the Arabic script have a 
secondary component such as a dot and hamza, and the 
size of the secondary component is usually very small 
compared with the main component and is quite far 
from the center of the main component, as shown in 
Figure 2. In this figure, the main component is 
represented by a rectangular box, while the secondary 
component is represented by an ellipse.     

Baseline detection is a method that is used to 
identify word components. The baseline corresponds to 
a simple horizontal projection that contains the 
maximum number of foreground pixel count. A box is 
first drawn in each connected component, and then the 
main connected component is intersected with the 
baseline (as depicted in Figure 2).  

 
Figure 2. Arabic word that contains two main components and two 
secondary components with a baseline drawn.  

Each secondary component is assigned to one main 
component. If the secondary components are inside, 
above, or below the main component without 
overlapping, then they will be assigned to that main 
component. In case of overlapping between two main 
components, the distance will be measured depending 
on the location of the secondary components.  
According to this distance, the secondary components 
are assigned to the nearest main components [11]. 

Finally, we apply thinning operation based on the 
approach used by Zhang and Suen [28]. This method 
has been widely used in previous researches [15, 16, 
19]. Figure 3 shows an example of the thinning 
operation. 

  
a) original binary image. b) result after the thinning 

process. 

Figure 3. An example of Zhang and Suen thinning algorithm.  

4.2. Candidate Segmentation Points  
Usually, the connection point between two characters 
is considered a branch point or a cross point. However, 
the connection point (branch point or cross point) 
might not be present due to the writing style or as a 
result of the preprocessing operation. The missed 

connection point can still be captured using a corner 
detector as shown in Figure 4. Therefore, to avoid 
missing the connection point, our approach uses the 
corner points as the candidate segmentation points. 

  
a) due to preprocessing stage b) due to writing style; these 

missing points are indicated 
with small squares. 

Figure 4.  Missing segmentation points. 

In our work, we adopted the contour-based detector 
method with the chord-to-point distance accumulation 
(CPDA), which is found in [6] to detect the corners as 
candidate segmentation points. CPDA discrete 
curvature estimation is less sensitive to local variations 
and noise on the curve and it does not use any 
derivatives.  We generate short curves by removing 
branch points and the loop points from the thinned 
word. We then apply the corner detector to each curve 
separately. 

To detect the corner in the curve using the CPDA 
[6], the curve is first smoothened, and then three 
chord-lengths (L1=10, L2=20, L3=30) are used to 
estimate the curvature value at each point n in the 
curve. The CPDA curvatures (h1(k), h2(k),h3(k)) that 
correspond to the three chord lengths are then 
computed by using Equation (1). The CPDA discrete 
curvature  hL(k) at the point  K with the chord length L 
is calculated by taking the summation of all 
perpendicular distances from the point K to the chord 
length at all possible chord length locations.  

                               ( ) ( )∑
−

+−=

=
1k

1Lkj
k,jL dkh       (1) 

Then, the CPDA discrete curvature for each chord 
length is normalized by using Equation (2) 

             ( )
( ) 311

max
)(' ≤≤<<= j &  nk for ,

h
kh

kh
j

j
j      (2) 

All these curvatures are then multiplied to produce a 
single value, which is called the curvature product, 
H(k), as given in Equation (3).  

          ( ) ( ) ( ) ( ) nk1  for  khkhkhkH jjj ≤≤= ,.. '''       (3) 

The curvature product curve is then smoothened, and 
the candidate corners are located by detecting the 
maxima H(k). Finally, our proposed method adopts the 
algorithm in [12] to measure the angle at each 
candidate corner point by using two tangent lines.  
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4.3.  Construction of the Segmentation Path 
In this study, we propose a segmentation path based 
method to extract features which are related to 
segmentation points. The proposed segmentation path 
is a curve that starts from a point on the thinned word 
to one of the three ends: either to the top boundary of 
the image, bottom boundary of the image, or back to 
the start point for a closed-loop path. Before creating a 
path, a preprocessing step is applied on the background 
of the image. This preprocessing step will change the 
value of the background pixels based on some 
conditions. We use four different values of base 2 (2n), 
where n is an integer, to assign the background values. 
These values have the following characteristics: 1) 
summation of any two values from a set of four values 
will always be different from the sum of the remaining 
values; 2) summation of any three out of a set of four 
values will always be different from the last remaining 
value. These characteristics will ensure the creation of 
a unique track path.  

These four numbers are arranged in decreasing 
order from the highest to the lowest with the following 
labels: Pt, Pb, Pr, and Pl. The descending arrangement 
from highest to lowest value is used to determine the 
track path of either as top, bottom, right, or left, 
respectively. 

We then scan the image column by column from 
top to bottom. During the scanning process, all 
background pixels (255)1 are replaced by Pt until 
foreground pixel (0) is reached or until the bottom of 
the image is reached. This condition can be formulated 
as follows; 

Let AMxN be an image, and aij ϵ A denotes the pixel 
value of row i and column j. The image is first scanned 
from top to bottom in each column separately. 
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Then, the output image from the previous step is 
scanned from the bottom to the top, and all pixels with 
the value of 255 are replaced with Pb. The scan 
continues until the foreground pixel (0) or Pt in the 
image is reached. This can be described as follows: 
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The procedure is repeated from right to left, with 
pixels with a value of 255 being replaced with Pr. This 
condition is described as follows: 

1 In this implementation, we use the value of 255 instead of 1 for 
the binary image.   
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Finally, the image is scanned from left to right, with 
pixels with a value of 255 being replaced with Pl until 
the foreground pixel (0) is reached. This step is 
expressed as follows: 
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For easy explanation, the converted background pixels 
are referred to as the “guiding pixels.”     
Once the scanning procedures are done, the 
background pixels will have either one of these 
guiding pixel values (255, Pt, Pb, Pr, Pl), and they are 
grouped into five classes that define their respective 
direction path, as shown in Table 1. 

Table 1. Path direction based on guiding pixel value 

Background pixel value Path direction 

Pt Top-bound 

Pb Bottom-bound 

Pr Right-bound 

Pl Left-bound 

255 Move with reference point 

To find the starting point for each path, a 3x3 
window is used with the candidate segmentation point 
placed at its center. An anticlockwise scanning 
mechanism is performed starting from the upper right 
corner of the window. The scanning will continue until 
all the guiding pixels that surround the foreground 
pixels are grouped together. Depending on the type of 
the segmentation point (i.e., corner point, branch point, 
or cross point), two, three, or four groups can exist, as 
shown in Figure 6.  

   (a)   (b) (c)   
 

Figure 6. Dashed boxes represent groups in (a) corner point - 2 
groups (b) branch point - 3 groups (c) cross point - 4 groups.   

The starting point of the path for each group (Stp_grp) 
will be the last guiding pixel before the foreground 
pixel (reference point), with respect to the 
anticlockwise scanning mechanism. Initially, the 
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reference point (Ref_grp) refers to the first foreground 
pixel after the starting point in the anticlockwise 
direction. An example for the branch point case is 
shown in Figure 7.  

  Group 1

Group 2

Group 3

Stp_grp_1

Stp_grp_2

Stp_grp_3Ref_grp_1

Ref_grp_3

Ref_grp_2

(a) (b)

(c)  
Figure 7. An example of a branch point with its related reference 
points and starting points; (a) Branch point – at the center of the 
window, (b) number of available groups, and (c) location of the 
respective start and reference points for tracing each path where 
Stp_grp is the start point in the group and Ref_grp is the reference 
point in the group. 

We begin tracing in each path from the start point. 
The next move is determined by checking the value of 
the current pixel. If it is equal to one of these guiding 
pixel values (Pt, Pb, Pr, Pl), then the path moves 
according to the direction specified by these values 
(refer to Table 1).Otherwise, if it is equal to 255, then 
the path will move according to the reference point, 
and the current reference point will be changed. The 
reference point has four possible positions with respect 
to the current path point, as shown in Figure 8. To 
determine the next step for the path, the location of the 
next reference point needs to be determined. First, the 
starting scanning point (marked as x in Figure 8) needs 
to be located. Equation 8 is used to determine the 
initial scanning.  

 ( )
( )refcpcpsc

refcpcpsc

xxyy

yyxx

−+=

−−=

 
     (8) 

where xsc and ysc are the coordinates for the initial 
scanning point, xcp and ycp are the coordinates of the 
current path point, and xref and yref  are the coordinates 
of the current reference point. Here, we follow the 
convention of the right-hand rule for the coordinates 
system. Anticlockwise scanning will then begin from 
this initial scanning point. During the scanning, several 
cases may occur as follows: 

• Case 1. If the next pixel encountered is one of the 4 
guiding pixels, then the path will proceed as 
indicated in Table 1, where it will eventually reach 
either the top or the bottom of the image. In this 
case, the path will be completed. 

• Case 2. If the next pixel encountered is 255, then 
the scan will proceed until it reaches the next black 
pixel. In this case, this black pixel will become the 

next reference point, and the pixel just before this 
black pixel (in the scanning direction) becomes the 
new current path point.  

This process of searching for the current path point and 
the current reference point will continue until either 
case 1 above is met or the path returns to the initial 
scanning path (i.e., making a closed loop). 

  

Ref_grp_1

Ref_grp_3

Ref_grp_2
Current path 

point

Reference 
point 

Current path 
point

Reference 
point 

Current path 
point

Reference 
point 

Current path 
point

Reference 
point 

The supposed location of the new reference point

The starting point for the scan
Current point 

path  The last pixel of the path at that instant
 

Figure 8. An example of four possible locations of the reference 
point with the current path point. 

4.4.  Feature Extraction 
The segmentation paths, corner detection (CPDA), 
binarized and thinned images produce useful 
information which can be used as features for the 
refinement and verification of candidate segmentation 
points.  
The features extracted from the corner points are listed 
below:   

• The curvature product and angle of each corner is 
used as features. 

• The thickness of the corresponding coordinate of 
the corner point in the image before the thinning 
process is also used as feature.  

• For a given corner point located in between two 
connected points (which may be a branch, corner, 
cross or end point), the type of the two connected 
points and their respective distance to the corner 
point are used as features.  

• The vertical distance from the baseline to a 
candidate segmentation point is used as feature.  

• The number of the secondary components in both 
sides of the connected candidate segmentation point 
is used as features. 
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The features extracted from the branch and cross 
points are listed below:   

• The number of top-bound, bottom-bound and loop 
paths at each candidate segmentation point are used 
as features.  

• The measured width between the two segmentation 
paths moving in the same direction is used as 
feature.  

• The number of the foreground pixels located 
between the two segmentation paths moving in the 
same direction is used as feature.  

• For a given candidate segmentation point located in 
between two connected points (which may be a 
branch, corner, cross or end point), the type of the 
two connected points and their respective distance 
to a given candidate segmentation point are used as 
features.   

• The vertical distance from the baseline to a 
candidate segmentation point is used as feature.  

• The number of the secondary components in both 
sides of the connected candidate segmentation point 
is used as features. 

4.5. Refinement and Verification 
We proposed to refine and verify the candidate 
segmentation points by two steps; first refining 
candidate segmentation points by using some heuristic 
rules, secondly, we use neural networks to verify the 
rest of candidate segmentation points, as explained in 
the following subsections:  

4.5.1.  Segmentation Point Refinement by 
Heuristic Rules  

In order to reduce the consumption time for the 
training process, heuristic rules are used to remove 
candidate segmentation points which in practice cannot 
be correct segmentation points. We apply five heuristic 
rules based on empirical studies that cover the most 
probable segmentation point scenarios. These rules are 
given as follows:  

• If a branch point has three paths and two of them are 
closed-loop paths, then this branch point is removed 
from the list of segmentation point candidates. 

• If a segmentation point is located five pixels from 
either end of the curves, then this segmentation 
point is removed from the list of segmentation point 
candidates. 

• If a branch point has two bottom-bound paths and 
one top-bound path, located next to a branch point 
with a closed-loop path, and the distance between 
them is less than five pixels and the x-coordinate of 
the end point is equal to or less than the x-

coordinate of the branch point, then this branch 
point is removed from the list of segmentation point 
candidates.  

• If two adjacent branch points have two top-bound 
paths with no secondary component centroid 
coordinate between them, and the number of pixels 
between the two top-bound path points is less than 
25 pixels, then the two branch points are removed 
from the list of segmentation point candidates. 

• If a corner point has curvature product value less 
than 0.09 and angle value larger than 150o, then this 
corner point is removed from the list of 
segmentation point candidates. 

4.5.2. Segmentation Point Verification using 
Neural Networks  

The nature of the corner point structure is different 
from the branch and cross point due to the fact that 
features extracted are not similar. Therefore, the 
proposed method uses two parallel back-propagation 
neural networks with log-sigmoid activation function 
to verify the correct and incorrect segmentation points; 
one neural network is used to verify the corner point 
and another to verify the branch and cross points. The 
neural networks’ input layer consist of features 
extracted from the candidate segmentation points, 
while the output layer represents the classified 
segmentation point as correct or incorrect 
segmentation point. 

5. Results and Discussion   
We tested our proposed segmentation approach on 
1,200 word images obtained from the IESK-arDB and 
IFN/ENIT databases [11, 23], whereby the words were 
handwritten by different people. For the purpose of 
comparison, three criteria, i.e., correct segmentation, 
over-segmentation, and under-segmentation were 
evaluated to measure the performance of the 
segmentation technique.  

Correct segmentation refers to points that divide the 
two characters correctly. Over-segmentation refers to 
unnecessary or excess points in segmenting two 
characters, while under-segmentation refers to a 
situation in which a missed correct segmentation point 
exists between two characters. However, a notable 
detail is that no unique position for correct 
segmentation exists in Arabic characters. Therefore, 
the results were validated by visual observation. As 
seen from Table 2, our method significantly reduced 
the under- and over-segmentation points, and the 
correct segmentation accuracy has been improved 
compared to other methods. 

 

 

Table 2. Criteria for evaluating the segmentation rate (%) 
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Authors Over-
segmentation % 

Under-
segmentation % 

Correct 
segmentation % No. of words Database 

Elzobi, et al. [11] 14.4 18.6 67 600 IESK-arDB 

Xiu, et al. [26] 18.8 26.6 54.6 600 IESK-arDB 
Al-Hamad and Abu-Zitar [3] 17.02% 4.60% 82.98 500 local database 

Elnagar and Bentrcia [10] ≈13.7% 0.3% 86% 550 IFN/ENIT 
Our method 8% 0.4% 91.6% 600 IESK-arDB database 
Our method 8.9% 0.6% 90.5% 600 IFN/ENIT database 

 
The construction of the segmentation path depends 

on the values of the guiding pixels Pt, Pb, Pr, and Pl. 
In our work, we use Pt =16, Pb =8, Pr=4, and Pl=2. 
Figure 9(a) shows the result after constructing the 
segmentation paths. As seen from the figure, some 
segmentation points have paths that go to the top 
boundary, bottom boundary, and a closed-loop path. 
For example, the difference between the two 
segmentation points (labels 8 and 9) is only in the 
location of the closed loop path, i.e., either the closed 
loop is located to the left or the right side of the 
segmentation point. Some segmentation points (labels 
3, 4, and 6) have only one path and two closed-loop 
paths, and the difference in this case is the direction of 
the path (either to the top or to the bottom). 
Furthermore, a segmentation point (label 5) that has 
three closed-loop paths exists. In addition, some 
segmentation points (labels 7 and 10) have two top-
bound paths and one bottom-bound path. Finally, a 
segmentation point (label 1) has two top-bound paths 
and one bottom-bound path. The result of the proposed 
method is shown in Figure 9 (b).  
 

1
2
3

4
5

6

7 8 9 10

 
(a) Over-segmentation of points 

 
(b) segmentation points after applying the proposed method. 

* Segmentation points 

 Path leading to top boundary 

 Path leading to bottom boundary   

 Path going in a closed loop path 

 Candidate segmentation points 

Figure 9. An example showing candidate segmentation points with 
its paths Over-segmentation of points and segmentation points after 
applying the proposed method. 

 In addition, our method can handle different cases, 
such as overlapping and cursively written words.  

Figure 10 illustrates some of the correct word 
segmentation, in which our proposed method can 
detect the segmentation points in cases of overlapping 
characters and cursively written words.  

 
Figure 10.  Segmentation of overlapping and cursively handwritten 
words. 

Our method is also capable of correctly detecting 
the segmentation points for different writing styles 
from different writers. Figure 11 shows some of the 
results.  

 
Figure 11. Segmentation of Arabic words written by five writers. 

One of the strengths of our method is that it reduces 
under-segmentation points, because our method can 
detect valid segmentation points with a small curvature 
as illustrated in Figure 12. In this figure, the method 
[6] produced over-segmentation points in characters (ط 
 and missed one segmentation point between (و,ن,
character (ش) and character (ن), because loops and the 
curvature product (H(k)) (0.07) are less than the 
threshold. Our method overcomes this limitation by 
removing loop points and modifying the curve 
extraction approach. Our approach manages to detect 
the segmentation point between character (ش) and 
character (ن) because the curvature product (H(k)) 
(0.98) is higher than the threshold value (0.09). 
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(d)(c)

(b)(a)

Figure 12. Results on corner point detection: (a) and (c) using our 
proposed method , and  (b) and (d) using Awrangjeb and Lu [6]. 
The small boxes in (a) and (c) indicate that the proposed method is 
able to detect the proper corner point while the other method failed 
to detect them as shown in (b) and (d). 

Due to a similarity to another connected character in 
terms of shape, over-segmentation points occur in 
characters like Sad (ص). The proposed method is able 
to remove the over-segmentation points by taking into 
account secondary components such as dots, as shown 
in Figure 13.  

   

(a) (b)  
Figure 13. Results on proper detection of segmentation point. (a) 
shows detected segmentation points for the letter (ن ) and (ص), (b) 
shows the result after applying the proposed method. Note that the 
segmentation point on the letter (ص) has been removed. 
 

The main difference between the character seen (سـ) 
and two or more connected characters lam (للل) is the 
length of the spur and stem, respectively. The character 
seen (س) consists of two or three small spurs, while the 
connected character lam has two or three stems, as 
shown in Figure 14(a). In our proposed method, we 
measure the length of the spur and stem before 
deciding the status of the segmentation points, as 
shown in Figure 14(b).  
 

(b)(a)  
Figure 14. An example showing correct detection of segmentation 
points. (a) shows all candidate segmentation points with 
segmentation path in blue lines, (b) shows the result of 
segmentation points after applying the proposed method. 

 

Our method can also distinguish between the line 
extension that belongs to the character and other 

characters such as meem (  Figure 15(a) shows the .(مـ
branch point with two bottom-bound paths and one 
top-bound path. The proposed method can detect the 
correct segmentation points, as shown in Figure 15(b), 
by determining the direction of the line and the number 
of pixels between them.  

(b)(a)  
Figure 15. An example showing proper segmentation points for 
letter (م); (a) shows results of detected candidate segmentation 
points with the segmentation path, (b) shows results after applying 
the proposed method. Note that the proposed able to differentiate 
proper segmentation points between the letter (م) and (ط).  
 

Nevertheless, the proposed method would miss 
some segmentation points in case the point does not 
have the features of branch, cross, and corner points, as 
shown in Figure 16. This issue can be solved by 
studying the angles of those points. 
 

 
Figure 16. Arabic words with missing segmentation points 
(indicated by the box). 

 
Likewise, our method still suffers from over-

segmentation points because it generates many corners 
for cursive handwritten words, as shown in Figure 17. 
To solve this problem, we can either add more rules or 
extract new features to remove these unwanted points. 

 

 
Figure 17 Arabic words with over-segmentation points due to 
corners. 

6. Conclusion and Future Works 
This paper presents an offline Arabic handwriting 
segmentation method based on structural techniques, in 
which the segmentation points are categorized into 
branch points, cross points, and corner points. This 
paper introduces a method for generating all possible 
segmentation points and a way of refining them. By 
detecting the branch points and cross points as 
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segmentation points, the method divides the main 
components into small curves to detect small curvature 
corners as segmentation points. Finally, heuristic rules 
and neural networks are applied to select the correct 
segmentation points.  The average accuracy of the 
proposed method is 91.05%. For future work, we 
suggest addressing issues such as establishing the 
relationship between the secondary components and 
segmentation points and using that in the refinement 
and verification step to further improve the 
segmentation point classification. 
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