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1. Introduction 
Evolution of technology and globalization create the 
subsequent acceleration of information flow. Thus, 
extraction of knowledge from the large pool of 
information is becoming a very difficult task. The 
rapid advancement in electronic commerce increases 
online transactions every year. Organizations store 
their ever-increasing day-to-day transactional details in 
their transaction databases. Data mining prepares 
models by analyzing the hidden relationships among 
stored data and deals with the problems that arise with 
large data repositories. 

The classical application of Association Rule 
Mining (ARM) is market-basket analysis that has been 
used to predict customer purchasing/spending behavior 
by analyzing the frequent itemsets in a large pool of 
transactions. Frequent patterns are a set of all subsets 
of items that frequently appear together in a dataset. 
Frequent Pattern Mining (FPM) plays a key role to 
obtain associations and correlations among items in a 
large transactional dataset [2]. As the amount of 
transactions increases it becomes very difficult to 
determine the frequent patterns with less time and 
space complexities. Scalability is one of the main 
requirements of an FPM algorithm. Some of the 
algorithms address the space complexity problem of 
very large database using partitioned database 
approach [14]. Partitioned algorithms generate all 
possible large itemsets from each partition in a 
sequential manner in the first scan, which may  

 
contain false positives (globally infrequent). During 
the second scan they remove the false positives and the 
global frequent sets are generated. The occurrence of 
false positives may lead to space complexity and time 
complexity for very large database. Thus, sequential 
algorithms [2, 7, 12] can provide scalability and very 
good performance up to a certain database size limit. 
Hence, parallel mining approaches [1, 5, 6] are 
required to provide scalability in massive data stores in 
an efficient manner. 

As the day to day transaction details get added to 
the transactional database, database becomes dynamic 
and incremental updating of frequent patterns is 
required. Also there is possibility for change in the 
customer’s purchase behavior due to the change in life 
style as well as addition of new customers. Thus to 
reflect the current status of database, old patterns must 
be removed and new patterns might appear. Many of 
the FPM algorithms [2, 7, 12, 14] prepare static 
patterns and use them for long term predictions; but 
those may not be capable to accommodate the 
behavioral changes in the incremental database. Thus 
dynamic algorithms [3, 4, 8, 9] that are capable of 
incremental and interactive mining with less 
computational cost are essential for an incremental 
database. The essential key feature of an incremental 
algorithm is to reuse the previously mined information 
and combine this information with the new data to 
incrementally update the frequent itemsets without 
rescanning the entire database. 
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The objective of this research is to develop FPM 
algorithms which are efficient, scalable, faster and 
dynamic to support behavioral changes using both 
sequential and parallel approaches. Sherly [15] 
proposes Interactive and Adaptive Partitioned 
Incremental (IAPI) FPM (IAPI Quad-Filter) algorithm 
for incremental FPM in large databases to solve the 
space and computational complexity. But it requires 
more than two database scan (equivalent to the number 
of frequent items), thus the data fetching time is fairly 
high. This paper proposes two incremental FPM 
algorithms (modified IAPI versions) capable of 
generating large itemsets from an incremental massive 
data store in two database scans and incrementally 
update the frequent itemsets without rescanning the 
entire database using sequential and parallel 
approaches with a system having fairly good storage 
and computing capability. 

1.1. Overview of the Proposed Algorithms 
IAPI type of algorithms use a database partitioning 
approach to produce frequent itemsets without 
generating local frequent itemsets. In these approaches, 
transaction items are pre-processed and arranged 
according to the item code; thus individual item 
counting and count comparisons are made faster. 
Rather than fixing single minimum support value IAPI 
Quad-filter uses a range of support values (low, high) 
for making the dynamic and the interactive mining 
faster. It logically divides the dataset into small sized 
non-overlapping horizontal partitions of user specified 
sizes so that each partition can be accommodated in the 
main memory. To reduce the computational cost, I/O 
overhead as well as space complexity, each Frequent 
Item (FI) transaction group is collected separately and 
four level filtering is done to remove infrequent items 
[15].  

Unlike Apriori [2] in IAPI, the number of 
transaction to be compared and their length both get 
reduced in finding higher frequent itemsets. This 
method is capable to incrementally update the database 
to accommodate the customer behavioural changes. 
IAPI also provides the user with the facility to 
interactively adjust the minimum support value as per 
one’s own convenience. To find the higher frequent 
itemsets, IAPI Quad-filter collects each FI transaction 
groups separately one after the other, thus the number 
of database scans required is the number of frequent 1-
itemsets, which is fairly high. Thus this approach is 
best suited with systems having low memory capacity. 
To improve the performance, this paper proposes 
another algorithm Faster-IAPI, which generates 
frequent patterns in two database scans only. It collects 
all the FI transaction groups simultaneously in one 
database scan; but the down side is that it requires 
more memory (multiple memory buffers) to hold the 
different FI transaction groups. Then the higher 

frequent itemsets of each transaction groups are 
obtained sequentially. 

Speed of operation in very large dataset can be 
further improved using parallel mining approach. Thus 
a second algorithm Parallel-IAPI is suggested for 
shared memory multi processor systems. This method 
finds the higher frequent itemsets of all frequent 1-
itemsets simultaneously using parallel processors. In 
this approach each Local Processor (LP) finds the local 
partition count of each item and sends it to Master 
Processor (MP) to obtain their global count. MP 
identifies the frequent 1-itemsets and sends the count 
of all frequent items to each LP and assigns them to 
obtain higher frequent itemsets of each item. LP 
collect the transaction groups of assigned FI with their 
co-occurring items (items having count greater than it) 
and find their higher frequent itemsets concurrently 
using the IAPI approach. The main attraction of this 
approach is that each LP work independently for 
higher frequent itemset generation; thus there is very 
less communication overhead. Figures 1 and 2 
describes the frequent itemset generation procedures of 
Faster-IAPI and Parallel-IAPI respectively. 

 
Figure 1. Functional block diagram of Faster-IAPI. 

 
Figure 2. Functional block diagram of parallel-IAPI. 

This paper is organized as follows. Section 2 
describes related work on different FPM algorithms. 
Section 3 presents the proposed algorithms with the 
details of the various phases of the algorithms and their 
functionalities are described using sample data. 
Section 4 gives the details of experiments conducted 
and performance analysis. Section 5 concludes the 
paper. 

2. Related Works 
The popular algorithm Apriori [2] forms the 
foundation for static frequent pattern mining. The 
major problem of Apriori is that it has to read the 

 



Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis…                                                                        177 
 

entire database in every pass, although many items and 
transactions are no longer needed in later passes. It 
generates candidate itemsets iteratively, which makes 
the computational cost very high. Instead of using 
generate and test paradigm of Apriori, FP-tree 
approaches [7, 8, 10] encode the dataset using a 
compact tree structure and directly extracts the 
frequent itemsets from this structure. Thus tree 
approaches outperform Apriori-like approaches by 
generating frequent patterns without producing 
candidate sets. But it has to generate conditional 
pattern bases and sub-conditional pattern tree 
recursively.  

To obtain frequent sets from very large datasets 
with low memory utilization, [14] suggests a 
partitioning algorithm which generates frequent 
itemsets in two database scans. During the first scan, it 
identifies the local frequent item-sets from each 
partition and in the second scan it estimates the global 
frequent sets. This algorithm is highly dependent on 
the heterogeneity of the database and may generate too 
many independent local frequent itemsets. To analyze 
the problem of market basket data, [4] presents an 
algorithm DIC which uses fewer passes over the data 
than classical algorithms to find the frequent itemsets. 
It provides the flexibility to add and delete counted 
itemsets on the fly. Downside of DIC is that it is 
sensitive to the homogeneity of data. 

An interactive mining algorithm, Continuous 
Association Rule Mining Algorithm (CARMA) [9] 
requires two database scans to produce large itemsets. 
CARMA provides a lower and upper bound for its 
support for each set. Thus, the user can interactively 
adjust the support and confidence at any time. A 
dynamic algorithm CanTree [10] facilitates 
incremental mining as well as interactive mining. In 
this approach, the items in each transaction are 
arranged in a canonical order and the entire 
transactions are stored in a tree structure with one 
database scan. The construction of CanTree is 
independent of the threshold values. Thus, interactive 
mining is possible without rescanning the entire 
database. A novel tree structure called CP-tree [16], 
which creates incremental frequent patterns with the 
support of interactive mining in one database scan. 
First phase inserts transactions into CP-tree and second 
phase rearranges the items according to the frequency 
order. Since items are arranged in the ascending order, 
CP-tree has less number of nodes compared to 
CanTree. But tree reconstruction introduces additional 
computations. To reduce the time of restructuring a 
new prefix tree structure proposed in [8]. An 
Incremental Mining Binary Tree (IMBT) algorithm is 
presented in [19] in which each node of the tree 
represents one of all the possible combinations of 
items in the entire dataset. It processes a transaction at 
a time and record the possible itemsets in the 
respective nodes, thus reduces the processing and I/O 

time but requires more memory to keep all 
combinations of items in the database. To reduce the 
search space and model size in evolving database, 
YAMI (YAMI is derived from the names of the 
Authors) [18] a dynamic ARM algorithm is 
developed. It uses a shocking interestingness measure 
as a constraint to discover rules that are interesting for 
the user. 

A potential solution for improving the performance 
and scalability in FPM from very large database is to 
parallelize the mining algorithms. An algorithm 
Parallel Data Mining (PDM) is proposed [13] for 
parallel mining which is an adaptation of the Direct 
Hashing and Pruning (DHP) algorithm [12] in the 
distributed environment. In PDM each node computes 
the globally large itemsets by exchanging the support 
counts of the candidate sets. Downside of this is that 
O(n2) messages are required for support count 
exchange among n nodes for each candidate set. 
Another algorithm Count Distribution (CD) [1], which 
is an adaptation of the Apriori algorithm, is proposed 
for the same parallel mining environment. This 
algorithm also has the similar problems. A tree-
partition algorithm for parallel mining of frequent 
patterns on shared-memory structures is presented in 
[5]. It builds one FP-Tree of the entire database, then 
partitions it into several independent parts and 
distributes them to different threads. This approach 
uses a Master/Slave Model. The parallel 
implementation of Apriori algorithm based on 
MapReduce framework [11] is suggested for 
processing huge datasets using a large number of 
computers. But these parallel algorithms are not 
suitable for incremental database. An incremental, 
interactive and parallel mining technique for shared 
memory multiprocessor system is designed in [17] for 
incremental mining. This approach is based on the 
adaptive tidlist interval distribution technique, which 
continuously assigns partitions of the tidlist among the 
different processors. A parallel IMBT structure is 
proposed in [3] to enumerate the support count of each 
itemset in an efficient way after the new transactions 
are added or deleted. 

3. Proposed Algorithms 
3.1. Problem Definition 
Let D be a database with N number of transactions. Let 
I be the item domain, {I1, I2, ..., Iq}. The problem is to 
identify all interesting frequent patterns in an 
interactive and incremental manner with fewer 
complexities. A partition P⊆D of the database refers to 
any subset of the transactions contained in the database 
D. Initially the database D is logically partitioned into 
n non-overlapping partitions of size Z, i.e., Pi∩Pj = Φ, 
i≠j. Two minimum support values used here are: Sl, Sh 
namely, lower minimum support value and upper 
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minimum support value. It creates two category 
itemsets: Frequent (Fset), Nearly Frequent (NFset). 
Itemset X is Frequent if support(X)≥Sh and Nearly 
frequent if Sl≤ support (X)≤ Sh. Pn represents a 
partition number at which a NFset has been last 
updated. Let F1-itemset be the frequent 1-item domain, 
F1-itemset={f1, f2, ..., fm}in the ascending order of 
occurrence count. Each FI is associated with a co-
occurring item set list Cf, {Cf1, Cf2, ..., Cfm-1} refers to 
the list of items to be considered along with each FI to 
find the higher frequent itemsets, where as Cf1 be the 
co-occurring item list of FI f1 i.e., Cf1={f2, f3,..., fm}. In 
general: Cfi = {{fi+1, fi+2, ..., fm} |frequency(fi+1, fi+2,…, 
fm)≥ frequency(fi)} i.e., Cf1⊃Cf2⊃, ..., ⊃Cfm-1, it 
indicates that as the frequency of occurrence is more 
the number of co-occurring items considered for 
frequent itemset mining get reduced. 

3.2. Faster-IAPI Algorithm 
This algorithm has all the features of IAPI Quad-filter 
and has four phases. The first phase generates the 
frequent itemsets from the large history database. The 
second phase accommodates the newly arrived 
transactions to the existing set and updates the frequent 
itemsets to provide incremental mining. The third 
phase removes the old transactions after a preset time 
period and modifies the patterns to accommodate the 
behavioural changes. The last phase provides the 
facility to interactively adjust minimum support value 
as per the user’s requirement. In the first scan, Faster 
IAPI adopts the same method of IAPI Quad-filter and 
generates frequent 1-itemsets. To generate higher 
frequent itemsets, do the second scan of database and 
collect only frequent items from each transaction. 
Then, form separate transaction set groups of each FI 
and keep only the corresponding co-occurring items of 
each transaction group in separate buffers as shown in 
Figure 3. Also eliminate the similar transaction entry 
in each transaction group (compress the transaction 
set) by recording the occurrence count, then find the 
frequent items in the selected group and eliminate 
others. Higher frequent itemsets are obtained from 
each buffer sequentially using IAPI Quad-filter 
approach as shown in Figure 3. Frequent itemset 
generation steps of Faster-IAPI algorithm are given 
below. 

 
Figure 3. Frequent set generation. 

3.2.1. Faster-IAPI Frequent Item Set Generation 
Steps (Phase 1) 

Input: 

• D: Transaction database contain N transactions (T1, 
T2, …, TN), horizontally partition D into n non-
overlapping partitions (P1, P2, …, Pn) and sort the 
items of each transaction in the order of item code. 

• Sl: Low minimum support value 
• Sh: User selected min. support (Sh > Sl) 

 Output: 

Complete set of frequent itemsets 

1. For each partition do 
Read each transaction and find frequency flocal(i) 

for each item i; 
2. Identify frequent 1-itemsets F1-itemset ={i | ∑ flocal(i) 

≥ Sh for each item i} 
3. Sort F1-itemset in ascending order F1-sorted ={f1, f2, …, 

fm} 
4. Prepare co-occurring item set list Cfi = {{fi+1, fi+2, 

…, fm}|frequency(i+1, fi+2, …, fm) ≥ frequency(fi)} for 
each fi  

5. Read each transaction of D and do 
Collect transactions contain each fi in to separate 

buffers and remove items that are not in the Cfi list 
from each transaction. 

6. For each fi-transaction group: 
 

• Find frequency of each Cfi item in the selected fi-
transaction group 

• If frequency(Cfi ) ≥Sl  
• F2-itemset= {Cfi} for each Cfi item  
• Else remove Cfi from the selected buffer 
• Sort F2-itemset in ascending order 
• To obtain higher frequent itemsets of F2  

for each item in F2-itemset do 
Fitemset =Higher-frequentItemset-Generate (fi-
transactions(Buffer1), F2-itemset ); 
If support(Fitemset) ≥ Sh then 
Fset=Fitemset  
Else NFset=Fitemset  

Procedure Higher-frequentItemset-Generate (fi-
transactions (Buffer1), Fn) //Fnp:pth item of Fn-itemset: 

1. Collect fi-transactions contain Fnp to a new 
temporary buffern and remove items having count ≤ 
Fnp from each transaction in the buffern, p 
initialized to 0 

2. Find frequency of each item in the selected Fnp 
transaction group 

3. F(n+1)-itemset ={Fn(p+k)|frequency(Fn(p+k)) ≥Sl}for each 
Fn(p+k) item where k=1 to (m-p) 

4. else remove Fn(p+k) from the Fnp transactions 
5. Sort F(n+1)-itemset in ascending order 
6. To obtain higher frequent itemsets of fi do 
7. if (F(n+1)-itemset≠Φ) then 
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n=n+1 & Repeat above steps 
8. else if p< sizeFn-itemset) then 
   p=p+1 & repeat above steps 
9. else remove buffern content n=n-1, p=1 
10. if n ≥ 2 repeat above steps  
11. else return Fitemset 

3.2.2. Working of Faster IAPI 

The working principle of algorithm is illustrated with a 
sample dataset having 10 transactions with 5 distinct 
items {p, q, r, s, t} shown in Table 1. It is divided into 
two horizontal partitions of size 5 transactions in each. 
Scan each transaction and count of each item in both 
partitions is recorded separately, which is given in 
Table 2. Then, calculate total count of each item and 
identify the frequent items (items with count greater 
than or equal to minimum support i.e., 50% of total 
transaction count). Next step is to find the higher 
frequent itemsets of each frequent item. This approach 
reduces the database scan and the computational 
complexity by grouping transaction containing each FI 
in to separate buffers as shown in Table 4 during the 
second database scan. To reduce the space complexity 
while forming the frequent transaction group, each 
group needs to consider only the items that are having 
count greater than its own count which is shown as co-
occurring items list in Table 3. Higher frequent itemset 
generation steps of frequent items q and p are 
illustrated in Figures 4 and 5 respectively. To facilitate 
incremental mining this algorithm uses two minimum 
support values Sh and Sl and considers itemsets having 
support greater than Sh (50%) as frequent itemsets 
(FSets) and Sl (30%) as nearly frequent itemsets 
(NFsets). Fsets and NFsets obtained from each 
transaction group are recorded separately into Tables 5 
and 6 respectively. 

Table 1. Dataset. 

Tid Transactions partition 
1 r, s, t  

 
P1 

2 p, q, s, t 
3 r, t 
4 p, s, t 
5 p, r, s, t 
6 p, q, r, s  

 
P2 

7 r, s 
8 p, r, s 
9 p, r, s, t 

10 q, s, t 

Table 2. Item Count.  

Item P1 P2 
p 3 3 
q 1 2 
r 3 4 
s 4 5 
t 5 2 

Table 3. Co-items list. 
Item Co-Items 

p r, s, t 
r s, t 
t s 

Table 4. Buffers. 
Tid Transactions  count 

Buffer p 
2, 4 s, t 2 
5,9 r, s, t 2 
6,8 r, s 2 

Buffer r 
1,5,9 s, t 3 

3 t 1 
6,7,8 s 3 

Buffer t 
1,2,4,5,9,10 s 6 

 
Figure 4. Buffer r frequent set generation steps. 

 
Figure 5. Buffer p frequent set generation steps. 

Table 5. Frequent itemsets. 

F-itemset count 
p, s 6 
r, s 6 
t, s 6 

Table 6. Nearly frequentsets. 

NF-itemset count 
p, t 4 
r, t 4 

p, r, s 4 
p, t, s 4 
r, t, s 3 

3.2.3. Incremental Mining (Phase 2) 
This algorithm is capable to accommodate newly 
arrived transactions and update the existing frequent 
itemsets without rescanning the entire datasets by 
utilizing NFsets. Incremental mining process is 
illustrated using the example given in Tables 7, 8, 9, 
10 and 11. The newly added transaction set is recorded 
in Table 7 and count of items in the new partition is 
calculated and added with the existing count to update 
the frequent items, Table 8. FI transaction groups of 
the newly added partition are collected to separate 
buffers Table 9 and find their higher frequent itemsets 
in the new partition. Then update the count of the 
existing Fset belongs to each group Table 10. If any 
existing frequent item/itemsets is found to be 
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infrequent, remove it from the Fset list and include it 
with the NFset list if it’s support≥Sl along with the 
current partition number Table 11. If any new frequent 
itemset obtained from new partition, obtain its global 
count using NFset. If not obtained from NFset, then 
conduct a possibility test using Equation 1 and if 
possible to be frequent find their global count from the 
old transaction set. 

Table 7. New transactions. 
Tid Transactions 
11 r, s, t 
12 q, s 
13 p, q, r, t 
14 q, s, t 
15 p, r, s, t 

Table 8. Updated item count. 

Item P1 P2 P3 total 
p 3 3 2 8 
q 1 2 3 6 
r 3 4 3 10 
s 4 5 4 13 
t 5 2 4 11 

Table 9. New buffers. 

 

 

 

 

 
 

 

Table 10. Updated frequent sets. 

Updated Fitemset New count 
r, s 8 
t, s 9 

Table 11. Updated NFsets. 

NF-itemset New 
count 

p, t, s 5 
r, t, s 5 
p, r, s 5 
p, r 6 
p, s 7 
p, t 6 
r, t 7 

         S*Z+(Pc-Pi-1)(U*Z-1)+L*Pi*Z-1≥Pc*U*Z                 (1) 

Where Pi no. of partitions used for initial pattern 
generation, Pc current partition no, Z Partition size, L 
Lower minimum support, U Upper minimum support, 
S new Fset support in new partition. 
 
3.2.4. Accommodation of Behavioural Changes 
          (Phase 3) 
After a certain period, the behaviour/purchase patterns 
may change. Thus to reflect the behavior change older 
transactions (partitions) must be removed as shown in 
Table 12. After the partition removal the occurrence 

frequency of each item may change and due to the 
heterogeneity of the dataset, there is a chance of new 
frequent itemsets to occur with the existing frequent 
items. To update the frequent itemsets first update the 
count of each item by deducting the count of each item 
in that partition from the total count as shown in Table 
13. If any existing FI becomes infrequent, remove it 
from the frequent itemset and if any new FI occurred, 
find its higher frequent itemsets by rescanning the 
remaining partitions. Updated item count recorded in 
Table 13 shows that a new FI q is generated. Now 
update the co-item list as shown in Table 14 and find 
the higher frequent itemsets of the newly formed FI q 
by collecting transactions containing item q from the 
entire dataset into buffer q as shown in Table 15. Next 
to update the count of Fset and NFset, find their count 
in the removed partition buffers as shown in Table 17 
and deduct them from the previous count. Finally 
update the frequent and nearly frequent itemset list 
based on the updated count as shown in Tables 16 and 
18. 

Table 12. Updated dataset. 
Tid Transactions Partition 

6 p, q, r, s  
 

P2 
7 r, s 
8 p, r, s 
9 p, r, s, t 

10 q, s, t 
11 r, s, t  

 
P3 

12 q, s 
13 p, q, r, t 
14 q, s, t 
15 p, r, s, t 

Table 13. Updated Item count. 

Item P2 P3 total 
p 3 2 5 
q 2 3 5 
r 4 3 7 
s 5 4 9 
t 2 4 6 

Table 14. Updated co-item list. 
Item Co-Items 

p r, s, t 
r s, t 
t s 
q p, r, s, t 

Table 15. New buffer q. 

Tid Transactions with item q 
6 p, q, r, s 

10,14 q, s, t 
12 q, s 
13 p, q, r, t 

Table 16. Updated fset. 

Updated 
Fitemset 

New count 

r, s 6 
t, s 5 
p, r 5 

 

 

Tid Transactions  
Buffer p 
13 r, t 
15 r, s, t 
Buffer r 
11  s, t 
13  t 
15  s, t 
Buffer t 
11 s 
14 s 
15 s 
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Table 17. Removed Buffers. 

Tid Transactions 
Buffer p 

2,4 t, s 
5 r, t, s 

Buffer r 
1,5 t, s 
3 t 

Buffer t 
1,2,4,5 s 

Table 18.Updated NF-sets. 
 
 
 
 
 
 
 

3.2.5. Interactive Mining (Phase 4) 

Finding an appropriate support value for a dataset is a 
challenging task. It is better to provide the users with 
the facility to change the support value as per their 
requirements. Interactive mining provides the user to 
interactively adjust minimum support value. 

1. When user increase the preset Sh value, choose the 
itemsets with support≥ new support as Fset from the 
existing frequent set and shift others to the NFset 
list and record their partition number (Pn) as last 
partition number. 

2. When the user reduces the Sh value, select the 
itemsets having support≥ new support from the 
existing NFset and include it along with the existing 
Fset list.  

3. If the Partition number (Pn) of any of itemset in the 
NFset is less than the current partition number (Pc), 
then find their count in the remaining partitions 
(Pn+1, Pn+2,…, Pc) to get the total count and identify 
the newly formed Fsets. 

4. Also choose the items having count greater than or 
equal to the newly set support count as frequent 
items and find their frequent supersets from the 
entire database 

3.3. Parallel IAPI Algorithm 
Parallel IAPI algorithm generates higher frequent 
itemsets of n FI in parallel manner using multiple 
processors. Thus, time requirement for higher frequent 
itemset generation get reduced to 1/nth of frequent 
itemset generation time of Faster IAPI. In this 
approach count of each item in each partition are 
obtained by n LP simultaneously and send them to the 
MP. Then MP calculates their global count and 
identifies the frequent items (support≥Sh). Also 
prepare a co-occurring item list, Cf for each frequent 
item. For higher frequent itemset generation MP 
assigns separate LPs for each frequent item, and then 
MP rescans the database and broadcasts each 

transaction to all LPs. Further there is no 
communication required between LP and MP. LP 
collect the transactions containing the assigned FI and 
select only the co-occurring items of the assigned fi 
from each transaction for higher frequent itemset 
generation using IAPI approach. Parallel IAPI requires 
no communication among LPs, thus very less 
communication overhead. Parallel IAPI Algorithm 
steps of each phase are given in following sections. 

3.3.1. Working of Parallel IAPI 

The working of parallel IAPI can be illustrated using 
the same sample dataset given in Table 1. Consider 
that there are three processors Pr1 and Pr2 and Pr3 
and Pr1 and Pr2 are considered as LP and Pr3 as MP. 
In Phase 1 during the first database scan Pr1 and Pr2 
calculate the item count concurrently and submit to Pr3 
to find global frequent itemsets as shown in Table 2. 
Then, Pr3 generates co-occurring item list of each item 
as shown in Table 3 and assign Pr1 and Pr2 to find the 
higher itemsets of frequent items p and r. Pr3 scans 
database second time and send each transaction to both 
the processors for the buffer storage as shown in Table 
4. Then, higher frequent itemsets of items r and p are 
generated in parallel as shown in Figures 4 and 5. Item 
t has only one co-item, thus its count can be directly 
obtained from buffer t. All Fset and NFset generated 
are consolidated at processor Pr3 as shown in Tables 5 
and 6).  

In incremental mining (Phase 2) the count of each 
item in the newly added partition as shown in Table 7 
is calculated at Pr3 and added with the previous count 
as shown in Table 8 to identify the present frequent 
items. FI buffers in the newly added partition as shown 
in Table 9 are generated and frequency of the higher 
frequent itemsets is obtained by Pr1 and Pr2. Higher 
frequent itemsets count in the new partition is added 
with the previous count by Pr3 to update the frequency 
of the existing Fset and NFset as shown in Tables 10 
and 11. New patterns may get generated on adding 
new transactions made by the new customers as well 
due to the change in purchase behavior. Thus to reflect 
the pattern changes Phase 3 old transactions may be 
removed as shown in Table 12 and update the frequent 
patterns. Frequent pattern updating procedure is same 
as that used in Faster IAPI. Count of individual items 
in the removing partition is calculated by Pr3. Further 
the frequency of the existing frequent itemsets in the 
removed partition is obtained by the LP as shown in 
Table 17 and is deducted from the previous count by 
MP. Higher frequent itemsets of newly created 
frequent items (F1new) is obtained by scanning the 
remaining partitions by Pr3 in coordination with Pr1 a 
Pr nd 2 as shown in Table 15 and update the Fset and 
NFset as shown in Tables 16 and 18. 

 

NF-itemset New count 
p, t, r 3 
r, t, s 3 
p, r, s 4 
p, s 4 
p, t 3 
r, t 4 
q, s 3 
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3.3.2. Parallel IAPI Frequent Itemset Generation 
Steps (Phase 1) 

Input: 

• D: Transaction database contain N transactions (T1, 
T2, …. TN), horizontally partition D into n non-
overlapping partitions (P1, P2, …, Pn) and sort the 
items of each transaction in the order of item code.  

• Sl: Low minimum support value. 
• Sh: User selected minimum support (Sh > Sl). 

 

Output: 
 

Complete set of frequent itemsets: 

1. For each LP do 
Read local partition, find local 
frequency flocal(i) and send to MP for each item i; 

2. In MP  

• F1-itemset ={i | ∑ flocal(i) ≥ Sh for each i} 
• Sort F1-itemset in ascending order F1-sorted ={f1, 

f2,…,fm}. 
• Prepare co-occurring itemset list  

  Cfi={fi+1,fi+2,..., fm} 
   |count(fi+1,fi+2,…, fm) ≥ count(fi)} for each fi and 
send to LP(i) 

• Read each transaction of D and send to LP. 

3. For each LP do 

• Collect transactions contain FI fi in to buffer1 and 
remove items that are not in the Cfi list from each 
transaction. 

• Find frequency of each Cfi item in the selected fi-
transaction group 

• If frequency(Cfi ) ≥ Sl  
   F2-itemset={Cfi } for each Cfi item  

• Else remove Cfi from the selected buffer. 
• Sort F2-itemset in ascending order. 
• To obtain higher frequent itemsets of fi. 

 Fitemset = Higher-frequentItemset-Generate 
(fi-transactions(Bufferi), F2-itemset ); 

• Send Fitemset to the MP. 

4. In MP  

Fset = Fitemset │(support ≥ Sh) 
Else NFset = Fitemset  

3.3.3. Incremental Mining Steps (Phase 2) 

1. In MP 
 

• Read each transaction in the new partition (Pnew) 
and update the count of each item i. 

• n = n+1, update F1-itemset. 
• If F1new then set Cfnew ⊃ Cf1 and update existing 

Cf.  

• Collect transactions contain F1new item from all 
the partitions and find its higher frequent 
itemsets.  
 

2. In each LP do 
 

• Read each transaction of Pnew and follow the 
same procedure of higher frequent itemset 
generation. 

• Send all frequent itemsets to the MP. 
 

3. In MP 
 

• Update existing Fset and NFset. 
• If any of the existing Fset is not updated rescan 

Pnew and update it. 
• If any existing Fset become infrequent shift to 

NFset list, similarly any existing NFsets become 
frequent do vice versa. 

• If Fsetnew in Pnew, conduct possibility test and if 
possible to be frequent find its global count by 
rescanning the previous partitions. 
 

3.3.4. Accommodation of Behavioural Changes 
(Phase 3) 
 

1. Remove partition P1 and update each item count 
TCount(i)=Count(i)–P1Count(i) for each i and 
identify the current frequent items; 

2. If F1new then set Cfnew⊃Cf1 and update existing Cf. 
3. Collect transactions contain F1new item from all the 

remaining partitions and find its higher frequent 
itemsets. 

4. Find the count of existing Fset and NFset in the 
removing partition and deduct it from existing 
count. 

5. If any existing Fset become infrequent shift it to 
NFset list, similarly any existing NFsets become 
frequent do vice versa. 

3.3.5. Interactive Mining (Phase 4) 

Pn: Last updated partition number of NFset. 
Pc: Current partition number. 
Shnew: Newly set minimum support by user. 

1. If Shnew>Sh 

For each Fset  
If Support(Fset)<Shnew shift to NFset 

2. If Shnew < Sh 

• For each NFset  
 If Pn < Pc then for Pn+1 to Pc find the 
support(NFset) 
if support(NFset) ≥ Shnew shift to Fset 

• For each i if count(i) ≥Shnew shift to F1-itemset then 
 

a. If F1new then set Cfnew⊃ Cf1 and update existing 
Cf. 
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b. Collect transactions contain F1new item from 
all the partitions and find its higher frequent 
itemsets.  

4. Experimental Results and Performance 
Analysis 

Functionalities and effectiveness of the proposed IAPI 
algorithms were tested with market basket datasets 
T10I4D100K prepared by IBM Almaden Quest 
research group and a Synthetic dataset. This algorithm 
is developed and tested on Intel (i3), 3.2 GHz CPU 
having 4 GB RAM with Microsoft Windows 7 OS 
using NetBeans IDE 7.0.0 and MySQL Server 4.1. 
Execution time and memory utilization are compared 
for various support threshold values with differently 
sized partitions as well as with different number of 
partitions in both datasets. 

Experimental results show that execution time is 
directly proportional to the size of the dataset when the 
minimum support value remains constant as shown in 
Figure 6. Faster IAPI requires only two database scan 
for frequent itemset generation where as IAPI Quad-
filter requires (n+1) database scans if there are n 
frequent 1-itemsets. Thus initial pattern creation time 
of Faster IAPI is less compared with IAPI Quad filter. 
Updating of the frequent sets on addition of new data 
and deletion of old data requires less time compared 
with the initial pattern creation time. From the test 
results it is observed that updating time is related with 
the heterogeneity of the data, i.e., if new frequent 1-
itemset generated, then it requires entire database scan, 
else previous information can be used and require less 
time (5%-30% of the initial pattern creation time) 
depends on the number of FI sets as shown in Figure 7. 
It is also observed that, when the support threshold 
reduces, the number of frequent items increases, thus 
execution time required is more. Due to heterogeneity 
of dataset there are chances of reducing the number of 
frequent items, even though the dataset size increases. 
The test results illustrate that the execution time and 
the memory requirement of both sequential and 
parallel IAPI directly depend on the number of 
frequent items in the dataset. Graphical representations 
of the test results of IAPI are shown in Figures 6, 7 and 
8.  

 
Figure 6. Execution time comparison. 

 
Figure 7. Partition add, delete, support change time comparisons. 

 
Figure 8. Comparison of FPM algorithms. 

4.1. Performance Comparison 
Performance of Faster-IAPI is compared with popular 
algorithms: Apriori, Partition Algorithm, DIC, 
CanTree and IMBT using T10I4D100K dataset and a 
synthetic dataset. Speed of execution of Faster-IAPI is 
faster and the memory requirement of IAPI is lesser 
than other algorithms as shown in Figure 8. Though 
partition algorithm is designed for very large dataset, 
due to large number of independent local frequent sets 
generated for dense datasets, it requires more memory 
and computational delay; thus there is limitation in 
dataset size. For updating the frequent patterns, it is 
required to keep all local frequent sets in memory; also 
if the user wishes to change the support value, the 
rescanning of the entire database is required for 
updating the frequent sets. Since IAPI is not generating 
any local frequent sets, it is suitable for both dense and 
sparse datasets. 

 
Figure 9. Parallel FPM comparisons. 

DIC requires less time for updating the frequent 
patterns on addition of new datasets and the removal of 
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old transactions compared with IAPI. But the main 
difficulty with DIC is that it has to keep the count of 
all possible subsets in the entire transaction set; thus it 
consumes more memory. Subset generation introduces 
more computational cost and requires 40 to 50 times 
more time than IAPI for the initial frequent set 
generation. CanTree is suitable for both incremental 
and interactive mining. It keeps the entire transactions 
in the CanTree for preparing frequent itemsets; thus it 
requires 2 to 3 times more memory than IAPI. CanTree 
requires re-construction of FP tree for each FI for 
every addition, deletion as well as the support change 
cases, which may lead to more computational delay. It 
is observed that IMBT tree requires more time to 
create and more memory to store the entire tree. Thus 
it may not be suitable for datasets having more number 
of distinct items. This approach does not need not to 
predetermine the minimum support threshold and 
scans the database only once. IMBT requires less time 
to update the frequent sets on addition and deletion of 
data than IAPI algorithms. Performance of Parallel-
IAPI is tested with two parallel algorithms Parallel-
IMBT and parallel-Apriori using multi-threading and 
multi-processing systems as shown in Figure 9. 
Parallel-IAPI generates frequent itemsets in less time 
and requires less memory compared with Parallel-
IMBT and Parallel-Apriori. 

5. Conclusions 
To extract knowledge from the real life databases, 
efficient incremental and interactive FPM approaches 
of very large databases are required. This study 
proposes incremental and interactive mining 
algorithms with partitioning approach, designed to 
obtain frequent patterns from a very large sized dataset 
in sequential and parallel manner. This approach 
generates frequent sets without generating candidate 
sets/local frequent itemsets in two database scans with 
simple data structures. It combines the features of 
various algorithms such as Apriori, FP-Growth, 
CARMA and Partitioning algorithm to obtain frequent 
itemsets. The length and the number of transaction to 
be compared at each level of higher frequent sets get 
reduced due to four level filtering approaches. Thus, 
30% to 50% of data comparisons reduction is achieved 
at each level (n-itemsets to (n+1)-itemsets). This 
approach uses two bounds (low, high) for minimum 
support to incrementally update the frequent set 
without rescanning the entire dataset. This study 
illustrates that the proposed methods are capable to 
prepare more accurate user spending profile and 
market analysis with less time and space complexities 
compared with the existing techniques. 
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