
The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 175

Efficient Adaptive Frequent Pattern Mining
Techniques for Market Analysis in Sequential and

Parallel Systems
Sherly Kuriakose1 and Raju Nedunchezhian2

1Department of Information Technology, Rajagiri School of Engineering and Technology, India
2Department of Computer Science and Engineering, Coimbatore Institute of Technology, India

Abstract: The classical applications of Association Rule Mining (ARM) are market analysis, network traffic analysis, and web
log analysis where strategic decisions are made by analyzing the frequent itemsets from a large pool of data. Datasets in such
domains are constantly updated and as they require an efficient Frequent Pattern Mining (FPM) algorithm which is capable of
extracting the required information. Several incremental algorithms have been proposed to generate frequent patterns, but
they are ineffective with very large datasets and do not provide the user interaction to adjust the minimum support value. This
paper first presents an efficient interactive sequential FPM algorithm that uses the knowledge gained in the previous mining
steps to incrementally mine the updated database with fewer complexities. Then to further reduce the time complexity it
proposes an efficient interactive and incremental parallel mining algorithm. It also prepares incremental frequent patterns,
without generating local frequent itemsets with less communication and synchronization overheads.

Keywords: Association rule, frequent pattern mining, interactive mining, incremental mining, parallel mining.

Received June 30, 2014; accepted August 31, 2014

1. Introduction
Evolution of technology and globalization create the
subsequent acceleration of information flow. Thus,
extraction of knowledge from the large pool of
information is becoming a very difficult task. The
rapid advancement in electronic commerce increases
online transactions every year. Organizations store
their ever-increasing day-to-day transactional details in
their transaction databases. Data mining prepares
models by analyzing the hidden relationships among
stored data and deals with the problems that arise with
large data repositories.

The classical application of Association Rule
Mining (ARM) is market-basket analysis that has been
used to predict customer purchasing/spending behavior
by analyzing the frequent itemsets in a large pool of
transactions. Frequent patterns are a set of all subsets
of items that frequently appear together in a dataset.
Frequent Pattern Mining (FPM) plays a key role to
obtain associations and correlations among items in a
large transactional dataset [2]. As the amount of
transactions increases it becomes very difficult to
determine the frequent patterns with less time and
space complexities. Scalability is one of the main
requirements of an FPM algorithm. Some of the
algorithms address the space complexity problem of
very large database using partitioned database
approach [14]. Partitioned algorithms generate all
possible large itemsets from each partition in a
sequential manner in the first scan, which may

contain false positives (globally infrequent). During
the second scan they remove the false positives and the
global frequent sets are generated. The occurrence of
false positives may lead to space complexity and time
complexity for very large database. Thus, sequential
algorithms [2, 7, 12] can provide scalability and very
good performance up to a certain database size limit.
Hence, parallel mining approaches [1, 5, 6] are
required to provide scalability in massive data stores in
an efficient manner.

As the day to day transaction details get added to
the transactional database, database becomes dynamic
and incremental updating of frequent patterns is
required. Also there is possibility for change in the
customer’s purchase behavior due to the change in life
style as well as addition of new customers. Thus to
reflect the current status of database, old patterns must
be removed and new patterns might appear. Many of
the FPM algorithms [2, 7, 12, 14] prepare static
patterns and use them for long term predictions; but
those may not be capable to accommodate the
behavioral changes in the incremental database. Thus
dynamic algorithms [3, 4, 8, 9] that are capable of
incremental and interactive mining with less
computational cost are essential for an incremental
database. The essential key feature of an incremental
algorithm is to reuse the previously mined information
and combine this information with the new data to
incrementally update the frequent itemsets without
rescanning the entire database.

176 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

The objective of this research is to develop FPM
algorithms which are efficient, scalable, faster and
dynamic to support behavioral changes using both
sequential and parallel approaches. Sherly [15]
proposes Interactive and Adaptive Partitioned
Incremental (IAPI) FPM (IAPI Quad-Filter) algorithm
for incremental FPM in large databases to solve the
space and computational complexity. But it requires
more than two database scan (equivalent to the number
of frequent items), thus the data fetching time is fairly
high. This paper proposes two incremental FPM
algorithms (modified IAPI versions) capable of
generating large itemsets from an incremental massive
data store in two database scans and incrementally
update the frequent itemsets without rescanning the
entire database using sequential and parallel
approaches with a system having fairly good storage
and computing capability.

1.1. Overview of the Proposed Algorithms
IAPI type of algorithms use a database partitioning
approach to produce frequent itemsets without
generating local frequent itemsets. In these approaches,
transaction items are pre-processed and arranged
according to the item code; thus individual item
counting and count comparisons are made faster.
Rather than fixing single minimum support value IAPI
Quad-filter uses a range of support values (low, high)
for making the dynamic and the interactive mining
faster. It logically divides the dataset into small sized
non-overlapping horizontal partitions of user specified
sizes so that each partition can be accommodated in the
main memory. To reduce the computational cost, I/O
overhead as well as space complexity, each Frequent
Item (FI) transaction group is collected separately and
four level filtering is done to remove infrequent items
[15].

Unlike Apriori [2] in IAPI, the number of
transaction to be compared and their length both get
reduced in finding higher frequent itemsets. This
method is capable to incrementally update the database
to accommodate the customer behavioural changes.
IAPI also provides the user with the facility to
interactively adjust the minimum support value as per
one’s own convenience. To find the higher frequent
itemsets, IAPI Quad-filter collects each FI transaction
groups separately one after the other, thus the number
of database scans required is the number of frequent 1-
itemsets, which is fairly high. Thus this approach is
best suited with systems having low memory capacity.
To improve the performance, this paper proposes
another algorithm Faster-IAPI, which generates
frequent patterns in two database scans only. It collects
all the FI transaction groups simultaneously in one
database scan; but the down side is that it requires
more memory (multiple memory buffers) to hold the
different FI transaction groups. Then the higher

frequent itemsets of each transaction groups are
obtained sequentially.

Speed of operation in very large dataset can be
further improved using parallel mining approach. Thus
a second algorithm Parallel-IAPI is suggested for
shared memory multi processor systems. This method
finds the higher frequent itemsets of all frequent 1-
itemsets simultaneously using parallel processors. In
this approach each Local Processor (LP) finds the local
partition count of each item and sends it to Master
Processor (MP) to obtain their global count. MP
identifies the frequent 1-itemsets and sends the count
of all frequent items to each LP and assigns them to
obtain higher frequent itemsets of each item. LP
collect the transaction groups of assigned FI with their
co-occurring items (items having count greater than it)
and find their higher frequent itemsets concurrently
using the IAPI approach. The main attraction of this
approach is that each LP work independently for
higher frequent itemset generation; thus there is very
less communication overhead. Figures 1 and 2
describes the frequent itemset generation procedures of
Faster-IAPI and Parallel-IAPI respectively.

Figure 1. Functional block diagram of Faster-IAPI.

Figure 2. Functional block diagram of parallel-IAPI.

This paper is organized as follows. Section 2
describes related work on different FPM algorithms.
Section 3 presents the proposed algorithms with the
details of the various phases of the algorithms and their
functionalities are described using sample data.
Section 4 gives the details of experiments conducted
and performance analysis. Section 5 concludes the
paper.

2. Related Works
The popular algorithm Apriori [2] forms the
foundation for static frequent pattern mining. The
major problem of Apriori is that it has to read the

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 177

entire database in every pass, although many items and
transactions are no longer needed in later passes. It
generates candidate itemsets iteratively, which makes
the computational cost very high. Instead of using
generate and test paradigm of Apriori, FP-tree
approaches [7, 8, 10] encode the dataset using a
compact tree structure and directly extracts the
frequent itemsets from this structure. Thus tree
approaches outperform Apriori-like approaches by
generating frequent patterns without producing
candidate sets. But it has to generate conditional
pattern bases and sub-conditional pattern tree
recursively.

To obtain frequent sets from very large datasets
with low memory utilization, [14] suggests a
partitioning algorithm which generates frequent
itemsets in two database scans. During the first scan, it
identifies the local frequent item-sets from each
partition and in the second scan it estimates the global
frequent sets. This algorithm is highly dependent on
the heterogeneity of the database and may generate too
many independent local frequent itemsets. To analyze
the problem of market basket data, [4] presents an
algorithm DIC which uses fewer passes over the data
than classical algorithms to find the frequent itemsets.
It provides the flexibility to add and delete counted
itemsets on the fly. Downside of DIC is that it is
sensitive to the homogeneity of data.

An interactive mining algorithm, Continuous
Association Rule Mining Algorithm (CARMA) [9]
requires two database scans to produce large itemsets.
CARMA provides a lower and upper bound for its
support for each set. Thus, the user can interactively
adjust the support and confidence at any time. A
dynamic algorithm CanTree [10] facilitates
incremental mining as well as interactive mining. In
this approach, the items in each transaction are
arranged in a canonical order and the entire
transactions are stored in a tree structure with one
database scan. The construction of CanTree is
independent of the threshold values. Thus, interactive
mining is possible without rescanning the entire
database. A novel tree structure called CP-tree [16],
which creates incremental frequent patterns with the
support of interactive mining in one database scan.
First phase inserts transactions into CP-tree and second
phase rearranges the items according to the frequency
order. Since items are arranged in the ascending order,
CP-tree has less number of nodes compared to
CanTree. But tree reconstruction introduces additional
computations. To reduce the time of restructuring a
new prefix tree structure proposed in [8]. An
Incremental Mining Binary Tree (IMBT) algorithm is
presented in [19] in which each node of the tree
represents one of all the possible combinations of
items in the entire dataset. It processes a transaction at
a time and record the possible itemsets in the
respective nodes, thus reduces the processing and I/O

time but requires more memory to keep all
combinations of items in the database. To reduce the
search space and model size in evolving database,
YAMI (YAMI is derived from the names of the
Authors) [18] a dynamic ARM algorithm is
developed. It uses a shocking interestingness measure
as a constraint to discover rules that are interesting for
the user.

A potential solution for improving the performance
and scalability in FPM from very large database is to
parallelize the mining algorithms. An algorithm
Parallel Data Mining (PDM) is proposed [13] for
parallel mining which is an adaptation of the Direct
Hashing and Pruning (DHP) algorithm [12] in the
distributed environment. In PDM each node computes
the globally large itemsets by exchanging the support
counts of the candidate sets. Downside of this is that
O(n2) messages are required for support count
exchange among n nodes for each candidate set.
Another algorithm Count Distribution (CD) [1], which
is an adaptation of the Apriori algorithm, is proposed
for the same parallel mining environment. This
algorithm also has the similar problems. A tree-
partition algorithm for parallel mining of frequent
patterns on shared-memory structures is presented in
[5]. It builds one FP-Tree of the entire database, then
partitions it into several independent parts and
distributes them to different threads. This approach
uses a Master/Slave Model. The parallel
implementation of Apriori algorithm based on
MapReduce framework [11] is suggested for
processing huge datasets using a large number of
computers. But these parallel algorithms are not
suitable for incremental database. An incremental,
interactive and parallel mining technique for shared
memory multiprocessor system is designed in [17] for
incremental mining. This approach is based on the
adaptive tidlist interval distribution technique, which
continuously assigns partitions of the tidlist among the
different processors. A parallel IMBT structure is
proposed in [3] to enumerate the support count of each
itemset in an efficient way after the new transactions
are added or deleted.

3. Proposed Algorithms
3.1. Problem Definition
Let D be a database with N number of transactions. Let
I be the item domain, {I1, I2, ..., Iq}. The problem is to
identify all interesting frequent patterns in an
interactive and incremental manner with fewer
complexities. A partition P⊆D of the database refers to
any subset of the transactions contained in the database
D. Initially the database D is logically partitioned into
n non-overlapping partitions of size Z, i.e., Pi∩Pj = Φ,
i≠j. Two minimum support values used here are: Sl, Sh
namely, lower minimum support value and upper

178 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

minimum support value. It creates two category
itemsets: Frequent (Fset), Nearly Frequent (NFset).
Itemset X is Frequent if support(X)≥Sh and Nearly
frequent if Sl≤ support (X)≤ Sh. Pn represents a
partition number at which a NFset has been last
updated. Let F1-itemset be the frequent 1-item domain,
F1-itemset={f1, f2, ..., fm}in the ascending order of
occurrence count. Each FI is associated with a co-
occurring item set list Cf, {Cf1, Cf2, ..., Cfm-1} refers to
the list of items to be considered along with each FI to
find the higher frequent itemsets, where as Cf1 be the
co-occurring item list of FI f1 i.e., Cf1={f2, f3,..., fm}. In
general: Cfi = {{fi+1, fi+2, ..., fm} |frequency(fi+1, fi+2,…,
fm)≥ frequency(fi)} i.e., Cf1⊃Cf2⊃, ..., ⊃Cfm-1, it
indicates that as the frequency of occurrence is more
the number of co-occurring items considered for
frequent itemset mining get reduced.

3.2. Faster-IAPI Algorithm
This algorithm has all the features of IAPI Quad-filter
and has four phases. The first phase generates the
frequent itemsets from the large history database. The
second phase accommodates the newly arrived
transactions to the existing set and updates the frequent
itemsets to provide incremental mining. The third
phase removes the old transactions after a preset time
period and modifies the patterns to accommodate the
behavioural changes. The last phase provides the
facility to interactively adjust minimum support value
as per the user’s requirement. In the first scan, Faster
IAPI adopts the same method of IAPI Quad-filter and
generates frequent 1-itemsets. To generate higher
frequent itemsets, do the second scan of database and
collect only frequent items from each transaction.
Then, form separate transaction set groups of each FI
and keep only the corresponding co-occurring items of
each transaction group in separate buffers as shown in
Figure 3. Also eliminate the similar transaction entry
in each transaction group (compress the transaction
set) by recording the occurrence count, then find the
frequent items in the selected group and eliminate
others. Higher frequent itemsets are obtained from
each buffer sequentially using IAPI Quad-filter
approach as shown in Figure 3. Frequent itemset
generation steps of Faster-IAPI algorithm are given
below.

Figure 3. Frequent set generation.

3.2.1. Faster-IAPI Frequent Item Set Generation
Steps (Phase 1)

Input:

• D: Transaction database contain N transactions (T1,
T2, …, TN), horizontally partition D into n non-
overlapping partitions (P1, P2, …, Pn) and sort the
items of each transaction in the order of item code.

• Sl: Low minimum support value
• Sh: User selected min. support (Sh > Sl)

 Output:

Complete set of frequent itemsets

1. For each partition do
Read each transaction and find frequency flocal(i)

for each item i;
2. Identify frequent 1-itemsets F1-itemset ={i | ∑ flocal(i)

≥ Sh for each item i}
3. Sort F1-itemset in ascending order F1-sorted ={f1, f2, …,

fm}
4. Prepare co-occurring item set list Cfi = {{fi+1, fi+2,

…, fm}|frequency(i+1, fi+2, …, fm) ≥ frequency(fi)} for
each fi

5. Read each transaction of D and do
Collect transactions contain each fi in to separate

buffers and remove items that are not in the Cfi list
from each transaction.

6. For each fi-transaction group:

• Find frequency of each Cfi item in the selected fi-
transaction group

• If frequency(Cfi) ≥Sl
• F2-itemset= {Cfi} for each Cfi item
• Else remove Cfi from the selected buffer
• Sort F2-itemset in ascending order
• To obtain higher frequent itemsets of F2

for each item in F2-itemset do
Fitemset =Higher-frequentItemset-Generate (fi-
transactions(Buffer1), F2-itemset);
If support(Fitemset) ≥ Sh then
Fset=Fitemset
Else NFset=Fitemset

Procedure Higher-frequentItemset-Generate (fi-
transactions (Buffer1), Fn) //Fnp:pth item of Fn-itemset:

1. Collect fi-transactions contain Fnp to a new
temporary buffern and remove items having count ≤
Fnp from each transaction in the buffern, p
initialized to 0

2. Find frequency of each item in the selected Fnp
transaction group

3. F(n+1)-itemset ={Fn(p+k)|frequency(Fn(p+k)) ≥Sl}for each
Fn(p+k) item where k=1 to (m-p)

4. else remove Fn(p+k) from the Fnp transactions
5. Sort F(n+1)-itemset in ascending order
6. To obtain higher frequent itemsets of fi do
7. if (F(n+1)-itemset≠Φ) then

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 179

n=n+1 & Repeat above steps
8. else if p< sizeFn-itemset) then
 p=p+1 & repeat above steps
9. else remove buffern content n=n-1, p=1
10. if n ≥ 2 repeat above steps
11. else return Fitemset

3.2.2. Working of Faster IAPI

The working principle of algorithm is illustrated with a
sample dataset having 10 transactions with 5 distinct
items {p, q, r, s, t} shown in Table 1. It is divided into
two horizontal partitions of size 5 transactions in each.
Scan each transaction and count of each item in both
partitions is recorded separately, which is given in
Table 2. Then, calculate total count of each item and
identify the frequent items (items with count greater
than or equal to minimum support i.e., 50% of total
transaction count). Next step is to find the higher
frequent itemsets of each frequent item. This approach
reduces the database scan and the computational
complexity by grouping transaction containing each FI
in to separate buffers as shown in Table 4 during the
second database scan. To reduce the space complexity
while forming the frequent transaction group, each
group needs to consider only the items that are having
count greater than its own count which is shown as co-
occurring items list in Table 3. Higher frequent itemset
generation steps of frequent items q and p are
illustrated in Figures 4 and 5 respectively. To facilitate
incremental mining this algorithm uses two minimum
support values Sh and Sl and considers itemsets having
support greater than Sh (50%) as frequent itemsets
(FSets) and Sl (30%) as nearly frequent itemsets
(NFsets). Fsets and NFsets obtained from each
transaction group are recorded separately into Tables 5
and 6 respectively.

Table 1. Dataset.

Tid Transactions partition
1 r, s, t

P1

2 p, q, s, t
3 r, t
4 p, s, t
5 p, r, s, t
6 p, q, r, s

P2

7 r, s
8 p, r, s
9 p, r, s, t

10 q, s, t

Table 2. Item Count.

Item P1 P2
p 3 3
q 1 2
r 3 4
s 4 5
t 5 2

Table 3. Co-items list.
Item Co-Items

p r, s, t
r s, t
t s

Table 4. Buffers.
Tid Transactions count

Buffer p
2, 4 s, t 2
5,9 r, s, t 2
6,8 r, s 2

Buffer r
1,5,9 s, t 3

3 t 1
6,7,8 s 3

Buffer t
1,2,4,5,9,10 s 6

Figure 4. Buffer r frequent set generation steps.

Figure 5. Buffer p frequent set generation steps.

Table 5. Frequent itemsets.

F-itemset count
p, s 6
r, s 6
t, s 6

Table 6. Nearly frequentsets.

NF-itemset count
p, t 4
r, t 4

p, r, s 4
p, t, s 4
r, t, s 3

3.2.3. Incremental Mining (Phase 2)
This algorithm is capable to accommodate newly
arrived transactions and update the existing frequent
itemsets without rescanning the entire datasets by
utilizing NFsets. Incremental mining process is
illustrated using the example given in Tables 7, 8, 9,
10 and 11. The newly added transaction set is recorded
in Table 7 and count of items in the new partition is
calculated and added with the existing count to update
the frequent items, Table 8. FI transaction groups of
the newly added partition are collected to separate
buffers Table 9 and find their higher frequent itemsets
in the new partition. Then update the count of the
existing Fset belongs to each group Table 10. If any
existing frequent item/itemsets is found to be

180 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

infrequent, remove it from the Fset list and include it
with the NFset list if it’s support≥Sl along with the
current partition number Table 11. If any new frequent
itemset obtained from new partition, obtain its global
count using NFset. If not obtained from NFset, then
conduct a possibility test using Equation 1 and if
possible to be frequent find their global count from the
old transaction set.

Table 7. New transactions.
Tid Transactions
11 r, s, t
12 q, s
13 p, q, r, t
14 q, s, t
15 p, r, s, t

Table 8. Updated item count.

Item P1 P2 P3 total
p 3 3 2 8
q 1 2 3 6
r 3 4 3 10
s 4 5 4 13
t 5 2 4 11

Table 9. New buffers.

Table 10. Updated frequent sets.

Updated Fitemset New count
r, s 8
t, s 9

Table 11. Updated NFsets.

NF-itemset New
count

p, t, s 5
r, t, s 5
p, r, s 5
p, r 6
p, s 7
p, t 6
r, t 7

 S*Z+(Pc-Pi-1)(U*Z-1)+L*Pi*Z-1≥Pc*U*Z (1)

Where Pi no. of partitions used for initial pattern
generation, Pc current partition no, Z Partition size, L
Lower minimum support, U Upper minimum support,
S new Fset support in new partition.

3.2.4. Accommodation of Behavioural Changes
 (Phase 3)
After a certain period, the behaviour/purchase patterns
may change. Thus to reflect the behavior change older
transactions (partitions) must be removed as shown in
Table 12. After the partition removal the occurrence

frequency of each item may change and due to the
heterogeneity of the dataset, there is a chance of new
frequent itemsets to occur with the existing frequent
items. To update the frequent itemsets first update the
count of each item by deducting the count of each item
in that partition from the total count as shown in Table
13. If any existing FI becomes infrequent, remove it
from the frequent itemset and if any new FI occurred,
find its higher frequent itemsets by rescanning the
remaining partitions. Updated item count recorded in
Table 13 shows that a new FI q is generated. Now
update the co-item list as shown in Table 14 and find
the higher frequent itemsets of the newly formed FI q
by collecting transactions containing item q from the
entire dataset into buffer q as shown in Table 15. Next
to update the count of Fset and NFset, find their count
in the removed partition buffers as shown in Table 17
and deduct them from the previous count. Finally
update the frequent and nearly frequent itemset list
based on the updated count as shown in Tables 16 and
18.

Table 12. Updated dataset.
Tid Transactions Partition

6 p, q, r, s

P2
7 r, s
8 p, r, s
9 p, r, s, t

10 q, s, t
11 r, s, t

P3

12 q, s
13 p, q, r, t
14 q, s, t
15 p, r, s, t

Table 13. Updated Item count.

Item P2 P3 total
p 3 2 5
q 2 3 5
r 4 3 7
s 5 4 9
t 2 4 6

Table 14. Updated co-item list.
Item Co-Items

p r, s, t
r s, t
t s
q p, r, s, t

Table 15. New buffer q.

Tid Transactions with item q
6 p, q, r, s

10,14 q, s, t
12 q, s
13 p, q, r, t

Table 16. Updated fset.

Updated
Fitemset

New count

r, s 6
t, s 5
p, r 5

Tid Transactions
Buffer p
13 r, t
15 r, s, t
Buffer r
11 s, t
13 t
15 s, t
Buffer t
11 s
14 s
15 s

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 181

Table 17. Removed Buffers.

Tid Transactions
Buffer p

2,4 t, s
5 r, t, s

Buffer r
1,5 t, s
3 t

Buffer t
1,2,4,5 s

Table 18.Updated NF-sets.

3.2.5. Interactive Mining (Phase 4)

Finding an appropriate support value for a dataset is a
challenging task. It is better to provide the users with
the facility to change the support value as per their
requirements. Interactive mining provides the user to
interactively adjust minimum support value.

1. When user increase the preset Sh value, choose the
itemsets with support≥ new support as Fset from the
existing frequent set and shift others to the NFset
list and record their partition number (Pn) as last
partition number.

2. When the user reduces the Sh value, select the
itemsets having support≥ new support from the
existing NFset and include it along with the existing
Fset list.

3. If the Partition number (Pn) of any of itemset in the
NFset is less than the current partition number (Pc),
then find their count in the remaining partitions
(Pn+1, Pn+2,…, Pc) to get the total count and identify
the newly formed Fsets.

4. Also choose the items having count greater than or
equal to the newly set support count as frequent
items and find their frequent supersets from the
entire database

3.3. Parallel IAPI Algorithm
Parallel IAPI algorithm generates higher frequent
itemsets of n FI in parallel manner using multiple
processors. Thus, time requirement for higher frequent
itemset generation get reduced to 1/nth of frequent
itemset generation time of Faster IAPI. In this
approach count of each item in each partition are
obtained by n LP simultaneously and send them to the
MP. Then MP calculates their global count and
identifies the frequent items (support≥Sh). Also
prepare a co-occurring item list, Cf for each frequent
item. For higher frequent itemset generation MP
assigns separate LPs for each frequent item, and then
MP rescans the database and broadcasts each

transaction to all LPs. Further there is no
communication required between LP and MP. LP
collect the transactions containing the assigned FI and
select only the co-occurring items of the assigned fi
from each transaction for higher frequent itemset
generation using IAPI approach. Parallel IAPI requires
no communication among LPs, thus very less
communication overhead. Parallel IAPI Algorithm
steps of each phase are given in following sections.

3.3.1. Working of Parallel IAPI

The working of parallel IAPI can be illustrated using
the same sample dataset given in Table 1. Consider
that there are three processors Pr1 and Pr2 and Pr3
and Pr1 and Pr2 are considered as LP and Pr3 as MP.
In Phase 1 during the first database scan Pr1 and Pr2
calculate the item count concurrently and submit to Pr3
to find global frequent itemsets as shown in Table 2.
Then, Pr3 generates co-occurring item list of each item
as shown in Table 3 and assign Pr1 and Pr2 to find the
higher itemsets of frequent items p and r. Pr3 scans
database second time and send each transaction to both
the processors for the buffer storage as shown in Table
4. Then, higher frequent itemsets of items r and p are
generated in parallel as shown in Figures 4 and 5. Item
t has only one co-item, thus its count can be directly
obtained from buffer t. All Fset and NFset generated
are consolidated at processor Pr3 as shown in Tables 5
and 6).

In incremental mining (Phase 2) the count of each
item in the newly added partition as shown in Table 7
is calculated at Pr3 and added with the previous count
as shown in Table 8 to identify the present frequent
items. FI buffers in the newly added partition as shown
in Table 9 are generated and frequency of the higher
frequent itemsets is obtained by Pr1 and Pr2. Higher
frequent itemsets count in the new partition is added
with the previous count by Pr3 to update the frequency
of the existing Fset and NFset as shown in Tables 10
and 11. New patterns may get generated on adding
new transactions made by the new customers as well
due to the change in purchase behavior. Thus to reflect
the pattern changes Phase 3 old transactions may be
removed as shown in Table 12 and update the frequent
patterns. Frequent pattern updating procedure is same
as that used in Faster IAPI. Count of individual items
in the removing partition is calculated by Pr3. Further
the frequency of the existing frequent itemsets in the
removed partition is obtained by the LP as shown in
Table 17 and is deducted from the previous count by
MP. Higher frequent itemsets of newly created
frequent items (F1new) is obtained by scanning the
remaining partitions by Pr3 in coordination with Pr1 a
Pr nd 2 as shown in Table 15 and update the Fset and
NFset as shown in Tables 16 and 18.

NF-itemset New count
p, t, r 3
r, t, s 3
p, r, s 4
p, s 4
p, t 3
r, t 4
q, s 3

182 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

3.3.2. Parallel IAPI Frequent Itemset Generation
Steps (Phase 1)

Input:

• D: Transaction database contain N transactions (T1,
T2, …. TN), horizontally partition D into n non-
overlapping partitions (P1, P2, …, Pn) and sort the
items of each transaction in the order of item code.

• Sl: Low minimum support value.
• Sh: User selected minimum support (Sh > Sl).

Output:

Complete set of frequent itemsets:

1. For each LP do
Read local partition, find local
frequency flocal(i) and send to MP for each item i;

2. In MP

• F1-itemset ={i | ∑ flocal(i) ≥ Sh for each i}
• Sort F1-itemset in ascending order F1-sorted ={f1,

f2,…,fm}.
• Prepare co-occurring itemset list

 Cfi={fi+1,fi+2,..., fm}
 |count(fi+1,fi+2,…, fm) ≥ count(fi)} for each fi and
send to LP(i)

• Read each transaction of D and send to LP.

3. For each LP do

• Collect transactions contain FI fi in to buffer1 and
remove items that are not in the Cfi list from each
transaction.

• Find frequency of each Cfi item in the selected fi-
transaction group

• If frequency(Cfi) ≥ Sl
 F2-itemset={Cfi } for each Cfi item

• Else remove Cfi from the selected buffer.
• Sort F2-itemset in ascending order.
• To obtain higher frequent itemsets of fi.

 Fitemset = Higher-frequentItemset-Generate
(fi-transactions(Bufferi), F2-itemset);

• Send Fitemset to the MP.

4. In MP

Fset = Fitemset │(support ≥ Sh)
Else NFset = Fitemset

3.3.3. Incremental Mining Steps (Phase 2)

1. In MP

• Read each transaction in the new partition (Pnew)
and update the count of each item i.

• n = n+1, update F1-itemset.
• If F1new then set Cfnew ⊃ Cf1 and update existing

Cf.

• Collect transactions contain F1new item from all
the partitions and find its higher frequent
itemsets.

2. In each LP do

• Read each transaction of Pnew and follow the
same procedure of higher frequent itemset
generation.

• Send all frequent itemsets to the MP.

3. In MP

• Update existing Fset and NFset.
• If any of the existing Fset is not updated rescan

Pnew and update it.
• If any existing Fset become infrequent shift to

NFset list, similarly any existing NFsets become
frequent do vice versa.

• If Fsetnew in Pnew, conduct possibility test and if
possible to be frequent find its global count by
rescanning the previous partitions.

3.3.4. Accommodation of Behavioural Changes
(Phase 3)

1. Remove partition P1 and update each item count
TCount(i)=Count(i)–P1Count(i) for each i and
identify the current frequent items;

2. If F1new then set Cfnew⊃Cf1 and update existing Cf.
3. Collect transactions contain F1new item from all the

remaining partitions and find its higher frequent
itemsets.

4. Find the count of existing Fset and NFset in the
removing partition and deduct it from existing
count.

5. If any existing Fset become infrequent shift it to
NFset list, similarly any existing NFsets become
frequent do vice versa.

3.3.5. Interactive Mining (Phase 4)

Pn: Last updated partition number of NFset.
Pc: Current partition number.
Shnew: Newly set minimum support by user.

1. If Shnew>Sh

For each Fset
If Support(Fset)<Shnew shift to NFset

2. If Shnew < Sh

• For each NFset
 If Pn < Pc then for Pn+1 to Pc find the
support(NFset)
if support(NFset) ≥ Shnew shift to Fset

• For each i if count(i) ≥Shnew shift to F1-itemset then

a. If F1new then set Cfnew⊃ Cf1 and update existing
Cf.

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 183

b. Collect transactions contain F1new item from
all the partitions and find its higher frequent
itemsets.

4. Experimental Results and Performance
Analysis

Functionalities and effectiveness of the proposed IAPI
algorithms were tested with market basket datasets
T10I4D100K prepared by IBM Almaden Quest
research group and a Synthetic dataset. This algorithm
is developed and tested on Intel (i3), 3.2 GHz CPU
having 4 GB RAM with Microsoft Windows 7 OS
using NetBeans IDE 7.0.0 and MySQL Server 4.1.
Execution time and memory utilization are compared
for various support threshold values with differently
sized partitions as well as with different number of
partitions in both datasets.

Experimental results show that execution time is
directly proportional to the size of the dataset when the
minimum support value remains constant as shown in
Figure 6. Faster IAPI requires only two database scan
for frequent itemset generation where as IAPI Quad-
filter requires (n+1) database scans if there are n
frequent 1-itemsets. Thus initial pattern creation time
of Faster IAPI is less compared with IAPI Quad filter.
Updating of the frequent sets on addition of new data
and deletion of old data requires less time compared
with the initial pattern creation time. From the test
results it is observed that updating time is related with
the heterogeneity of the data, i.e., if new frequent 1-
itemset generated, then it requires entire database scan,
else previous information can be used and require less
time (5%-30% of the initial pattern creation time)
depends on the number of FI sets as shown in Figure 7.
It is also observed that, when the support threshold
reduces, the number of frequent items increases, thus
execution time required is more. Due to heterogeneity
of dataset there are chances of reducing the number of
frequent items, even though the dataset size increases.
The test results illustrate that the execution time and
the memory requirement of both sequential and
parallel IAPI directly depend on the number of
frequent items in the dataset. Graphical representations
of the test results of IAPI are shown in Figures 6, 7 and
8.

Figure 6. Execution time comparison.

Figure 7. Partition add, delete, support change time comparisons.

Figure 8. Comparison of FPM algorithms.

4.1. Performance Comparison
Performance of Faster-IAPI is compared with popular
algorithms: Apriori, Partition Algorithm, DIC,
CanTree and IMBT using T10I4D100K dataset and a
synthetic dataset. Speed of execution of Faster-IAPI is
faster and the memory requirement of IAPI is lesser
than other algorithms as shown in Figure 8. Though
partition algorithm is designed for very large dataset,
due to large number of independent local frequent sets
generated for dense datasets, it requires more memory
and computational delay; thus there is limitation in
dataset size. For updating the frequent patterns, it is
required to keep all local frequent sets in memory; also
if the user wishes to change the support value, the
rescanning of the entire database is required for
updating the frequent sets. Since IAPI is not generating
any local frequent sets, it is suitable for both dense and
sparse datasets.

Figure 9. Parallel FPM comparisons.

DIC requires less time for updating the frequent
patterns on addition of new datasets and the removal of

184 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

old transactions compared with IAPI. But the main
difficulty with DIC is that it has to keep the count of
all possible subsets in the entire transaction set; thus it
consumes more memory. Subset generation introduces
more computational cost and requires 40 to 50 times
more time than IAPI for the initial frequent set
generation. CanTree is suitable for both incremental
and interactive mining. It keeps the entire transactions
in the CanTree for preparing frequent itemsets; thus it
requires 2 to 3 times more memory than IAPI. CanTree
requires re-construction of FP tree for each FI for
every addition, deletion as well as the support change
cases, which may lead to more computational delay. It
is observed that IMBT tree requires more time to
create and more memory to store the entire tree. Thus
it may not be suitable for datasets having more number
of distinct items. This approach does not need not to
predetermine the minimum support threshold and
scans the database only once. IMBT requires less time
to update the frequent sets on addition and deletion of
data than IAPI algorithms. Performance of Parallel-
IAPI is tested with two parallel algorithms Parallel-
IMBT and parallel-Apriori using multi-threading and
multi-processing systems as shown in Figure 9.
Parallel-IAPI generates frequent itemsets in less time
and requires less memory compared with Parallel-
IMBT and Parallel-Apriori.

5. Conclusions
To extract knowledge from the real life databases,
efficient incremental and interactive FPM approaches
of very large databases are required. This study
proposes incremental and interactive mining
algorithms with partitioning approach, designed to
obtain frequent patterns from a very large sized dataset
in sequential and parallel manner. This approach
generates frequent sets without generating candidate
sets/local frequent itemsets in two database scans with
simple data structures. It combines the features of
various algorithms such as Apriori, FP-Growth,
CARMA and Partitioning algorithm to obtain frequent
itemsets. The length and the number of transaction to
be compared at each level of higher frequent sets get
reduced due to four level filtering approaches. Thus,
30% to 50% of data comparisons reduction is achieved
at each level (n-itemsets to (n+1)-itemsets). This
approach uses two bounds (low, high) for minimum
support to incrementally update the frequent set
without rescanning the entire dataset. This study
illustrates that the proposed methods are capable to
prepare more accurate user spending profile and
market analysis with less time and space complexities
compared with the existing techniques.

References
[1] Agrawal R. and Shafer J., Parallel Mining of

Association Rules: Design, Implementation, and
Experience, IBM Research Report, 1996.

[2] Agrawal R. and Srikant R., “Fast Algorithms for
Mining Association Rules,” in Proceeding of
International Conference Very Large Databases,
San Francisco, pp. 487-499, 1994.

[3] Bhadane C., Shah K., and Vispute P., “An
Efficient Parallel Approach for Frequent Itemset
Mining of Incremental Data,” International
Journal of Scientific and Engineering Research,
vol. 3, no. 2, pp. 1-5, 2012.

[4] Brin S., Motwani R., Ullman J., and Tsur S.,
“Dynamic Itemset Counting and Implication
Rules for Market Basket Data,” in Proceeding of
ACM SIGMOD International Conference on
Management of Data, New York, pp. 255-264,
1997.

[5] Chen D., Lai C., Hu W., Chen W., Zhang W.,
and Zhen W., “Tree Partition Based Parallel
Frequent Pattern Mining on Shared Memory
Systems,” in Proceeding of 20th International
Conference on Parallel and Distributed
Processing Symposium, Rhodes Island, pp. 1-8,
2006.

[6] Cheung D., Ng T., Fu A., and Fu Y., “Efficient
Mining of Association Rules in Distributed
Databases,” IEEE Transactions on Knowledge
and Data Engineering, vol. 8, no. 6, pp. 911-922,
1996.

[7] Han J., Pei J., and Yin Y., “Mining Frequent
Patterns without Candidate Generation,” in
Proceeding of ACM SIGMOD International
Conference on Management of Data, New York,
pp. 1-12, 2000.

[8] Hamedanian M., Nadimi M., and Naderi M., “An
Efficient Prefix Tree for Incremental Frequent
Pattern Mining,” International Journal of
Information and Communication Technology
Research, vol. 3, no. 2, pp. 49-55, 2013.

[9] Hidber C., “Online Association Rule Mining,” in
Proceeding of the ACM SIGMOD International
Conference on Management of Data,
Philadelphia, pp.145-0156, 1999.

[10] Leung C., Khan Q., Quamrul I., Li Z., and Hoque
T., “CanTree: A Canonical-Order Tree for
Incremental Frequent-Pattern Mining,”
Knowledge and Information Systems, vol. 11, no.
3, pp. 287-311, 2007.

[11] Li N., Zeng L., He Q., and Shi Z., “Parallel
Implementation of Apriori Algorithm Based on
MapReduce,” International Journal of
Networked and Distributed Computing, vol. 1,
no. 2, pp. 89-96, 2013.

[12] Park J., Chen M., and Yu P., “An Effective Hash-
Based Algorith for Mining Association Rules,” in

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 185

Proceeding of PYOC ACM-SIGMOD
International Conference Management of Data,

New York, pp.175-186, 1995.
[13] Park J., Chen M., and Yu P., “Efficient Parallel

Data Mining for Association Rules,” in
Proceeding of International Conference
Information and Knowledge Management,
Baltimore, pp. 31-36, 1995.

[14] Savasere A., Omiecinski E., and Navathe S., “An
Efficient Algorithm for Mining Assocation Rules
in Large Databases,” in Proceeding of
International Conference Very Large Databases,
San Francisco, pp. 432-444, 1995.

[15] Sherly K., Nedunchezhian R., and Rajalakshmi
M., “IAPI Quad-Filter: An Interactive and
Adaptive Partitioned Approach For Incremental
Frequent Pattern Mining,” Journal Of
Theoretical and Applied Information Technology,
vol. 63, no. 1, pp. 147-157, 2014.

[16] Tanbeer S., Ahmed C., Jeong B., and Lee Y.,
“Efficient Single-Pass Frequent Pattern Mining
Using a Prefix-Tree,” Information Science, vol.
179, no. 5, pp. 559-583, 2008.

[17] Veloso A., Meira W., Carvalho M., Parthasarathy
S., and Zaki M., “Parallel, Incremental and
Interactive Mining for Frequent Itemsets in
Evolving Databases,” in Proceeding of
International Workshop High Performance Data
Mining, New York, pp. 1-10, 2003.

[18] Yafi E., Al-Hegami A., Alam A., and Biswas R.,
“YAMI-Incremental Mining of Interesting
Association Patterns,” The International Arab
Journal of Information Technology, vol. 9, no. 6,
pp. 504-510, 2012.

[19] Yang C. and Yang D., “IMBT-A Binary Tree for
Efficient Support Counting of Incremental Data
Mining,” in Proceeding of International
Conference on Computational Science and
Engineering IEEE Computer Society, Vancouver,
pp. 324-329, 2009.

Sherly Kuriakose received her B.E
(Electronics & Communication)
degree in 1990, M.Tech
(Information Technology) degree in
2004 and Ph.D (Computer Science
and Engineering) in 2015. Presently
she is working as Associate

Professor in Rajagiri School of Engineering,
Ernakulam. She also worked as Head of Department of
Information Technology at Toc H Institute of Science
& Technology, Arakunnam. She has more than 25
years of academic experience. Her research interests
are Network security, Knowledge Discovery in
Databases, Distributed Database Systems and Parallel
Processing.

Raju Nedunchezhian is the
Professor in Coimbatore Institute of
Technology, TamilNadu. Prior to
this, he was Principal of Sri
Ranganathar Institute of
Engineering and Technology,
Coimbatore and Vice-principal of
KIT-Kalaignarkarunanidhi Institute

of Technology, Coimbatore. He also worked as
Research Coordinator of the Institute and Head of
Computer Science and Engineering Department (PG)
at Sri Ramakrishna Engineering College, Coimbatore.
He has more than 25 years of experience in research
and teaching. He obtained his BE(Computer Science
and Engineering) degree in 1991, ME(Computer
Science and Engineering) degree in 1997 and
Ph.D(Computer Science and Engineering) in 2007. He
has guided many UG, PG, M.Phil and Ph. D scholars.
Currently, he is research guide for many Ph.D scholars
of the Anna University, Coimbatore, and Bharathiar
University. His research interests include knowledge
discovery and data mining, Soft Computing,
distributed computing, Information Privacy and
security, Video processing and Software Engineering.
He has published many research papers in
national/international conferences and journals. He is a
Life member of Advanced Computing and
Communication Society and ISTE.

	Chen D., Lai C., Hu W., Chen W., Zhang W., and Zhen W., “Tree Partition Based Parallel Frequent Pattern Mining on Shared Memory Systems,” in Proceeding of 20th International Conference on Parallel and Distributed Processing Symposium, Rhodes Island, p...
	Han J., Pei J., and Yin Y., “Mining Frequent Patterns without Candidate Generation,” in Proceeding of ACM SIGMOD International Conference on Management of Data, New York, pp. 1-12, 2000.

