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Abstract: The image encryption architecture presented in this paper employs a novel permutation and diffusion strategy based 
on the sorting of chaotic solutions of the Linear Diophantine Equation (LDE) which aims to reduce the computational time 
observed in Chong's permutation structure. In this scheme, firstly, the sequence generated by the combination of Piecewise 
Linear Chaotic Map (PWLCM) with solutions of LDE is used as a permutation key to shuffle the sub-image. Secondly, the 
shuffled sub-image is masked by using diffusion scheme based on Chebyshev map. Finally, in order to improve the influence of 
the encrypted image to the statistical attack, the recombined image is again shuffle by using the same permutation strategy 
applied in the first step. The design of the proposed algorithm is simple and efficient, and based on three phases which provide 
the necessary properties for a secure image encryption algorithm. According to NIST randomness tests the image sequence 
encrypted by the proposed algorithm passes all the statistical tests with the high P-values. Extensive cryptanalysis has also 
been performed and results of our analysis indicate that the scheme is satisfactory in term of the superior security and high 
speed as compared to the existing algorithms. 
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1. Introduction 
With the fast development of image transmission 
through computer networks, especially the Internet, the 
security of digital images has become a most important 
concern. Image encryption differs from text encryption 
due to some intrinsic features of images which include 
bulk data capacities, high redundancy, strong 
correlations among pixels, etc. [8]. These features make 
conventional cipher systems such as DES, AES and 
RSA unsuitable for practical image encryption [13].  

In order to overcome image encryption problems, in 
recent years, many scientists and engineers have 
designed image encryption algorithms based on one or 
more chaotic maps [5, 11]. Due to desirable properties 
of nonlinear dynamical systems such as high sensitive 
dependence on initial conditions and control parameter, 
ergodicity, unpredictability, mixing, etc., which are 
analogous to the confusion and diffusion properties of 
Shannon [12], the chaos-based encryption has 
suggested a new and efficient way to deal with the 
intractable problem of fast and highly secure image 
encryption [11]. 

Fridrich [6] suggested that a suitable chaos-based 
image encryption algorithm should be composed of two 
phases: one phase is to permute the order of the image 
pixels using chaotic map(s) while the other phase is to 
alter the numerical values representing the color of each 
pixel, again using chaotic map(s). These two phases are 
referred to as the confusion phase and the diffusion  

 
phase, and they form the basis of many existing chaos-
based image encryption algorithms [2, 7]. 
Nevertheless, to assure an efficient encryption scheme, 
some conditions should be fulfilled such as a large key 
space, randomness of the cipher-image and a high 
sensitivity on the initial conditions. A large key space 
is necessary to resist brute-force attacks [9] and a 
secure encrypted image corresponds to an image that 
cannot be statistically distinguished from a truly 
random sequence. Indeed, the cipher-images should 
present a good level of randomness and moreover, 
should be very sensitive to the used of initial key or 
seeds and to the plain-image [1]. 

Some existing image encryption algorithms were 
designed with a fast diffusion strategy, but their 
permutation is not fast enough because at this stage 
the discretization of chaotic sequences in finite values 
is time consuming. To achieve high security level 
performance, they also need more than one round in 
their permutation-diffusion structure. 

The key challenge now in cryptography being to 
consider the trade-offs between the security level and 
efficiency, in this paper, a chaotic cipher for gray 
images by a fast permutation-diffusion structure is 
proposed.  

In the proposed scheme, image is split in n sub-
images. The design of the proposed algorithm is then 
based on three phases. In phase I, image permutation 
is based on the sorting of the solutions of the Linear 
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Diophantine Equation (LDE) [4] whose coefficients are 
integers and dynamically generated from any type of 
chaotic systems to enhance the speed at the permutation 
stage. This method also leads to a stronger permutation 
effect. In phase II, we generate diffusion template using 
image diffusion based on Chebyshev map. Then the 
image is masked by performing XOR operation on the 
shuffled image and diffusion template. Finally, in phase 
III, the recombined image is encrypted by using 
permutation key based on the sorting of the solutions of 
the LDE. To avoid the cyclic digitization of chaotic 
numbers in the generation of permutation key and then 
achieve high speed performance, we generate 
permutation key at the initialization step by using 
ascending or descending sorting of the solution of LDE; 
thereafter, this permutation key is just dynamically 
updated for each sub-image by including inside d > 3 
chaotic numbers and then sorting the result for 
obtaining and updated permutation key. Also, diffusion 
key is updated for each sub-image. 

The rest of the paper is organized in the following 
manner: comparison between two image permutations 
is described in section 2. The diffusion phase in the 
proposed cryptosystem is presented in section 3. The 
simulation and performance analysis are discussed in 
section 4 and the conclusions are made in section 5. 

2. Comparison Between Two Image 
Permutations  

In order to decorrelate the strong relationship between 
adjacent pixels, the permutation process is usually used. 

2.1. Image Permutation Based On Chirikov 
Standard Map  

To demonstrate the superiority of the proposed image 
permutation, we recall here image permutation based 
on Chirikov standard map. In order to incorporate 
Chirikov standard map into image encryption that 
operated on a finite set, it has to be discretized. The 
discretized version Chirikov standard map can be 
obtained by changing the range of (x, y) from the square 
[0, 2π)×[0, 2π) to the discrete lattice N×N as follows 
[3]: 
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where N is the width or length of a square image, and K 
is a positive integer which can be used as the 
permutation  key.  

Chirikov standard map is then employed to shuffle 
the pixel positions of the plain image. It application to a 
grayscale test image with 512×512 size is shown in 
Figure 1. The ciphering key being K=512.  

 
Figure 1. Permutation based on Chirikov Standard Map: (a) The 
plain image of Lena with 512×512 size. (b) The test image after 
applying the Chirikov standard map once. (c) The test image after 
applying the Chirikov standard map three times. (d)  The test 
image after applying the Chirikov standard map five times. 

However, to get the correlation among the adjacent 
pixels completely disturbed and the image completely 
unrecognizable this permutation needs five rounds of 
iterations. We then propose at the following sub-
section to replace this kind of permutation by a one-
round permutation based on the sorting of chaotic 
solutions of the Linear Diophantine Equation (LDE) 
for permuting the pixel position in the image. 

2.2.  Image permutation based on the sorting 
of chaotic solutions of the LDE 

The technique used at the permutation stage is based 
on the ascending or descending sorting of the chaotic 
solutions of the LDE. The LDE is defined by Equation 
2 below [4]: 

                               ax by e+ =                              (2) 

where a, b and e are the constants and belongs to the 
set of natural integers, x and y the general solutions. 

In order to determine the solutions of LDE as a 
random process, coefficients a and b of the LDE can 
be evaluated from the chaotic system in the Algorithm 
1 below:      
Algorithm 1: Fragment to get a and b of the LDE 

1. Require: T1, T2, Wr, λ0 
2. Initialisation: Wλ0 ← 0; Wx0  ← 0; 
3. for k=0 to 15 do 
          Wλ ← 2(k/(k+1))×T1(k+1)+Wλ0 
          Wx ← 2(k/(k+1))×T2(k+1)+ Wx0 
     end for 
4. λ ← λ0+ Wλ /(10Wr) 
5.   x0 ← Wx /Wr 
6. Require: x01, x02 from chaotic system 
7. a ← 2× fix(2p x01) +1 
8. b ← 2× fix(2p x02) +1 

The control parameter λ and the initial condition x0 are 
deduced from the keys T1 and T2. λ0 is a constant such 
that the behavior of Equation (3) remains chaotic for 
all the range of λ and x. Wr=8160 is the greatest value 
of Wλ0. T1(k+1) and T2(k+1) respectively correspond to 
the values assigned to the ASCII symbols of key T1 
and T2. fix(.) is the integer part of function. p is the 
number of bits used for the quantization. The precision 
used for the digitization of the chaotic values by using 
Matlab is about ε ≈ 10-15. 

In this work, we have considered as chaotic system, 
the Piece Wise Linear Chaotic Map (PWLCM) 
described by the following equation: 

(1) 
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The PWLCM is known to be chaotic when its control 
parameter λ is within ]0, 0.5[ and its initial condition is 
chosen within the interval ]0, 1[ [4]. 

Then the coefficients a and b of the LDE evaluated in 
the Algorithm Fragment 1 above are used to calculate 
the solutions of LDE which is sorted to generate the 
permutation key for encryption. The procedure is shown 
in the Algorithm 2 below: 
Algorithm 2: Fragment to get permutation key IZ 

1.  Require: N, t 
2.  [G, C, D] ← gcd(a,b) 
3.  x ←  mod(C+(b/G)t, N) + 1 
4.  y ← mod(D - (a/G)t, x) + 1 
5.  [I, J] ← sort(x) 
6.  [I1, J1] ← sort(y) 
7.  Iz ← J(J1) 

Where t=(0, 1,…,N-1), N is the length of image. 
gcd(x,y) is the greatest common divisor, mod(x,y) is the 
modulo and sort(x) array elements in ascending or 
descending order. IZ is the permutation key. 

 For the security to be strengthened, it is necessary for 
the permutation key IZ to be updated for each sub-
images. The updating process is carried out by 
replacing d>3 number of values of IZ with newly 
generated d number of chaotic numbers from the 
chaotic system and then sorting it for obtaining the 
updated IZ. 

In the proposed permutation scheme, the total image 
frame is divided into n sub-images. For the first sub-
image the encryption is carried out by using Algorithm 
Fragment 2 and for the other sub-images, the 
permutation key is only refreshed without solving LDE 
equations. This helps to save computational time and at 
the same time the length of permutation key is large 
enough to attain high security level.  

The application of this method to a grayscale test 
image with 512×512 size is shown in Figure 2. 

 
Figure 2. Permutation based on the sorting of chaotic solutions of 
the LDE: (a) The plain image of Lena with 512×512 size. (b) The 
test image after applying the proposed permutation once. 
 

As can be seen in this Figure 2, this method leads to a 
stronger permutation effect as compared to the previous 
case and need only one round of permutation. 

 

3. Diffusion Phase in the Proposed 
Cryptosystem 

In diffusion stage, the pixel values are modified 
sequentially to confuse the relationship between cipher 
image and plain image in order to increase the entropy 
of the plain image by making its histogram uniform. 
In this paper, Chebychev map is used to generate 
keystream K(n) in order to mask the pixel in first time.  
The Chebychev map is described by: 

                                                                                  (4) 

Where k∈[2, +∞[ is control parameter. The initial 
value x(0) and parameter k are used as the key. 
The diffusion procedure is described as follows: 

1. Randomly select a parameter k and an initial value 
x(0) for equation 4. Iterate equation 4 t times to 
avoid the harmful affect of the initial values, where 
t is a preset integer and served as secret encryption 
key, too.   

2. Let I denotes a gray scale permute image with size 
N×M. Reshape I and get P={p(1), 
p(2),…p(n),…,p(N×M)}. 

3. Obtain for each iteration one key stream element 
from the current state of the chaotic according to: 

           ( )( )14( ) mod ( ( ) 1) / 2 10 ,K n floor x n L = + × 
          (5) 

 where floor(x) returns the value of x to the nearest 
integers less than or equal to x, mod(x, y) returns 
the remainder after division and L is the gray levels 
of plain-image 

4. Then apply the bitwise exclusive-OR to the 
permuted image pixels P by the following equation: 

            [ ]{ }( )1( ) ( ) ( ) ( ) mod ( 1)
2

c n K n p n K n N c n= ⊕ + ⊕ −    (6) 

   Where p(n), K(n), c(n) are the currently operated 
pixel, key stream element and output cipher-pixel, 
respectively, and c(n-1) is the previous cipher-pixel.  

5. Alter the control parameter k of the Chebychev map 
in each round iteration as follows: 

    if x(n)>0, then  

                                        k ← k + 10-14 ×c(n-1)                      (7) 

   else 

                                        k ← k - 10-14 ×c(n-1)                       (8) 

6. In order to more secure the diffusion process, 
continue to apply the bitwise exclusive-OR by 
using the sequence c(n) of Equation 6 and diffusion 
key X as follows: 

                             X ← mod(bx+ay,256)                         (9) 

                                       c(n) ← c(n) ⊕ X                          (10) 

    where x and y are obtained using Algorithm 2, a and 
b are obtained using Algorithm 1.                

(3) 
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Finally, in order to increase the randomness of the 
entire 1-D ciphered image obtained in the Equation 10 
as well as the sensitivity of the cipher to small changes 
in the plain image, an image dependent initial condition 
is determined as follows:  

Initialisation: λ0 ← 0 
for j=1 to N×M do 

                          λ0 ← λ0 + p(j)/(255×L)                           (11) 

end for 

The control parameter is the same as one used for the 
generation of IZ. L is equal to the length of the whole 
image. 

This initial condition is used for the generation of 
two chaotic integers which are used as coefficients a 
and b of the LDE to generate the permutation key IZt. 
This new permutation key of length L is thus deduced 
from the LDE for shuffling the 1-D image as a whole. 

Notice that, before permuting the image as a whole, 
the n sub-images used in the permutation and diffusion 
stages are recombined to obtain a 1-D image. 

The decryption procedure is followed in a reversed 
order of the encryption procedure. The flowchart of 
the proposed encryption and decryption algorithm is 
then described in Figure 3. 

 
Figure 3. Flowchart of the encryption and decryption algorithm. 

4. Simulations and Performance Analysis 
4.1. Key Space  
The key space is the total number of different keys that 
can be used in the encryption/decryption procedure. The 
key of the proposed cryptosystem is composed of two 
parts: permutation key T1, T2 and diffusion key (x0, k). 
In our work a 256-bit key corresponding to 32 ASCII 
symbols is considered. 

In hexadecimal representation, the number of 
different combinations of secret keys is equal to 2256. 
Therefore, the total number of possible values of x0 that 
can be used as a part of the key is approximately 

2×1032. The range of k should be restricted to a 
particular interval of 2π to prevent Chebyshev map 
from producing periodic orbits, then for k there will be 
approximately 2π×1015 different possible values. 

 By considering only symbols “a-z”, “A-Z” and “0-
9”, the complete key space of the proposed image 
encryption scheme is 6232×4π×1047≈2347 which is large 
enough to resist brute-force attack. 

4.2.  Histogram 
Image histogram clarifies how the pixel’s values of 
image are distributed. The histograms of the plain-
image and the cipher-image are shown in Figure 4. As 
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shown in this figure, it is obvious that the histograms of 
the encrypted image are nearly uniform and 
significantly different from the histograms of the plain-
image. Hence it does not provide any clue to be 
employed in a statistical analysis attack on the 
encrypted image. For instance, the histogram in Figure 
4(f) which corresponds to the ciphered Black image 
highlights the effectiveness of the algorithm, as all the 
256 gray-levels present the same probability.  

 
Figure 4. Example of histograms: (a)-(c) plain-images; (d)-(f) 
ciphered images. From top to bottom are presented histograms of 
Lena 512×512, Airplane 512×512 and Black 512×512.  

4.3. Randomness Test 
The US NIST designed a set of 15 statistical tests to test 
randomness of binary sequences produced by 
pseudorandom number generators. 
For each test, a P-value is computed from binary 
sequence. In all tests, if the computed P-value is < 0.01, 
then conclude that the sequence is non-random. 
Otherwise, conclude that the sequence is random. 

In our experiment, m = 2000 different keystreams, 
each sequence having a length of n = 1000,000 bits 
which are generated using our scheme. The P-values for 
various tests are listed in Table 1. In this case, we 
obtained the confidence interval [0.983, 0.996]. We 
notice that the results of the tests are satisfactory for the 
whole set of tested outputs. All the sequences pass 
successfully the NIST tests. These results show the 
quality of the produced sequences with the pseudo-
random number generator.  

 

 

 

 

 

 

 
 

Table 1. The results of the NIST tests. 

 

Test name Passing ratio 
of the test 

Uniformity  
P-value Result 

Frequency 0.9875 0.006355 PASSED 
Block frequency 0.9895 0.047478 PASSED 
Cumulative sums 0.9870 0.170922 PASSED 

Runs 0.9890 0.339271 PASSED 
Longest run 0.9895 0.616305 PASSED 

Rank 0.9880 0.583145 PASSED 
FFT 0.9860 0.096000 PASSED 

Non-overlapping 
template 0.9895 0.999668 PASSED 

Overlapping template 0.9870 0.412733 PASSED 
Universal 0.9875 0.383827 PASSED 

Approximate entropy 0.9905 0.893482 PASSED 
Random excursions 0.9922 0.430809 PASSED 
Random excursions 

variant 0.9875 0.892512 PASSED 

Serial 0.9895 0.595549 PASSED 
Linear complexity 0.9905 0.551365 PASSED 

4.4. Correlations Between Adjacent Pixels 
First, randomly select 1000 pairs of two adjacent 
pixels from an image. Then, calculate their correlation 
coefficient using the following formulas:   

              ( )( )
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where xi and yi are greyscale values of i-th pair of 
adjacent pixels, and N denotes the total numbers of 
samples.  
The results of the correlation coefficients for 
horizontal, vertical and diagonal adjacent pixels for 
the plain images and its cipher images are given in 
Table 2 and 3. Table 2 shows that the correlations 
coefficients evaluated with the proposed algorithm are 
better than those presented in the others references. 

Table 2. Comparative study of the correlation coefficients of the 
proposed algorithm with some existing algorithm.  

 

Image 

 

 

 

 

 
Type 

Proposed 
algorithm [12] [2] 

Lena 

Horizontal Plain-image 0.9719 0.9404   0.9792 
Cipher-image 

 
-0.0005 0.0088   0.0217 

Vertical Plain-image 0.9850 0.9299 0.9809 
Cipher-image 

 
-0.0032 -0.0087 0.0086 

Diagonal Plain-image 0.9593 0.9257 0.9551 
Cipher-image 

 
-0.0002 -0.0060 0.0118 

4.5. Information Entropy Analysis 
In information theory, entropy is the most significant 
feature of disorder, or more precisely unpredictability. 
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Table 3. Correlation coefficients of two adjacent pixels in the others 
images. 

 

Image Size Type Horizontal Vertical Diagonal 

Airplane 512×512 
Plain-image 0.9663 0.9642 0.9370 

Cipher-image -0.0018 -0.0035 0.0035 

Black 512×512 
Plain-image 1 1 1 

Cipher-image 0.0019 0.0012 0.0000 
 
It is well known that the entropy H(m) of a message 
source m can be measured by: 

                       ( ) ( )( )
2

2
1

log
M

i i
i

H p m p m
=

= −∑                    (15) 

where M is the number of bits to represent a symbol; 
p(mi) represents the probability of occurrence of 
symbol mi and log denotes the base 2 logarithm so that 
the entropy is expressed in bits.  

For a purely random source emitting 28 symbols, the 
entropy is H(m) = 8 bits. The test result on different 
images for one round is defined in Table 4. It appears 
that the entropy of the ciphered images is almost equal 
to eight, compared to that of the plain-images. It can 
also be noticed that the encrypted version of the image 
“Black” is a truly random image, thus confirming the 
efficiency of the proposed cipher. 
Table 4. Information entropy of plain-images and cipher-images by 
the proposed algorithm. 
 

Image Type Lena Airplane Black 

Entropy 

Plain-
image 7.4456 6.7043 0 

Cipher-
image 7.9992 7.9993 7.9978 

 
4.6. Differential attack Analysis 
The diffusion performance is commonly measured by 
means of two criteria, namely, the number of pixel 
change rate (NPCR) and the unified average changing 
intensity (UACI). NPCR is used to measure the 
percentage of different pixel numbers between two 
images. The NPCR between two ciphered images A and 
B of size M×N is [14]: 

                  ( )
1
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m n

i j
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D i j
NPCR

m n
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∑∑                 (16) 
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                     ( ) ( ) ( )1 , ,
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                      (17) 

The second criterion, UACI is used to measure the 
average intensity of differences between the two 
images. It is defined as [13]: 

               ( ) ( )
1 1

, ,100
255
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A i j B i j
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m n
−
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× ∑∑             (18) 

To evaluate the performance promotion of the 
proposed encryption scheme, the NPCR and UACI are 
plotted against the cipher cycles and compared with 
that of the existing scheme, as shown in Figures 5(a) 
and (b), respectively. As can be seen from Figure 5, 
four overall encryption rounds are needed to achieve a 
satisfactory security level by using Lian et al.’s 
encryption scheme [10], three overall encryption 
rounds are needed to achieve a satisfactory security 
level by using Zhu et al. [15]; one overall encryption 
round is needed to achieve a satisfactory security level 
by using Chong Fu et al. [3] and our algorithm. 
However, compared to Chong Fu et al’s algorithm, 
our method improves their NPCR and UACI only with 
one round of permutation and diffusion process. 

 
Figure 5. NPCR and UACI performance of the proposed scheme 
and the others existing scheme. (a) NPCR performance. (b) UACI 
performance. 
 
4.7. Key Sensitivity Analysis 
Recall that secure cryptosystem requires not only a 
large key space but also a high key sensitivity. That is, 
a slight change in the key should cause some large 
changes in the ciphered image. This property makes 
the cryptosystem of high security against statistical or 
differential attacks. To evaluate the key sensitivity, the 
plain Lena image is encrypted using four slightly 
different test keys: 

Table 5. Slightly different keys for encryption. 

(i) x0 = 
0.48729650284971 

k = 
5.78259581295362 

T1 = 
azertyuiopqsdfgj 

T2 = 
azertyuiopqsdfg0 

(ii) x0 = 
0.48729650284970 

k = 
5.78259581295362 

T1 = 
azertyuiopqsdfgj 

T2 = 
azertyuiopqsdfg0 

(iii) x0 = 
0.48729650284971 

k = 
5.78259581295361 

T1 = 
azertyuiopqsdfgj 

T2 = 
azertyuiopqsdfg0 

(iv) x0 = 
0.48729650284971 

k = 
5.78259581295362 

T1 = 
azertyuiopqsdfg1 

T2 = 
azertyuiopqsdfg0 

(v) x0 = 
0.48729650284971 

k = 
5.78259581295362 

T1 = 
azertyuiopqsdfgj 

T2 = 
azertyuiopqsdfg2 

The corresponding cipher images are shown in Figures 
6(a), (b), (d), (f) and (h), respectively. The differences 
between any two cipher images are computed and 
given in Table 6. The differential images between (a) 
and (b), (a) and (d), (a) and (f) and (a) and (h) are 
shown in (c), (e), (g) and (l) of Figure 6 respectively. 
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Figure 6. Key sensitivity test: (a) Ciphered image using key (i). (b) 
ciphered image using key (ii). (c) Differential image between (a) 
and (b). (d) Ciphered image using key (iii). (e) Differential image 
between (a) and (d). (f) Ciphered image using key (iv). (g) 
Differential image between (a) and (f). (h) Ciphered image using 
key (v). (l) Differential image between (a) and (h). 
 
Table 6. Differences between cipher images produced by slightly 
different keys. 
 

Figure 
Test 
keys Difference (%) 

  (a) (b) (d) (f) (h) 

(a) (i) ---- 99.6059 99.6040 99.6014 99.6086 

(b) (ii) 99.6059 ---- 99.6132 99.6277 99.6346 

(d) (iii) 99.6040 99.6132 ---- 99.6239 99.6117 

(f) (iv) 99.6014 99.6277 99.6239 ---- 99.6197 

(h) (v) 99.6086 99.6346 99.6117 99.6197 ---- 

Therefore, the proposed scheme is highly sensitive 
to the key. 

4.8. Efficiency Analysis 
Running speed of the algorithm is an important aspect 
for a good encryption algorithm, particularly for the 
real-time internet applications. We evaluated the 
performance of encryption scheme by using Matlab 
7.10.0. Although the algorithm was not optimized, 
performances measured on a 2.0 GHz Pentium Dual-
Core with 3GB RAM running Windows XP are 
satisfactory. 

The average computational time required for 256 
gray-scale images of size 512×512 is shorter than 110 
ms. By comparing this result with those presented in 
[14], the scheme can be said high-speed as we only 
used a 2.0 GHz processor and the Matlab 7.10.0 
software. Indeed, the modulus and the XOR functions 
are the most used basic operations in our algorithm. 

The comparison between the simulations times 
required at the permutation stage shows that the 
computational time required in our experiment is three 
times less than that of Chong Fu et al. [3]. This means 
that the actual computational times of our scheme could 
be at least smaller if implemented in the same 
conditions than the Chong Fu et al’s. algorithm.   

5. Conclusions 
In this paper, an encryption algorithm for the fast 
generation of large permutation and diffusion keys with 
a good level of randomness and a very high sensitivity 

on the key has been investigated. The permutation 
process was generated by sorting the chaotic solutions 
of the LDE whose coefficients are integers and 
dynamically generated from PWLCM. The proposed 
scheme thus requires few chaotic numbers for the 
generation of complex permutation and diffusion keys. 
By using this technique, the permutation step and the 
spreading process are significantly accelerated 
contrary to that of Chong Fu et al. [3]. As a result, one 
round of encryption with the proposed algorithm is 
safe enough to resist exhaustive attack, chosen 
plaintext attack and statistical attack. Simulations have 
been carried out to compare its performance with that 
of existing methods. We have also performed an 
exhaustive testing process of the randomness of the 
generated binary sequences using the NIST suite in 
order to prove the viability of the proposed method. 
This makes it a very good candidate for real-time 
image encryption applications.  
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