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Abstract: The image encryption architecture presented in this paper employs a novel permutat) 1 and diffusion strategy based
on the sorting of chaotic solutions of the Linear Diophantine Equation (LDE) which aims *o reu 'c2 the computational time
observed in Chong's permutation structure. In this scheme, firstly, the sequence generatcd uy ti e combination of Piecewise
Linear Chaotic Map (PWLCM) with solutions of LDE is used as a permutation key t~ si.iffle the sub-image. Secondly, the
shuffled sub-image is masked by using diffusion scheme based on Chebyshev map r~inally, in order to improve the influence of
the encrypted image to the statistical attack, the recombined image is again shu.®7 py using the same permutation strategy
applied in the first step. The design of the proposed algorithm is simple and _ficient, ond based on three phases which provide
the necessary properties for a secure image encryption algorithm. Accc.di 7 to NIST randomness tests the image sequence
encrypted by the proposed algorithm passes all the statistical tests wi " the h.xh P-values. Extensive cryptanalysis has also
been performed and results of our analysis indicate that the scheme s sc “isfactory in term of the superior security and high

speed as compared to the existing algorithms.
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1. Introduction

With the fast development of image transmissior.
through computer networks, especially the Internct, a0
security of digital images has become a most imgaruant
concern. Image encryption differs from text encryp.on
due to some intrinsic features of images “vhic inciude
bulk data capacities, high redundancy, strong
correlations among pixels, etc. [8]. Thoso features make
conventional cipher systems such-as OFS, AES and
RSA unsuitable for practical i.nay > encryption [13].

In order to overcome ima_e €. <ryption problems, in
recent years, many scifntisc and engineers have
designed image encrn/ntica alyorithms based on one or
more chaotic maps [5, 1.1. Due to desirable properties
of nonlinear dynan.ical systems such as high sensitive
dependence on initial conditions and control parameter,
ergodicity, unpredictability, mixing, etc., which are
analogous to the confusion and diffusion properties of
Shannon [12], the chaos-based encryption has
suggested a new and efficient way to deal with the
intractable problem of fast and highly secure image
encryption [11].

Fridrich [6] suggested that a suitable chaos-based
image encryption algorithm should be composed of two
phases: one phase is to permute the order of the image
pixels using chaotic map(s) while the other phase is to
alter the numerical values representing the color of each
pixel, again using chaotic map(s). These two phases are
referred to as the confusion phase and the diffusion

prasc. und they form the basis of many existing chaos-
Lsrd  image  encryption  algorithms  [2, 7].
levertheless, to assure an efficient encryption scheme,
some conditions should be fulfilled such as a large key
space, randomness of the cipher-image and a high
sensitivity on the initial conditions. A large key space
is necessary to resist brute-force attacks [9] and a
secure encrypted image corresponds to an image that
cannot be statistically distinguished from a truly
random sequence. Indeed, the cipher-images should
present a good level of randomness and moreover,
should be very sensitive to the used of initial key or
seeds and to the plain-image [1].

Some existing image encryption algorithms were
designed with a fast diffusion strategy, but their
permutation is not fast enough because at this stage
the discretization of chaotic sequences in finite values
is time consuming. To achieve high security level
performance, they also need more than one round in
their permutation-diffusion structure.

The key challenge now in cryptography being to
consider the trade-offs between the security level and
efficiency, in this paper, a chaotic cipher for gray
images by a fast permutation-diffusion structure is
proposed.

In the proposed scheme, image is split in n sub-
images. The design of the proposed algorithm is then
based on three phases. In phase I, image permutation
is based on the sorting of the solutions of the Linear



Diophantine Equation (LDE) [4] whose coefficients are
integers and dynamically generated from any type of
chaotic systems to enhance the speed at the permutation
stage. This method also leads to a stronger permutation
effect. In phase Il, we generate diffusion template using
image diffusion based on Chebyshev map. Then the
image is masked by performing XOR operation on the
shuffled image and diffusion template. Finally, in phase
Il, the recombined image is encrypted by using
permutation key based on the sorting of the solutions of
the LDE. To avoid the cyclic digitization of chaotic
numbers in the generation of permutation key and then
achieve high speed performance, we generate
permutation key at the initialization step by using
ascending or descending sorting of the solution of LDE;
thereafter, this permutation key is just dynamically
updated for each sub-image by including inside d > 3
chaotic numbers and then sorting the result for
obtaining and updated permutation key. Also, diffusion
key is updated for each sub-image.

The rest of the paper is organized in the following
manner: comparison between two image permutations
is described in section 2. The diffusion phase in the
proposed cryptosystem is presented in section 3. The
simulation and performance analysis are discussed in
section 4 and the conclusions are made in section 5.

2.Comparison  Between  Two

Permutations

Image

In order to decorrelate the strong relationship betwee
adjacent pixels, the permutation process is usually usz-.

2.1. Image Permutation Based On Chirikov
Standard Map

To demonstrate the superiority of the propocaed image
permutation, we recall here image err.utation based
on Chirikov standard map. In_ order *4 incorporate
Chirikov standard map into -imcae encryption that
operated on a finite set, it 1.>s « be discretized. The
discretized version Chirikey (tandard map can be
obtained by changiry u.2 1onge of (x, y) from the square
[0, 2m)x[0, 27) to the di, crete lattice NxN as follows
[3]:
X =(%+Yy,)mod N

M)

Via :(yi +Ksin %) mod N

where N is the width or length of a square image, and K
is a positive integer which can be used as the
permutation key.

Chirikov standard map is then employed to shuffle
the pixel positions of the plain image. It application to a
grayscale test image with 512x512 size is shown in
Figure 1. The ciphering key being K=512.

Figure 1. Permutation based on Chirikov Standard Map: (a) The
plain image of Lena with 512x512 size. (b) The test image after
applying the Chirikov standard map once. (c) The test image after
applying the Chirikov standard map three times. (d) The test
image after applying the Chirikov standard map five times.

However, to get the correlation among the adjacent
pixels completely disturbed and the image completely
unrecognizable this permutation needs five rounds of
iterations. We then propose at the following sub-
section to replace this kir « of permutation by a one-
round permutation bas:a o the sorting of chaotic
solutions of the '.in~ar Dicphantine Equation (LDE)
for permuting tr.e p.e1 position in the image.

2.2. Image pe-mutation based on the sorting
of chaotic solutions of the LDE

The >chnique used at the permutation stage is based
on we « cending or descending sorting of the chaotic
solutic ns of the LOE. The LDE is defined by Equation
7 Leiow [4]:

ax+by=e 2

whzic a, »and e are the constants and belongs to the
<2t o nawral integers, x and y the general solutions.

In order to determine the solutions of LDE as a
random process, coefficients a and b of the LDE can
be evaluated from the chaotic system in the Algorithm
1 below:

Algorithm 1: Fragment to get a and b of the LDE

1. Require: Ty, Ty, W,, 4o
2. Initialisation: W,, < 0; Wxq « 0;
3. for k=0to 15 do
W, « 2(k/(k+1))xT1(k+1)+Ww
Wi — 29T, (k+1)+ Wxo
end for
. A Ao+ W, /(10Wr)
. Xo— Wx [Wr
. Require: Xq, Xg, from chaotic system
LA« 2% fIX(Zp Xo]_) +1
. b <« 2)( f|X(2p on) +1

O ~NOoO O b

The control parameter A and the initial condition x, are
deduced from the keys T, and T,. X, is a constant such
that the behavior of Equation (3) remains chaotic for
all the range of A and x. Wr=8160 is the greatest value
of W;y. T1(k+1) and T,(k+1) respectively correspond to
the values assigned to the ASCII symbols of key T;
and T,. fix(\) is the integer part of function. p is the
number of bits used for the quantization. The precision
used for the digitization of the chaotic values by using
Matlab is about & ~ 10",

In this work, we have considered as chaotic system,
the Piece Wise Linear Chaotic Map (PWLCM)
described by the following equation:



x(n—l)x%, if 0<x(n-1)< 2

x(n) = F[x(n-1)]=1[x(n-1)—A]x 0.517/1 ,

F[1-x(n-1)], if 0.5<x(n-1)<1

if 2<x(n-1)<05 3

The PWLCM is known to be chaotic when its control
parameter A is within ]0, 0.5[ and its initial condition is
chosen within the interval ]0, 1] [4].

Then the coefficients a and b of the LDE evaluated in
the Algorithm Fragment 1 above are used to calculate
the solutions of LDE which is sorted to generate the
permutation key for encryption. The procedure is shown
in the Algorithm 2 below:

Algorithm 2: Fragment to get permutation key I,

. Require: N, t

. [G, C, D] « gcd(a,b)

. x < mod(C+(b/G)t, N) + 1

.y < mod(D - (a/G)t, x) + 1

[1, J] « sort(x)

. [11, 31] « sort(y)

. Iz‘_J(‘]l)

Where t=(0, 1,...,N-1), N is the length of image.
ged(x,y) is the greatest common divisor, mod(x,y) is the
modulo and sort(x) array elements in ascending or
descending order. |7 is the permutation key.

For the security to be strengthened, it is necessary fo.
the permutation key I; to be updated for each sub-
images. The updating process is carried out by
replacing d>3 number of values of I; with newly
generated d number of chaotic numbers from the
chaotic system and then sorting it for obtaining the
updated .

In the proposed permutation scheme, the total “mce
frame is divided into n sub-images. For th2 1i-st «.tb-
image the encryption is carried out by us.ng /\gorithm
Fragment 2 and for the other sub-itiages, the
permutation key is only refreshed wit"io::t solving LDE
equations. This helps to save comr.c*tacan.l time and at
the same time the length of penutaion key is large
enough to attain high securiy, lev L.

The application of this mew nd to a grayscale test

image with 512x512 2ize = shewn in Figure 2.
(&) )]

e
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Figure 2. Permutation based on the sorting of chaotic solutions of
the LDE: (a) The plain image of Lena with 512x512 size. (b) The
test image after applying the proposed permutation once.

As can be seen in this Figure 2, this method leads to a
stronger permutation effect as compared to the previous
case and need only one round of permutation.

3. Diffusion Phase in the
Cryptosystem

In diffusion stage, the pixel values are modified
sequentially to confuse the relationship between cipher
image and plain image in order to increase the entropy
of the plain image by making its histogram uniform.
In this paper, Chebychev map is used to generate
keystream K(n) in order to mask the pixel in first time.
The Chebychev map is described by:

Proposed

x(n+1) =T, (x,) =cos(k.cos*x,), x,e[-11] (4)

Where ke[2, +oof is control parameter. The initial
value x(0) and parameter ¥ are used as the key.
The diffusion procedure is u~scribed as follows:

1. Randomly select & param:ter k and an initial value
x(0) for equatic > 4. lterate equation 4 t times to
avoid the I arm*ful «*fect of the initial values, where
tis a preset 1 'teger and served as secret encryption
key 0.

2. L=t | deotes a gray scale permute image with size
Nx, % Reshape | and get P={p(1),
p(2),...p(n),. ~o(NxXM)}.

< Ouwaain for cach iteration one key stream element
from the cui -ei.t state of the chaotic according to:

K (1 =mod| floor (((x(n)+1)/2)x10“),L | )

w'ierc floor(x) returns the value of x to the nearest
irtegers less than or equal to x, mod(x, y) returns
e remainder after division and L is the gray levels
of plain-image

4. Then apply the bitwise exclusive-OR to the
permuted image pixels P by the following equation:

o(n) :%(K(n) ®{[p(m +K(m]modN}@cn-1) 6)

Where p(n), K(n), c(n) are the currently operated
pixel, key stream element and output cipher-pixel,
respectively, and c(n-1) is the previous cipher-pixel.

5. Alter the control parameter k of the Chebychev map
in each round iteration as follows:

if x(n)>0, then

k — k+ 10 x¢(n-1) @)
else
k k- 10 x¢(n-1) (8)

6. In order to more secure the diffusion process,
continue to apply the bitwise exclusive-OR by
using the sequence c(n) of Equation 6 and diffusion
key X as follows:

X «— mod(bx+ay,256) 9
c(n) «—c(n) DX (20)

where x and y are obtained using Algorithm 2, a and
b are obtained using Algorithm 1.



Finally, in order to increase the randomness of the
entire 1-D ciphered image obtained in the Equation 10
as well as the sensitivity of the cipher to small changes
in the plain image, an image dependent initial condition
is determined as follows:

Initialisation: Ay < O
for j=1 to NxM do

ho o + p(j)/(255xL) (11)
end for

The control parameter is the same as one used for the
generation of 1. L is equal to the length of the whole
image.

| External 256-bit key |

Plain-Image A

Reshape Plain-Image
to 1-D Signal
¥
| Split A into r sub-images
[setinn ——4
Generate 2 chaotic
integers a, b using
Algorithm Fragment 1
1
Ewvaluate the solutions =, ¥
of the LDE using Algorithm
Fragment 2 and get I:
|

Shuffle sub-image i with I: |

1
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)
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whole 1-D Signal with it

k = number of rounds E ]+)
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This initial condition is used for the generation of
two chaotic integers which are used as coefficients a
and b of the LDE to generate the permutation key .
This new permutation key of length L is thus deduced
from the LDE for shuffling the 1-D image as a whole.

Notice that, before permuting the image as a whole,
the n sub-images used in the permutation and diffusion
stages are recombined to obtain a 1-D image.

The decryption procedure is followed in a reversed
order of the encryption procedure. The flowchart of
the proposed encryption and decryption algorithm is
then described in Figure 3.

Reshape
Ciphered-image

Seti:k.nJ 1
Generate a vector © of
- 2k.n chaotic integers
Gen. ate Iz, —01
I: N N
Shuffle de whole 1-D
image with I,

1

—3
Spht the image into
| n sub-images

T ———
A Generate 2 chaotic integers
| a=C(2i-1), b=C(2i) and
evaluate the solutions =, ¥ of
the LDE
te X | i
Mask the sub-image j two times
with X, and with Shebychev map

i_ E: emal ~a6-bit

!

Ciphered-Image — ——]

| cibicredizinane NG ——

—

|—. ‘ener

Update initial condition
Update initial condition

Shuffle the sub-
image j with I;

Reshape 1-D Signalto 2-D
ciphered-image and get
Deciphered-Image A

Figure 3. Flowchart of the encryption and decryption algorithm.

4. Simulations and Performance Analysis
4.1. Key Space

The key space is the total number of different keys that
can be used in the encryption/decryption procedure. The
key of the proposed cryptosystem is composed of two
parts: permutation key Ty, T, and diffusion key (o, k).
In our work a 256-bit key corresponding to 32 ASCII
symbols is considered.

In hexadecimal representation, the number
different combinations of secret keys is equal to
Therefore, the total number of possible values of x, that
can be used as a part of the key is approximately

of

256
2.

2x10%. The range of k should be restricted to a
particular interval of 2m to prevent Chebyshev map
from producing periodic orbits, then for k there will be
approximately 2mx10" different possible values.

By considering only symbols “a-z”, “A-Z" and “0-
9”7, the complete key space of the proposed image
encryption scheme is 62*?x4nx10*~2%" which is large
enough to resist brute-force attack.

4.2. Histogram

Image histogram clarifies how the pixel’s values of
image are distributed. The histograms of the plain-
image and the cipher-image are shown in Figure 4. As



shown in this figure, it is obvious that the histograms of
the encrypted image are nearly uniform and
significantly different from the histograms of the plain-
image. Hence it does not provide any clue to be
employed in a statistical analysis attack on the
encrypted image. For instance, the histogram in Figure
4(f) which corresponds to the ciphered Black image
highlights the effectiveness of the algorithm, as all the
256 gray-levels present the same probability.
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Figure 4. Example of histograms: (a)-(c) plain-images; (d) f)
ciphered images. From top to bottom are presented histograms o.
Lena 512x512, Airplane 512x512 and Black 512x512.

4.3. Randomness Test

The US NIST designed a set of 15 statistical tests to tc-t
randomness of binary sequences produced hy
pseudorandom number generators.

For each test, a P-value is computed from Linawv
sequence. In all tests, if the computed P-ve’ue is < 0 U1,
then conclude that the sequence is nec.-random.
Otherwise, conclude that the sequence is ranuam.

In our experiment, m = 2000 difier.nt keystreams,
each sequence having a lenath «r > -+-1000,000 bits
which are generated using cur ¢~heme. The P-values for
various tests are listed in 2ble 1. In this case, we
obtained the confidence niarvil [0.983, 0.996]. We
notice that the resul®s ui the tests are satisfactory for the
whole set of testtd out) uts. All the sequences pass
successfully the Ni1ZT ests. These results show the
guality of the produced sequences with the pseudo-
random number generator.

Table 1. The results of the NIST tests.

Passing ratio | Uniformit
Testname of thzgeJ test P-value / Result

Frequency 0.9875 0.006355 PASSED

Block frequency 0.9895 0.047478 PASSED

Cumulative sums 0.9870 0.170922 PASSED

Runs 0.9890 0.339271 PASSED

Longest run 0.9895 0.616305 PASSED

Rank 0.9880 0.583145 PASSED

FFT 0.9860 0.096000 PASSED

Non-overlapping 0.9895 0.999668 | PASSED
template

Overlapping template 0.9870 0.412733 PASSED

Universal 0.9875 0.383827 PASSED

Approximate entropy 0.9905 0.893482 PASSED

Random excursions 0.9922 0.430809 PASSED

Random excursions | ) gg-¢ 0.892512 | PASSED
variant

Serial 0.0235 0.595549 PASSED

Linear complexity 0.2°%75 | 0.551365 PASSED

4.4. Correla*ions Cetween Adjacent Pixels

First, randomly select 1000 pairs of two adjacent
pixels f.~m an image. Then, calculate their correlation
coefficienu 'sing the following formulas:

1 - B
r =,,:W§(Xfx)(yfy) (12)
R T [
\l\’\lg‘(' )J(N;(. y)]
o1
Xzﬁig‘x‘ (13)
oy
yzﬁzy‘ (14)

where x; and y; are greyscale values of i-th pair of
adjacent pixels, and N denotes the total numbers of
samples.

The results of the correlation coefficients for
horizontal, vertical and diagonal adjacent pixels for
the plain images and its cipher images are given in
Table 2 and 3. Table 2 shows that the correlations
coefficients evaluated with the proposed algorithm are
better than those presented in the others references.

Table 2. Comparative study of the correlation coefficients of the
proposed algorithm with some existing algorithm.

Proposed

Image Type algorithm | [12] [2]
- Plain-image | 09719 [0.9404  [0.9792
Horizontal =i e/ image |_-0.0005_]0.0088 _]0.0217

— |Plain-imace | 0.9850 10.9299 _ 10.9809

Lena | Vertical =0 image | -0.0032 -0.0087 [0.0086
Diagonal Plain-image | 09593 09257 10,9551

g Cipher-image | -0.0002 |-0.0060 |0.0118

4.5. Information Entropy Analysis

In information theory, entropy is the most significant
feature of disorder, or more precisely unpredictability.



Table 3. Correlation coefficients of two adjacent pixels in the others
images.

Image Size Type Horizontal | Vertical | Diagonal
Plain-image | 0.9663 | 0.9642 | 0.9370

Airplane | 512x512 | cipher-image | -0.0018 | -0.0035 | 0.0035
Plain-image 1 1 1

Black | 512x512 [ Gipher-image | 00019 | 0.0012 | 0.0000

It is well known that the entropy H(m) of a message
source m can be measured by:

oM

H :—le p(mi)logz(p(mi)) (15)
where M is the number of bits to represent a symbol;
p(m;) represents the probability of occurrence of
symbol m; and log denotes the base 2 logarithm so that
the entropy is expressed in bits.

For a purely random source emitting 2% symbols, the
entropy is H(m) = 8 bits. The test result on different
images for one round is defined in Table 4. It appears
that the entropy of the ciphered images is almost equal
to eight, compared to that of the plain-images. It can
also be noticed that the encrypted version of the image
“Black” is a truly random image, thus confirming the
efficiency of the proposed cipher.

Table 4. Information entropy of plain-images and cipher-images by
the proposed algorithm.

Image Type Lena | Airplane | Black

Plain-

image | 74456 | 6.7043 0
Entropy -

Cipher-- | 7 9992 | 7.9903 | 7.9978

image

4.6. Differential attack Analysis

The diffusion performance is comman'y measured by
means of two criteria, namely, “ne neniber of pixel
change rate (NPCR) and the u~iticd average changing
intensity (UACI). NPCR . u.>d to measure the
percentage of different uix>l :umbers between two
images. The NPCR %cuw een two ciphered images A and
B of size MxN is [Z 4]:

n

PHILIT)
NPCR,, =i:le><100 (16)
where
(1 A(i i) =B(i )
D(I'])_{O otherwise 1

The second criterion, UACI is used to measure the
average intensity of differences between the two
images. It is defined as [13]:

_ 100 & JAG§)-B(i, )
UACLe = ;; 255 (18)

To evaluate the performance promotion of the
proposed encryption scheme, the NPCR and UACI are
plotted against the cipher cycles and compared with
that of the existing scheme, as shown in Figures 5(a)
and (b), respectively. As can be seen from Figure 5,
four overall encryption rounds are needed to achieve a
satisfactory security level by using Lian et al.’s
encryption scheme [10], three overall encryption
rounds are needed to achieve a satisfactory security
level by using Zhu et al. [15]; one overall encryption
round is needed to achieve a satisfactory security level
by using Chong Fu et al. [3] and our algorithm.
However, compared to Chong Fu et al’s algorithm,
our method improves their NPCR and UACI only with
one round of permutatio= an.' diffusion process.
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Figure =. N ©R and UACI performance of the proposed scheme
and tha o."ers existing scheme. (@) NPCR performance. (b) UACI
peridrr.icnee.
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4.7, Key Sensitivity Analysis

Recall that secure cryptosystem requires not only a
large key space but also a high key sensitivity. That is,
a slight change in the key should cause some large
changes in the ciphered image. This property makes
the cryptosystem of high security against statistical or
differential attacks. To evaluate the key sensitivity, the
plain Lena image is encrypted using four slightly
different test keys:

Table 5. Slightly different keys for encryption.

0 Xo= k= Ti= T, =
0.48729650284971|5.78259581295362 | azertyuiopgsdfgj | azertyuiopgsdfg0

(") Xo= k= T.= T, =
0.48729650284970|5.78259581295362 | azertyuiopgsdfgj | azertyuiopgsdfg0

(III) Xo= k= Ti= T, =
0.48729650284971|5.78259581295361 | azertyuiopgsdfgj | azertyuiopgsdfg0

(IV) Xo= k= T.= T, =
0.48729650284971|5.78259581295362 | azertyuiopgsdfgl | azertyuiopgsdfg0

Xo= k= Ti= T, =

\ 0.48729650284971|5.78259581295362 | azertyuiopgsdfgj | azertyuiopgsdfg2

=

The corresponding cipher images are shown in Figures
6(a), (b), (d), (f) and (h), respectively. The differences
between any two cipher images are computed and
given in Table 6. The differential images between (a)
and (b), (a) and (d), (a) and (f) and (a) and (h) are
shown in (c), (e), (g) and (1) of Figure 6 respectively.



Figure 6. Key sensitivity test: (a) Ciphered image using key (i). (b)
ciphered image using key (ii). (c) Differential image between (a)
and (b). (d) Ciphered image using key (iii). (e) Differential image
between (a) and (d). (f) Ciphered image using key (iv). (g)
Differential image between (a) and (f). (h) Ciphered image using
key (v). () Differential image between (a) and (h).

Table 6. Differences between cipher images produced by slightly
different keys.

Test
Figure | keys Difference (%)

@ (b) (d) ® (h)
99.6059 | 99.6040 | 99.6014 | 99.6086
99.6132 | 99.6277 | 99.6346
99.6239 | 99.6117

99.6197

@ | @
(b) | (i) | 99.6059
() | Gii) | 99.6040 | 99.6132
@ | (iv) | 99.6014 | 99.6277 | 99.6239
(hy | (v) | 99.6086 | 99.6346 | 99.6117 | 99.6197

Therefore, the proposed scheme is highly sensitive
to the key.

4.8. Efficiency Analysis

Running speed of the algorithm is an important aspect
for a good encryption algorithm, particularly fo- the
real-time internet applications. We evaluated he
performance of encryption scheme by uvs.2q9 Mai.ab
7.10.0. Although the algorithm was nct cptimized,
performances measured on a 2.0 GHz Pen. um Dual-
Core with 3GB RAM running Viniows XP are
satisfactory.

The average computational tne required for 256
gray-scale images of size 5.7x5_? 15 shorter than 110
ms. By comparing this resu't o cith those presented in
[14], the scheme c~: e <aia high-speed as we only
used a 2.0 GHz proce sor and the Matlab 7.10.0
software. Indeed, th,> mrcJdulus and the XOR functions
are the most used basic operations in our algorithm.

The comparison between the simulations times
required at the permutation stage shows that the
computational time required in our experiment is three
times less than that of Chong Fu et al. [3]. This means
that the actual computational times of our scheme could
be at least smaller if implemented in the same
conditions than the Chong Fu et al’s. algorithm.

5. Conclusions

In this paper, an encryption algorithm for the fast
generation of large permutation and diffusion keys with
a good level of randomness and a very high sensitivity

on the key has been investigated. The permutation
process was generated by sorting the chaotic solutions
of the LDE whose coefficients are integers and
dynamically generated from PWLCM. The proposed
scheme thus requires few chaotic numbers for the
generation of complex permutation and diffusion keys.
By using this technique, the permutation step and the
spreading process are significantly accelerated
contrary to that of Chong Fu et al. [3]. As a result, one
round of encryption with the proposed algorithm is
safe enough to resist exhaustive attack, chosen
plaintext attack and statistical attack. Simulations have
been carried out to compare its performance with that
of existing methods. W»> have also performed an
exhaustive testing procecs «f the randomness of the
generated binary seareices using the NIST suite in
order to prove the vichility of the proposed method.
This makes *. a ve, * good candidate for real-time
image encryptio, applications.
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