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Abstract: Software systems are subject to a series of changes due to a variety oi maigtendiice goals. Some parts of the
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C&K metrics) and software change history (quantified by a set of evolutigfi-qased metrics) as predictors. The empirical results
derived from an experiment conducted on a case study of an open-sougce sysiyn show that the proposed approach improves

the prediction accuracy as compared to statistical-based prediction «fade:

Keywords: change-proneness, software metrics, abductive net@esks, ensémble clagsifress.

Received June 2, 2015)acce ited Septembllr 2052015

1. Introduction

It has been a major goal in science to quantify
observations in order to understand and harness the
underlying phenomena. In this regard, sofaware
engineering involves the scientific use of quantitatae
and qualitative data to understand and, imprave
software and thus produce software wit't pridicsaole
cost and schedule [26]. In a world of“Constantly
changing requirements, software systesg,are subject to
changes. These changes can be gueso ;a variety of
maintenance goals, such as acdirt new features to the
system, adapting the systom &\ rew environments,
fixing bugs, and/or improyiaghe yuality of the source
code. On the other handyitheds changes are perceived
as important risk £lemegtsvas they require time and
effort [20,29]. Mousover, maintenance costs account
for 90% of the total costs of software systems [10].
Focusing on all software parts equally is difficult [20]
and wasteful of resources, especially when systems get
larger [20] and more complex [33]. Some parts are
more prone to change than others and, as implied by
the 80-20 law, the great majority of changes are
usually rooted in a small portion of the software
system. Resources and effort should be assigned
accordingly.

Software-change prediction is one of the
fundamental activities with regards to supporting
software changes [24]. The process and the
methodology of supporting software changes are a

decisie Vactor between the sustained high-quality
@volution and the premature retirement of a software
system [24]. Therefore, it is pressing to devise
wethodologies to effectively identify change-prone
classes in object-oriented software. Doing so plays a
critical role in: reducing the maintenance cost and
time, targeting the resources more effectively and
efficiently to the most critical parts of the system, and
focusing the attention of the developers to those parts
that are more prone to changes. As object-oriented
metrics provide important evidence about different
decision-making activities [6], they can help the
software engineer identify the change-prone classes in
object-oriented software. Software metrics can be
classified into product and evolution-based (process)
metrics [15,19]. Product metrics are those that
describe characteristics of the development life cycle
processes outputs. They are measures of the software
at any stage of its development, from requirements to
installed system. Examples of such metrics are size,
coupling, and cohesion metrics. Evolution-based
metrics, on the other hand, are those that can be
computed using data taken from the change history of
the software. Age of the class, frequency of changes,
are examples of such metrics.

Several approaches have been developed for
predicting software changes using software metrics as
predictors. Li and Henry [13] have performed
statistical analysis of a prediction model incorporating
ten object-oriented metrics. Their results showed a



strong relationship between these metrics and the
maintenance effort measured as the number of lines
changed in an object-oriented class. Thwin and Quah
[36] described the application of two neural network
models (Ward neural network and General Regression
neural network) to predict the number of lines changed
per object-oriented class as a proxy measure for the
maintenance effort. They have evaluated and compared
the application of these two neural network models in
predicting software maintenance. Their results showed
that the selected object-oriented metrics are good
indicators of maintenance effort. Additionally, the
result showed that the two neural network models gave
comparable results.

Aggarwal et al. [4] have presented an application of
multilayer feed forward networks to predict the
number of lines changed per object-oriented class as a
proxy measure for the maintenance effort. The number
of lines changed per class was used as a dependent
variable while the independent variables were 8
product metrics represented by 3  principal
components. They concluded that the selected object-
oriented metrics are useful indicators of maintenance
effort. Kaur et al. [25] have investigated the use of
Adaptive Neuro-Fuzzy Inference System to predict the
maintenance effort in terms of the number of ling
changed per object-oriented class. They evaluated and
compared the application of this hybrid soft computing
technique with other soft computing techniques
including Artificial Neural Networks and Fuzzy
Inference Systems to construct models for predicting
the software maintenance effort. As predictorsathes:
used 8 product metrics represented by 6 prircipal
components. They concluded that Adaptive 4Neuxo-
Fuzzy Inference System technique givés the “aost
accurate prediction.

Koru and Liu [20] proposed g&, metnod for
identifying and characterizing changé-ppone classes
using tree-based models. Remaxo and Pinzger [35]
investigated the potential ofyysiig awset of source code
metrics for predicting ghaige-proneness of Java
interfaces using three iffersnt classifiers: Support
Vector Machine (VM) Naive Bayes Network, and
Artificial Neural Wetwgrks. The dependent binary
variable indicated criange-proneness depending on
whether or not the number of lines changed exceeded
the median of the lines changed in all classes of the
system. The independent variables are 4 (out of 6) CK
metrics [11] as well as the Interface Usage Cohesion
metric (IUC). Their cross validation results showed
that the inclusion of the IUC metric improved the
classification accuracy of the three classifiers
compared to models built using only the 4 CK metrics.
However, this improvement was significant only when
using SVM as a classifier. The same subset of CK
metrics, as well as the other four product metrics, were
used in [17] by Eski and Buzluca to predict the
change-prone classes with the objective of identifying

the critical classes for effective testing. Their approach
was to rank the classes based on the values of different
combinations of metrics and then calculate the
correlation between the top 10% of different ranking
lists representing the different combinations, and the
top 10% of another ranked list representing a set of
classes ranked based on the values of dependent
variable (measured as the amount of changes between
two different version of the class). The metrics
combinations corresponding to the ranking list that
showed significant correlation were selected as class
change-proneness indicators. The best accuracy
reported (in terms of correctly identified change-prone
classes) over three different,case studies was 80%.

To sum up, the litesatuue suggests that product
metrics are generaliy=”ajsociated with change-
proneness. Howevar, the Prediction accuracy is still
limited. This#is ducyto the fact that relationships
between softwagg metrics and quality factors, such as
maintaipdoility or'ehangeability, are often complex and
sometime \nonlinear. Improving the prediction
acguragy of change-prone classes is very important, as
it shiqultylead to better decision making on resource
allocation; save Ndeployment time; and lower
geveiopment=aac, maintenance costs; thus promoting
better evalusion Jnanagement.

In %2 voark™ by Elish and Al-Khiaty [15], the
precietion,accuracy of change prone classes has been
impr¢ves by adding the evolutionary information of
e pystem to its structural properties through a
stadistical regression modeling. The basic idea was to
have a comprehensive view about the system using
both its evolution history (quantified by a suite of
evolutionary metrics) and its structural properties
(quantified by C&K metrics). Towards the same
objective, and using the same suites of metrics, this
paper proposes using abductive networks [31] based on
the group method of data handling (GMDH) [23] as an
alternative approach to model and predict change
proneness of classes in object-oriented software. The
approach was used previously as a powerful tool in
several areas including modeling and forecasting
energy consumption and environmental monitoring [1-
3], spam detection [13], intrusion detection [5], and
pattern recognition [14,28]. Inspired by promising
results obtained in these fields, we explore the use of
this approach for the prediction of change-prone
classes in object-oriented software. Compared to
neural networks, abductive networks offer faster model
development requiring little user intervention, faster
convergence during model synthesis, avoiding the
problem of getting stuck in local minima, and
automatic configuration of model structure and
selection of effective input variables [22]. Analytical
relationships obtained from the resulting polynomial
models can provide insight into the modeled
phenomena, highlight contributions of various model



inputs, and allow comparison with previously used
empirical or statistical models.

2. GMDH-based Abductive Networks

The AIM (abductory inductive mechanism) tool [30] is
a modern implementation of the group method of data
handling (GMDH) algorithm [23]. The self-organizing
modeling tool synthesizes input-output models to
represent the structure of complex and nonlinear
relationships, automatically selecting the most relevant
inputs. The GMDH algorithm uses polynomial
regression iteratively to arrive at a high-degree
polynomial model in terms of effective predictors. The
process is ‘evolutionary', starting with simple
regression relationships to derive more accurate
representations at later iterations. To limit the
complexity of the resulting models, only regression
relationships with good prediction performance are
kept at each phase. In the classical GMDH
implementation, such performance is evaluated on a
dedicated testing subset of the data. Iteration is stopped
when the new generation of regression equations starts
to give inferior performance compared to that of the
previous generation. At this point, the model starts to
over-fit the training data and therefore may riGt
generalize well with new evaluation data. A detailed
mathematical treatment of the classical GMDH
algorithm can be found in [18].

Several implementations of the GMDH approach
have later been proposed which operate on the fuil

training dataset, thus avoiding the need for a dedicated
testing subset. One such method is the adaptive
learning network (ALN), implemented by AIM. The
method uses the predicted squared error (PSE)
criterion [18] for selecting promising regression
relationships and for stopping the training to avoid
over-fitting. This criterion minimizes the squared error
expected when using the network to predict new data.
AIM expresses the PSE as [18]:

D)

where FSE is the fitting squared error on the training
data, CPM is a complexity penalty multiplier set by the
user, K is the number of Wodel coefficients, N is the

PSE = FSE + CPM (2K/N)o ,*

.. " 2 . .
number of training saples®and o, is a prior

estimate of the errgr variarice. With increased model
complexity redative ty, the training set size, the first
term in Equatiog’(1) decreases while the second term
increaseg! linearly» PSE exhibits a minimum at the
optimdm “wodel size that balances accuracy with
simphgity (exactness with generality). By selecting the
CPNi pamameter, the user can control this trade-off:
CPM values ah@venthe default value of 1 give simpler
piouels whiginave less accurate but may generalize
well with,new evaluation data, while lower values give
more $gmptex models that could over-fit the training
datasend pertorms poorly on evaluation data previously
uaseqn Gring training.
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Figure 1. A typical AIM abductive network model showing various types of functional elements.

The AIM tool synthesizes networks of several types
of polynomial functional elements. The network size,
element types, connectivity, and coefficients for the
optimum model are all determined automatically,
which reduces required user intervention compared to
neural networks. This simplifies model development
and considerably reduces the learning/development
time and effort. The models take the form of layered
feed-forward abductive networks of functional
elements (nodes) [30], as shown in Figure 1 [13].
Elements in the first layer operate on various

combinations of the input variables (x's) and the
element in the final layer generates the estimated
output. In addition to the main layers of the network,
an input layer of normalizers transform the input
variables into an internal representation as Z scores
with zero mean and unity variance. Similarly, a
unitizer restores the output to the original problem
space. The tool supports the following functional
elements:



(i) A white element consisting of a constant plus the
linear weighted sum of all outputs of the previous
layer, i.e. "White"

Output = W, + W, X, + WX, + WX, + ... + W X (2)

where x,, X, ..., X_are the inputs to the element and
W, W, ..., W_are the element weights.

(i) Single, doublet, and triplet elements which
implement a third-degree polynomial with all possible
cross-terms for one, two, and three inputs respectively;

e.g. "Doublet” Output = w, + w,x, + WX, + Wx,2 +

2 3 3
W,X,% + WX X, + WX S + WX, (3

3. The dataset

The dataset consists of two suites of metrics,
structural-based [11] and evolution-based metrics [15],
extracted from a Java-base object-oriented open source
software system, VSSPLUGIN [7]. The first suite of
metrics (referred to here as C&K) is a well-defined
suite of object-oriented metrics in literature. C&K
metrics have been theoretically validated [12]. They
have also been empirically investigated and found to

coupling, cohesion, and inheritance. They have been
collected from the open source system using the
Understand tool [8], the analyst edition. The second
suite of metrics (referred to here as evolutionary)
measures and quantifies the change history of the
software system. They have been theoretically and
empirically validated [15]. They introduce another
complementary dimension to understand the evolution
and changes in a software system [15]. Both structural-
based and evolution-based metrics were found to be
associated with several software quality aspects, such
as maintainability [29], reliability [27,32], fault-
proneness [35], and change-proneness [15]. Table 1
provides a brief descriptian, of each metric. The open
source system from whigh ti%a dataset was collected is
a long-lived system, ¢G¥reasonable size, relatively
mature, and of multinleycel€ases (13 releases). Working
on a long-lived syswym “prevents results from being
biased by  the agiential data fluctuations experienced
during afshort period of time [20]. Investigating a
reasoniablessize system provides a large number of data
pointsh a desirable feature when doing statistical
analysis (9], and allows better training and improved
nerfqrinance evalugtion [16]. Table 2 shows more

. . . . euaitati inarmati
be associated with various quality aspects [15,17,24L A“]f,‘[' titative s~iqragmation  about  the  VSSPLUGIN
Additionally, they measure and quantify severary, SO'WWarc.
structural properties of the system such as size,
Table 1. Metrics descriplion
Metric Name ~“ 4 N, Definition Scale
BOC Birth of the class The ordinal release yumiJx, o1 Wie release at which the class was introduced. Ordinal
TACH Change size The sum of added lines, deleted \ies, wnd twice changed lines between release n-1 and release n. Ratio
FCH First time changes The ordinal release nunigér at vihiciv changes have been introduced to the class for the first time. | Ordinal
LCH Last time change The ordinal releaséiauriher/t which most recent changes have been applied to the class. Ordinal
CHO Change occurred /A binary metric that irfilicateshwhether or not the clra:ss has been exposed to changes from release n-1 to l(\l;gp;)l
FRCH Frequency of change Thafnumber of times (in term of releases) the class has been changed. Ratio

WCH Weighted changes

The aggregated Weighted amount of changes in lines of code (added + deleted + twice changed)
between gaciytwo consecutive releases r-1 and r, from its first release j through release n, giving more
weight Ua# theglatest changes by applying weighting function 2™ that decreases the importance of a
change at the release r, which is more distant from the current release n.

Ratio

CHD Change density

_j'_he change’size (TACH) of the class normalized by the size of the class (its total lines of code (LOC)).| Ratio

Thisimetric is similar to the WCH metric, but here, weight is applied to the CHD, instead of the

WCD | Weighted change derisn) change size (TACH). Ratio
WER Weighted frequenty o.‘r ggregated weighted occurrence of changes, favoring the latest occurrence of changes over the old Ratio

chaigin, ones.

ATAF Aggreaz; :iaclrzlrlig i Aggregated change size of the class over the past releases normalized by frequency of change. Ratio
LCA Last chang@msfiount The last change size of the class when moving from release i-1 to release i. Ratio
LCD Last change density The last change size of the class (LCA) normalized by the size of the class. Ratio
CsSB Changes since the birth The change size between first version of the class and its current version. Ratio

CSBS Changes since the birth The CSB normalized by the size of the first version of the class. Ratio

normalized
Aggregated change . . .
ACDF density normalized The aggregated change density of the class over the past releases normalized by frequency of changes.| Ratio
Weighted methods per The static complexity of an individual class. With the assumption that all methods of a class are -
wMC - Ratio
class equally complex, then WMC is the number of local methods.
DIT Depth of inheritance tree The position of the class in the inheritance hierarchy.
of a class
NOC Number of children The number of classes that inherit directly from a class.

CBO |Coupling between objects

The number of other classes that are coupled to a class either as a client or as a supplier. Ratio

RFC Response for a class

The cardinality of the response set of the class. The response set of the class is a set of methods that
can potentially be executed in response to a message received by an object of that class.

Ratio

Lack of cohesion in

LCOM methods

A measure of not connected method pairs in a class.




Table 2. Descriptive statistics for VSSPLUGIN software system.

Actual release Ordinal release Release date | Number of classes in Percentage of changed classes from the
number number the release previous release to this release (%)

0.8 R1 15-07-2002 36

0.9 R2 19-07-2002 47 67
0.9.1 R3 30-07-2002 47 4
0.9.2 R4 08-08-2002 56 57
1.0 R5 22-09-2002 68 7
1.2 R6 15-01-2003 95 78
1.2.1 R7 18-01-2003 104 20
1.3.0 R8 08-02-2003 118 51
1.4.0 R9 14-03-2003 140 52
14.1 R10 17-04-2003 141 7
1.5.0 R11 21-07-2003 152 33
1.6.1 R12 20-06-2005 170 68
16.2 R13 09-09-2007 170 15
Max 170 78
Min 36 4
Average 103.38 44

Because the evolution-based metrics are extracted 4. Single Abductive Classifiers for

from the change history of the system, no evolution-
based metrics are generated for the first release. Thus,
we started the analysis from the second release. In
other words, the first release to predict the change-
proneness of its classes is release R2. For each release
r, the evolution-based metrics of each class C are
calculated from the change history till release r,
whereas the C&K metrics are extracted from release r.
ExamDiff Pro tool was used to compare classes fror
one release with the next. Comment and blank lines
were excluded in class comparison. In this paper, we
focus on top-level classes. Only one top-level class is
defined in each Java source file. Inner classes were
treated as contents of the enclosing top-level classes.

Table 3 lists the data type (integer, real, binary) ame
the primary statistics (minimum, maximum, cad
average) for the 22 input metrics for the two_clesseyor
cases in the dataset, namely positive cases (Fiornangss
= 1) and negative cases (Proneness = &L Metrics
exhibiting larger disparity between A two" classes,
relative to natural variance, shol!'d pmake good
predictors for discriminating hetvt2entthe two classes.

The 1138 cases of the ddisewincisided 696 negative
cases and 442 positive casas (anodnting to 38.84% of
the total dataset nopvlatien). The dataset was
randomized and then split¥nto a training set and an
evaluation set usiag the 70:30 rule, respectively.
Therefore, the traininy set consisted of 797 cases of
which 488 cases were negative and 309 cases were
positive (38.77% of the total training dataset). The
evaluation set consisted of 341 cases of which 208
cases were negative and 133 cases were positive
(39.00% of the total evaluation dataset). The random
split ensured nearly identical distribution for the
Proneness output parameter in the training and
evaluation datasets.

Predictirty Prorisness

We devgioped titsee single classification models to
predict prageness through training on the training set
usingWthree “categories of the input metrics. These
cateyorigg are 1) The evolutionary set of metrics (first
16 in jable 1), @z\JThe C&K set of metrics (last 6 in
T2 1), and Q) All 22 metrics of the two sets
combined. Lfachyot the three models was optimized to
minimize Whe“wiean squared error (MSE) between the
trueAinagy, proneness and the continuous predicted
Prohghess value by trying five levels of model
compliexity corresponding to the following values of
Avi’s Complexity Penalty Multiplier (CPM): 0.2, 0.5,
1.0, 2.0, and 5.0. The continuous (0-1) Proneness
output for each of the optimum models was converted
to a binary output through simple rounding at the
threshold value of 0.5. Table 4 shows the optimal CPM
value, the structure of the synthesized optimal model, a
list of the selected input metrics, and the overall
classification accuracy when the model was evaluated
on the evaluation set. The table shows the significant
data reduction achieved by the automatic selection of
relevant input metrics during training. A classification
accuracy of 72.73% was obtained by both models
using the evolutionary metrics and the C&K metrics,
which suggests superior quality of the 6 metrics. Best
performance (73.02%) was obtained with the model
using all 22 metrics, which is consistent with the
findings obtained in [15]. This model selects only 5 of
the input metrics, namely BOC, FCH, LCOM, LCH,
and CHO, thus ignoring 77.3% of the available input
metrics. This leads to simpler and more transparent
models and highlights the most effective Proneness
predictors. Only LCOM belongs to the group of the
C&K metrics. In light of the principal component
analysis (PCA) provided in [15], the 5 selected metrics
cover three different dimensions. These dimensions, as
categorized in [15], are: class age and change
frequency dimensions (covered by BOC); change



occurrence dimension (covered by FCH, LCH, and
CHO metrics); and size, coupling, and cohesion
dimension (covered by LCOM). Unlike [15], the
classification models here are not built on a release-by-
release basis. Instead, we used all the data collected
over the different releases as a combined input to the
abductive network to build the classifier. The selected
metrics here are compared against the metrics obtained
in [15]. Except for CHO, the selected metrics by the
abductive network model here are also among the

frequently selected metrics by the regression models
built on release-by-release basis. As for the 7 metrics
selected out of the evolutionary metrics, they cover all
the four evolutionary-based dimensions used in [15]
based on the PCA analysis. In the model based on the
C&K metrics, only one metric (WMC) is not selected.
This unselected metric falls in the same dimension
covered by LCOM, CBO, RFC according to the PCA
analysis in [15].

Table 3. Data types and primary statistics for the 22 input metrics in the complete dataset for each of the two proneness categories (696

negative cases; Proneness = 0 and 442 positive cases; Proneness =1).

o Metric Data Type Minimum Maximum : Average

o 2

% ;% # Symbol Proneness =0 | Proneness =1 | Proneness =0 | Proneness = A= Pianeness =0 Proneness =

= | 1
1 BOC Integer 1 1 12 o2 N | 511 4.22
2 FCH Integer 0 0 12 T 1o 2.99 3.17
3 FRCH Integer 0 0 10 N7 10 1.15 2.11
4 LCH Integer 0 0 12 12 3.96 514
5 WCH Real 0 0 107528 991.00 22.28 52.64
6 WCD Real 0 0 12.79 6.81 0.31 0.50

> 7 WFR Integer 0 0 10 10 0.99 1.94

g 8 TACH Integer 0 0 NS 990 15.80 30.57

5 9 ATAF Real 0 0 59650 106.00 18.03 4057

3 10 CHD Real 0 0\ 12.71 N 5.9 0.19 0.29
11 LCA Integer 0 0 \f 905 [N 9990 21.75 4255
12 LCD Real 0 N 1270 + 12.71 0.39 0.47
13 CsB Integer 0 0 D19 0 2425 56.79 130.70
14 CSBS Real 0 0 13.00 13.89 0.96 1.44
15 ACDF Real 0 0 N 8.44 0.36 0.49
16 CHO Binary 0 0 j: W1 1 0.28 0.47
17 LCOM Integer 0 0 O 100 100 33.64 50.44
18 DIT Integer 0 G 4 4 174 1.85

¥ 19 CBO Integer 0 . 00 32 31 2.67 4.49

8 20 NOC Integer 0 [ 0y 24 24 0.62 0.60
21 RFC Integer 0 N &7 82 81 13.91 17.10
22 WMC Integer 7 + 0 82 81 6.71 10.45

5.Ensemble Abductive Classifiess for

Predicting Proneness

In an attempt to improve Proheness prediction beyond
that achieved by the single nigdeiydescribed in Section
4, we have investigated £ombing these models by
fusing their outputestosforin an ensemble or a
committee as shown Tn “Figure 2. Two fusion
approaches were inwgstigated for combining the three
outputs:

a. Simple averaging of the linear outputs followed by
rounding at the threshold of 0.5. This achieved a
classification accuracy of 74.49% over the
evaluation set, an improvement of 1.47 percentage
points over the best single model trained using all
22 metrics.

b. Majority voting of the binary outputs of the three
models. This approach proved to be more effective
than simple averaging of the linear outputs, leading
to 83.58% accuracy. This

surpasses the accuracy of the best member of the
ensemble by 10.85 percentage points. The
improvement highlights the significant advantage of
fusing multiple models at the decision level
compared to fusion at the metric level as performed
by the model employing all 22 metrics.

Input
Metrics:
Evolutionar* Model | vy,

y 1

Model y Fusion
caK > 2 2| Module Pronenes
7 |

Combined Model

iz P

Figure 2. Schematic diagram of the 3-member network ensemble.



Table 4. Optimal structures of the proneness models obtained using the three groups of input metrics.

6. Performance Evaluation

Performance of the proneness classifiers LonStri
evaluation set was measured using the fofiowirg five
metrics:

o Classification accuracy (%), defingG%as the portion
of the total size of the evaluatiop=setN/= 341 cases)
that was correctly classified,, [t TR be the number

of true positives (cases Iithedavaiuation set having .

Proneness = 1 which wame Cigssified as positive, i.e.
Predicted Pronengss,=*1) and TN be the number of
true negatives (Cases \in ‘the evaluation set having
Proneness = 0 wiich were classified as negative, i.e.
Predicted Proneness = 0). The classification
accuracy is given by:
Accuracy = 100M
e Precision (%), defined as the portion of actual
positives (Proneness = 1) in the evaluation dataset
(N, = 133 cases) that was correctly classified as
Predicted Proneness = 1.

Precision =100L—P

p

- | CP Model Metrics Selected Classificat
£33 M by the Model ion
24 Accuracy
= (%)
0.5 BOC, FCH, LCH, 72.73
WER, ATAF,
LCA, WCD
>
£ Mriplet,
5
S Proneness
m
1.0 L 4DIT,CBO, RFC, 72.73
LCOM, NOC
X
3 Triplet—Single
Pronenegs
|
- | 50 | Boc ' —| \ ~ BOC, FCH, 73.02
N FCH LCOM, LCH,
S LCOM Proneness CHO
£q LCH
o CHO

«» Recall (%), defined as the portion of all evaluation

set cases classified as positive (Predicted Proneness
= 1) which are true positives (Proneness = 1).

TP

TP +FN

where FN is the number of positive cases (Proneness
= 1) classified wrongly as Negative (Predicted
Proneness = 0).

Fi-measure (%), defined as the harmonic mean of
precision and recall.

_ 2(Precison)(Recall)

Precison + Recall

The receiver operating characteristics (ROC) is a
plot of the true positive rate versus the false positive
rate as the rounding threshold used with the
continuous classifier output is varied in increments
over the interval 0 to 1. The closer this curve gets to
the point at which false positive rate is 0 and the
true positive rate is 1 the better the classifier
performance becomes. Another related parameter is
the area under the ROC curve (AUC) (0 < AUC <
1). Larger AUC values indicate better classifier
performance.

Recall =100

R



Figure 3. ROC curves and the AUC values for the three single abductive m

the linear outputs of these single models.

Table 5. Performance metrics for the three optimal single models and the two ensemble models when é.3luated on the evaluation set.

[X] [-F] 03 o4

os 0B
Ave R

o7

o8

o038

odels and the ensemble model that employs simple averaging of

Metric

Optimal Single Models

Evolutionary

C&K

Combined

Averaging !

Precision, %

48.87

62.41

54.89

57144 &0 O

Recall, %

72.22

65.87

69.52

EnsemileAieglels

Mjority Voting
68.42

86.67

F1- Measure, %

58.30

64.09

61.34

76.47

Accuracy, %

72.73

72.73

73.02

83.58

Table 5 lists the first four performance metrics for
the 3 single and 2 ensemble models described in
Sections 4 and 5. The majority voting ensemble model
surpasses all other models in all performance aspects,
achieving a recall of 86.67%. This means that
approximately 86.7% of the predictions of positive
proneness made by this model will be correct, which,
in turn, means that 86.7% of the maintenance effort
will be correctly directed to the change-prone classes -
usually a small portion of the overall classes of th§
system [20,34]. Comparing the accuracy obtained hv
the best abductive ensemble classifier here to%:he
accuracy obtained by the regression based classifiar i
[15], the abductive classifier, as showngin\Iaale) 3,
achieved a correct classification rate of 831527%, which
is 3.08% higher than the classification “accuracy
obtained in [15].

Figure 3 plots the ROC «cuives “or the 3 single
models and the simple d%eragingy ensemble model
described in Section 5. The,RCE piots for the 4 models
plotted match expectatitins *hased on their relative
performance, with/the cyrve for the ensemble model
being generally thg, top-'nost curve. The figure also
gives the AUC values for the 4 models, the 95%
confidence interval (Cl), and the standard error (SE).
The ensemble classifier with averaging has an AUC of
0.803, compare to 1.0 for the ideal classifier.
Generating the ROC plot requires the availability of
the continuous classifier output to be able to change
the threshold at small intervals from 0 to 1 and
calculate the corresponding values of the false positive
and true positive rates at each threshold value. Since
such linear output is not available for the majority
voting ensemble model, it is not included in the plot.

7. Cofclasions

Infdiswork, we investigated the use of the GMDH-
basea\abductivesqetworks to improve the prediction
agsuracy of citangesproneness of classes in object-
Oriented sofiwaie.‘Geveral prediction models were built
using 3, Cifteent types of metrics as predictors: (1)
evolutiva-beded metrics; (2) C&K metrics; and (3) a
contbyation of these two metrics types. The prediction
dccuragy has been reported for each single model as
wallas the fusion of the outputs of the three models to
wrm an ensemble prediction model. The major
findings of the conducted empirical investigation are as
follows. First, the two set of metrics (evolutionary set,
and C&K) are competitive predictors of change
proneness. Second, combining the two sets of metrics
as inputs to an GMDH-based abductive classifier
improves classification accuracy compared to that
obtained with a single set of predictors. Third, the best
performance (83.58% classification accuracy) was
obtained when fusing the outputs of the three single
models using majority voting to form an ensemble
GMDH abductive classifier. This highlights an
accuracy improvement of 10.85% over the accuracy of
the best member of the ensemble, and an accuracy
improvement of 3.08% as compared to the regression-
based classifier presented in [15] using the same
dataset.

Future work would explore the potential for using
GMDH abductive networks for predicting other
software quality aspects such as change size and fault-
proneness.
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