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Abstract: A decision tree classifier called Mixed Mode Database Miner (MMDBM) which is used to classify large number of 
datasets with large number of attributes is implemented with different types of sorting techniques (quick sort and radix sort) in 
both Central Processing Unit computing (CPU) and General-Purpose computing on Graphics Processing Unit (GPGPU) 
computing and the results are discussed. This classifier is suitable for handling large number of both numerical and 
categorical attributes. The MMDBM classifier has been implemented in CUDA GPUs and the code is provided.  We used the 
parallelized algorithms of the two sorting techniques on GPU using Compute Unified Device Architecture (CUDA) parallel 
programming platform developed by NVIDIA Corporation. In this paper, we have discussed an efficient parallel (quick sort 
and radix sort) sorting procedures on GPGPU computing and compared the results of GPU to the CPU computing.  The main 
result of MMDBM is used to compare the classifier with an existing CPU computing results and GPU computing results. The 
GPU sorting algorithms provides quick and exact results with less handling time and offers sufficient support in real time 
applications. 
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1. Introduction 
Data mining is a process to extract unknown predictive 
information from bulky data sets. The data mining 
tools are used to expect the future trends and 
performances. They are also used as computerised 
decision support system. Data mining is also used to 
discover unknown arrangements in huge data sets [7, 
19]. In classification, we are given a set of example 
records or the input data, called the training data set, 
with each record containing a number of attributes or 
features. An attribute can be either a numerical 
attribute or a categorical attribute. If the value of an 
attribute belongs to an ordered domain, the attribute is 
called a numerical attribute (e.g., age, weight, sports, 
sleep and drink). A categorical attribute, on the other 
hand, has values from an unordered domain (e.g., sex, 
Blood Pressure (BP)). One of the categorical attributes 
is nominated as the classification attribute; its values 
are called class labels. The class label shows the class 
to which each record belongs. The objective of 
classification is to analyze the input data and to 
develop an exact explanation or model for each class 
using the features present in the data. Once such a 
model is raised, future records, which are not in the 
training set, can be classified using the model. The 
objective of classification is to use the training dataset 
to build a model of the class label such that it can be 
used to classify new data whose class labels are 
unknown [7]. The decision tree learning algorithm is a 
very well-known learning model in classification.  

 
 
Many studies are a source of motivation on improving 
the performance of decision tree [1, 6, 7, 18]. 
However, those algorithms are based on a distributed 
system. The cost of those devices is very high. 

The abbreviation for Compute Unified Device 
Architecture (CUDA) is a parallel computing design 
developed by NVIDIA Enterprise [4, 11]. Associated 
to traditional GPGPU methods, CUDA has many 
advantages, such as distributed reads, common 
memory, quicker downloads and read backs to or after 
the GPU, and full support for integer and bitwise tasks. 
These features create CUDA an efficient parallel 
computing architecture, which can easily drain the 
calculating capacity of recent GPUs. A full 
introduction to programming with CUDA can be found 
in NVIDIA Corporation, 2008 [3, 17]. 

The general-purpose computing on graphics 
processing units GPGPU has subsequently developed 
the extremely parallelization and powerful computing 
capability of float point. Some documents display the 
computing power of GPUs which can now infinitely 
outstrip CPU [8, 12, 16]. More and more non-graphic 
applications which required quantities of computation 
are employed on GPU. Subsequently GPGPU 
developed a tendency, NVIDIA affords platform to 
GPGPU which is called Compute Unified Device 
Architecture. Various applications and researches of 
machine learning use CUDA as their GPGPU 
platform.  
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In this paper, we conversed an effective parallel all 
sorting algorithm on GPGPU computing and linked the 
results of GPU to the CPU computing.  A case study of 
MMDBM is used to compare the classifier with an 
existing CPU computing results and GPU computing 
results. The GPU sorting algorithms affords quick and 
exact results with minimum processing period and 
provides a good support in real time applications. 

2. Related works  
We present background to our research work. 
Particularly, we describe the data classification and a 
generally used solution for Supervised Learning in 
Quest (SLIQ) and Mixed Mode Database Miner 
(MMDBM) classifier algorithm for decision tree 
learning and also we compare to CPU computing and 
GPU computing . 

2.1. Decision tree classification and Algorithm 

The classification of an unidentified input vector is 
done by travelling the tree from the root node to a 
terminal node. A record enters the tree at the root node. 
At the root node, a test is applied to determine which 
child node the record will come across subsequently. 
This method is repeated until the record reach the 
destination at a terminal node. All the records are 
ending up at a given terminal node of the tree are 
classified in the same method [1, 6, 9, 14]. 
Algorithm 1:  Decision Tree algorithm 

MakeTree (Training Data T)                            
 Partition (T);                                                     
BuildTree( Data set S)                                 
 If (all records in S are in same class)                    
 return;     
 for each attribute A  
       Use best split found to partition S1 into S2;          
 Partition (S1);                                                                                                                                                                                                                                         
 Partition (S2); 

2.2.  Splitting points  
A splitting point is used to evaluate the "goodness" of 
the different splits for an attribute. We use the gini   
index, initially proposed in [5, 7, 18, 20], based on our 
knowledge with SLIQ and Scalable PaRallelizable 
INndution of decision Trees (SPRINT). If a data set S 
contains n  classes, )(Sgini  is defined as   

∑−= 21)( jpsgini
 

where jp  is the relative frequency of class .Sinj  
If a split divides S into two subsets ,21 SandS  the 
index divided data )(Sginisplit  is given by  

)()()( 2
2

1
1 sgini

n
nsgini

n
nSginisplit += .                       

The benefit of this index is that it requires computation 
requires only at the distribution stage of the class 
values in each of the partitions. 

To discover the best split point for a node, we 
search each of the node's attribute lists and calculate 
split based on that attribute. The attribute containing 
the split point with the lowest value for the gini  index 
is then used to split the node. We used two types of 
attributes  (i) Numerical attribute is a binary split of the 
form ,vA ≤  where v  is a real number, is used for 
numeric attributes (e.g.  age, weight, sports, drinks). 
(ii) Categorical attributes If )(AS  is the set of possible 
values of a categorical attribute A (e.g. BP, sex). 

3. CUDA Architecture 
After implementing the MMDBM Classifier with the 
help of GPU, we compared different types of sorting 
procedure about CPU computing, GPU computing and 
CUDA.We start NVIDIA GeForce GT 525M with 
Fermi based GPU architecture [12, 13]. The NVIDIA 
GeForce GT 525M is a relatively fast mid-range laptop 
graphics card and the inheritor to the GeForce GT 
425M. It is based on the GF108 core as measure of the 
Fermi architecture. Consequently, it supports DirectX 
11 and OpenGL 4.0.  Likened to the GT 425M, core 
clock rates of the GT 525M have been increased by 
about 7 percent.  

3.1.  GF108 architecture 
The GF108 core of the GT 525M is connected to the 
GF100 core makes in the GeFore GTX 480M and 
offers 96 shaders and a 128 Bit memory bus for DDR3 
VRAM. Except for the memory controllers, the GF108 
can basically be measured a halved GF106. Hence, the 
architecture is not directly equivalent to the old GT215 
(e.g., GeForce GTS 350M) or GT216 (e.g., GeForce 
GT 330M) cores. Unlike the GF100, the smaller 
GF104, GF106, and GF108 cores were not only 
summarized, but also considerably adjusted. In 
dissimilarity to the GF100, which was measured for 
qualified applications, these final chips target the 
consumer market. They feature more shaders (3x16 
instead of 2x16), more texture units (8 instead of 4) 
and more Special Function Unit (SFU) per Streaming 
Multi-processor (SM). As there are still only 2 warp 
schedulers (versus 3 shader groups), Nvidia now 
uses superscalar execution in order to utilize the higher 
amount of shaders per SM more efficiently. In theory, 
the performance per core should be greatly improved 
over previous generations [10, 11, 12, 13].  

CUDA is a general purpose parallel computing 
architecture containing a new parallel programming 
model and an instruction set architectures [17]. CUDA 
is an extension of the C language. A CUDA program 
mostly contains of CPU code and at least one kernel, 
i.e. void returning function to be implemented by the 

 (1) 

 (2) 
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GPU. The key words __global__ qualifier to the kernel 
function which is called by CPU, we executed the 
function on our GPU. The __device__ keyword lets us 
mark functions as callable from threads executing on 
the device by GPU. The __host__ keyword is for 
function can only be called by CPU. Both __host__ 
and __device__ keyword is for function as qualifiers 
can be combined. Note that the function __global__ 
and __device__ functions have access to these 
automatically defined variables [10, 11]. A variable is 
given by dim3 gridDim- Dimensions of the grid in 
blocks (at most 2D), dim3 blockDim -Dimensions of 
the block in threads, dim3 blockIdx -Block index 
within the grid, dim3 threadIdx- Thread index within 
the block with the keyword __ shared__ indicates that 
it will be stored in the shared memory of SM. The 
number of blocks in a grid and threads in a block 
should be declared by using dim3 announce, while 
CUDA kernel. Refer Figure 1.  

 
Figure 1. CUDA memory mode. 

The variable dim3 should be incorporated as a 
parameter as follows: 
dim3gridDim(i,j,k); 
dim3blockDim(p,q,r); 
kernel function <<<gridDim,blockDim>>> (a,b,c); 
Wherei, j and k are the number of blocks in x, y and z 
directions in grid. p, q and r are the number of threads 
in x, y and z directions in a block. a, b and c are the 
parameters of the kernel. The CUDA function calls 
differ from C function call only by the part 
<<<gridDim, blockDim>>>. This kernel is executed 
on GPU and called from CPU [13]. This kernel 
function should be declared with the Keyword 
__global__. The CUDA API essentially comprises 
functions for memory manipulation in VRAM: 
cudaMalloc to allocate memory, cudaFree to free it and 
cudaMemcpy to copy data between RAM and VRAM 
and vice-versa. We will end this section by explaining 
how a CUDA program is compiled. Compiling is done 
in several levels. In the first level, the code dedicated 
to CPU is extracted from the file and passed to the 
standard compiler. In the next level, the code dedicated 

to the GPU is converted into an intermediate language 
PTX which is like an assembler. Finally, the last level 
translates this intermediate language into commands 
that are specific to the GPU and encapsulates them in 
binary form which is executable [2, 16, 17]. 
Algorithm 2: MMDBM algorithm 

Input: A is the attributes containing n attributes       
}.....,,{ 21 naaaA =  in parallel  

Output: Distribution of the node count and construction    
             of the decision tree. 

1. Initialize threads in GPU.  
2. Data value were generate randomly in database. 
3. Transfer the data from GPU device to CPU host 

(cudaMemcpy), dispatch the value in arrays. (Refer Figure 1 
and 2). 

4. Copy to GPU device and quick sort the random data from 
data base inside the device GPU. 

5. Copy to CPU host and get the midpoint value of each and 
every attribute. (Refer Figure 1 and 2). 

6. ia  is the attribute name and iv  is the midpoint value of 

each attribute, 0=C  is the Class value and 0=M  is 
the Missing value. 

 NToIFor 1=  // N is the Number of the attribute    
                                   nodes 
 Scan the attribute of all the records 
   ii vaIF ≤  is true goto  left child node and travel   

                           up to N  number of the Node 

       
CTHENvx

ANDANDvxANDvxIF

nn )(
.......)()( 2211

≤
≤≤

             

             Count the class value, if the same data exists  
             then update the appropriate class count value. 
  ;1+= CC  
 else 
   ii vaIF ≤ is false goto  right child node and                    

travel up to N number of the Node 
         Count the class value, if the same data exists 
             then update the appropriate class count value. 
             ;1+= CC  
        else 
 Count the missing value and update the  class 

count value. 
  ;1+= MM  
         End If 
    End If 
     End For 
7. Transfer the data from CPU host to GPU device, classify the 

data, and Compute the node count and class count arrays. 
(Refer Figure 1 and 2) 

8. Copy the result to CPU host, generate the distribution of the 
node count and construct of the decision tree (cudaMemcpy 
GPU device to CPU host). 

4. Design for MMDBM Classifier on CPU  
    Computing and GPU Computing 
The classification proceeds in four different phases:  
Attribute selection, Implementation of algorithm CPU 
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and GPU computing, Split point detection and 
Acceleration Ratio.  
 
 
 

4.1. Attribute selection 
The first phase is the attribute selection. This is done 
by accessing the randomly generated database and 
detecting the attribute values and the type of every 
attribute. Once an attribute is detected, its information 
is stored in a list called “Attribu”, which shown in 
Table 1. 

Table 1. Attribute selection  
Attribu 

Categorical {Boolean} 
Name{String} 

Initialize{Name, Data type} 

Then sorting of the random data from the database 
inside the GPU device takes place. For every 
numerical attribute, this is done and the result is stored 
in an another array structure in the host. Once all the 
data is sorted, the split point can be found by accessing 
the middle element of the sorted array and it is stored 
in a variable called Mid* where * represents the name 
of every attribute, which shown in Table 2. 

Table 2. Sorting Attributes 
Sort Attributes (GPU- Radix and Quicksort ) 

Value{ Integer } 
Index { Integer } 

Once pre-sorting is complete, the arrays containing 
the corresponding attribute values are created. This 
array has been loaded in to memory for classification. 
The leaf entry of each class list is initialized to '0', the 
root node of the tree. 

4.2. Implementation of Algorithm CPU and 
GPU Computing 

Once attribute selection is complete implementation of 
the algorithm starts. For each attribute, the 
corresponding attribute array is encumbered and the 
data is passed to the node pointed to by the leaf in the 
corresponding class list entry. Quick sort algorithm 
code samples have been provided for CPU and GPU 
computing. 
Algorithm 3: CPU Code for Implementation of Quick sort 
algorithm 

public static void quicksort(double[] a)  
{ shuffle(a);                         
  quicksort(a, 0, a.length - 1);   } 
public static void quicksort(double[] a, int left, int right)  
{ if (right <= left) return; 
  int i = partition(a, left,   
  right); 
 quicksort(a, left, i-1); 

 quicksort(a, i+1, right); 
} 
private static int partition(double[] a, int left, int right)  
{ int i = left - 1, int j = right; 
while (true) { 
while (less(a[++i], a[right]))       
while (less(a[right], a[--j]))       
 if (j == left) break;          
 if (i >= j) break;                   
 exch(a, i, j);                       
}exch(a, i, right);                       
  return i; 
}  private static boolean less(double x, double y)  
   { comparisons++; 
  return (x < y); 
 } 
private static void exch(double[] a, int i, int j)  
{ exchanges++; 
 double swap = a[i]; 
 a[i] = a[j]; a[j] = swap; 
}          
private static void shuffle(double[] a)  
{ int N = a.length; 
 for (int i = 0; i < N; i++) { 
 intr = i+(int)Math.random()*(N-i));    
 exch(a, i, r); 
} } 

4.2.1. Algorithm 3: GPU Code for Implementation 
of Quick sort Algorithm 

Algorithm 4: GPU Code for Implementation of Quick sort 
algorithm  

__global__static void quicksort   (int*values)  
{ 
 int pivot, L, R; 
 intidx =  threadIdx.x + blockIdx.x  
 * blockDim.x; 
 int start[MAX_LEVELS], int end[MAX_LEVELS]; 
 start[idx] = idx; 
 end[idx] = SO - 1; 
 while (idx>= 0) { 
 L = start[idx];R = end[idx]; 
 if (L < R) { 
  pivot = values[L]; 
  while (L < R){     
  while (values[R] >=pivot && L< R) 
 R--; 
 if(L < R) 
 values[L++] = values[R]; 
  while (values[L] <pivot && L < R) 
 L++; 
 if (L < R) 
  values[R--] = values[L]; 
}values[L] = pivot; 
start[idx + 1] = L + 1; 
end[idx + 1] = end[idx]; 
end[idx++] = L; 
if (end[idx] - start[idx] > end[idx -1]- start[idx - 1])  
{        swap start[idx] and start[idx-1] 
 inttmp = start[idx]; 
 start[idx] = start[idx - 1]; 
 start[idx - 1] = tmp; 
 tmp = end[idx]; 
 end[idx] = end[idx - 1], end[idx - 1] = tmp; 
} } 
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else  idx--; 
}} 

4.3.  Split point detection 
In our algorithm, we discover the mid-point by sorting 
the array and sorting the middle element which is 
sorted in array. After the midpoint is calculated, the 
arrays are accepted to the GPU classification function 
along with the midpoint which classifies the records. 
The GPU code for finding the mid-points is given 
below. 
Algorithm 5: CPU Code for Split point detection of Quick sort 
algorithm 

quicksort(arr); 
for (int i = 0; i <dringVal; i++) 
{         if (i == count || i==nextVal) 
{ age=(int) arr[i]; 
 result = result+age; 
} 
} midAge= result/2;, return midAge; 
} 
quicksort(arr); 
for (int i = 0; i <dringVal; i++) 
{ if (i == count || i==nextVal) 
{ weight=(int) arr[i]; 
 result = result+ weight; 
} midWeight = result/2; 
} return mid weight;  
} 

Algorithm 6: GPU Code for Split point detection of Quick sort 
algorithm 

quick_sort <<< MT / cThreadsPerBlock,MT/c 
ThreadsPerBlock, N >>> (d_values); 
cudaMemcpy(sag,d_values,size,cudaMemcpyDeviceToHost) ; 
printf("\n\nMidPoint of the AGE is:\t"); 
MA=sag[SO/2];//Mid-point of the Age 
printf("%d\n",MA);  
 
quick_sort<<< MT / cThreadsPerBlock, 
MT/cThreadsPerBlock,N >>> (r_values); 
cudaMemcpy(swt,r_values,size,cudaMemcpyDeviceToHost) ; 
printf("MidPointoftheWEIGHT is\t"); 
MW=swt[SO/2];//Midpoint of the Weight 
printf("%d\n",MW); 
 
quick_sort<<< MT / cThreadsPerBlock, 
MT/cThreadsPerBlock,N >>> (a_values); 
cudaMemcpy(sslp,a_values,size,cudaMemcpyDeviceToHost) ; 
printf("MidPointofthe SLEEP is\t"); 
MSLP=sslp[SO/2];Midpoint of the Sleep 
printf("%d\n",MSLP); 
 
quick_sort<<< MT / cThreadsPerBlock, 
MT/cThreadsPerBlock,N >>> (s_values); 
cudaMemcpy(sdr,s_values,size,cudaMemcpyDeviceToHost) ; 
printf("MidPoint ofthe DRINK is:"); 
MDR=sdr[SO/2];/Midpoint of the Drinks 
printf("%d\n",MDR); 
 
quick_sort<<< MT/cThreadsPerBlock, MT / 
cThreadsPerBlock, N >>> (v_values); 
cudaMemcpy(ssp,v_values,size,cudaMemcpyDeviceToHost) ; 

printf("MidPointofthe SPROTS is\t"); 
MSP=ssp[SO/2];Mid-point of the Sports 
printf("%d\n",MSP); 

After getting the midpoint values and scanning the 
attributes of the all the records from connected data 
sets, we classify the node using 

)(.....)()( 2211 nn vxANDANDvxANDvxIF ≤≤≤
CTHEN (class value) rule [1, 6, 7, 20]. IF this rule is 

true goto left child node and travel up to N number of 
nodes and finally count the class value, if the same 
data exists then the count value and update the 
appropriate class count. IF condition is false goto right 
child node and travel up to N number of nodes and 
finally count the class value, if the same data exists 
then the count value and update the appropriate class 
count and else update the missing count. Finally 
distribution of the node counts are evaluated based on 
the Predicted Rules (Figure 9) and the histogram of the 
classified nodes are calculated with construction of the 
decision tree (Figure 4). The design of MMDBM 
algorithm is presented in Figure 2. 

 
Figure 2. Design for GPU MMDM Classifier. 

4.4. Acceleration Ratio for GPU 
GPU Performance: To test the acceleration 
performance, an acceleration ratio (speed-up) γ  is 
defined as equation 3.  

GPU

CPU
t
t

=γ

 
where the total processing time on the CPU, ,CPUt  
comprises only the time of main loop executed while 
the total processing time on the GPU, ,GPUt  includes 
additional time of transferring data between Host and 
Device in the interest of fairness. γ  first rises as the 
number of threads increases. There are two reasons for 
the changes in γ. First, if the number of threads is less, 
the time spent on data transferring between Host and 
Device takes up a considerable proportion of the total 
processing time of the GPU. As the number of threads 
increases, the proportion decreases rapidly. Second, 
only after all blocks in a kernel executed the next 
kernel can be launched in the GPU. The time 
consumed on kernel launching can be roughly 
considered as a fixed cost. Using more blocks means a 

  (3) 
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reduction in the percentage of kernel launching time 
[15]. 

TimetionClassificaTimeSorting
ValuesrandomtheGenerateTimeCPU

+
+=  

HosttoDeviceand
DevicetoHostfromtransferDataTimeGPU =  

TimencomputatioGPU
TimencomputatioCPURatioonAccelerati /=  

We calculated CPU, GPU and Acceleration ratio time 
with all the records sorting time is 0.00, because 
number thread has been created. 

Table 3.  Acceleration Ratio time for Quick sort 

Quick sort 
GPUs 
Times 

Records 
Sec / 

20000 

Records 
Sec / 

40000 

Records 
Sec / 

60000 

Records 
Sec/ 

80000 

Records 
Sec 

/ 100000 
random 
Values 0.100 0.210 0.300 0.4000 0.5100 

Sorting 
Time 0.000 0.000 0.000 0.000 0.010 

Classificati
on Time 0.510 1.010 1.530 2.0300 2.580 

CPU Time 0.610 1.230 1.840 2.4500 3.100 
GPU Time 0.510 1.010 1.540 2.030 2.590 
Acceleratio

n Ratio 1.196 1.217 1.194 1.2068 1.1969 

Table 4. Acceleration Ratio time for Radix sort 

Radix sort 
GPUs Times 

Records 
Sec / 

20000 

Records 
Sec / 40000 

Records 
Sec / 

60000 

Records 
Sec 

/ 80000 

Records 
Sec 

/ 100000 
Random 
Values 0.090 0.210 0.320 0.4100 0.5100 

Sorting time 0.000 0.000 0.000 0.000 0.010 
Classificatio

n Time 0.510 1.010 1.530 2.0400 2.590 

CPU Time 0.610 1.220 1.850 2.4600 3.110 
GPU Time 0.510 1.010 1.530 2.040 2.5900 

Acceleration 
Ratio 1.196 1.207 1.209 1.2058 1.200 

Comparison of acceleration ratio time for CPU 
andGPU Quick sort with Radix sort algorithm, which 
shown in Figure 3.   

 
Figure 3. Scalability of the CPU and GPU processing time. 

5. Main Result 
We have tested the efficiency of our classification 
algorithm and have been implemented in different 
types of sorting algorithms (quick sort and radix sort) 
and compared the results of CPU computing with GPU 
computing. We now consider Medical database for BP 

where data mining techniques are applied. Test has 
been carried out to estimate the perfection of 
classification and the classification handling time. The 
medical database for Blood pressure where both the 
algorithms quick sort and radix sort are given the task 
to predict risk of the person for having high BP, low 
BP, normal BP based on seven different types of 
attributes. 

5.1. Medical database for BP 
The medical database contains data from reviews 
conducted among patients. The database holds records 
of the following Attributes. 

1. Sex: Categorical [M/F]; 
2. Age: representing the age of the person Numeric 

[years]; 
3. Weight: The weight of the person; Numeric [Kilo 

grams]; 
4. Sports: The extent of exercise a person, Numeric    

[1-10] 
5. Sleep: The number of hours a person sleeps on an 

average: numeric [0, 24]; 
6. Drink: The extent of drinking of a person; Numeric 

[1-5]; 
7. BP: Categorical [HP, LP, NP], this is class values; 

As explained in the algorithm of MMDBM 
algorithm, the data that satisfy the condition and the 
data that does not satisfy the condition, 
correspondingly the missing data have been recorded. 
Based on that, a histogram is developed for distribution 
of the nodes. Since decision tree is a binary tree, the 
number of nodes in the tree is 2n -1, where n is the 
number of attributes. In our case, the number of 
attribute is 7 so the number of nodes is 127. As it is not 
possible to show all the distribution of the node, the 
histogram of total count for all nodes and three 
distributions are listed below 

5.2.   Histogram of all the nodes 
All the attribute node value is taken as (sex, age, 
weight, sleep, sports, drink and BP). Out of One Lakh 
patients, the numbers of patients with high BP are 
36160, the numbers of patients with normal BP are 
31673, the numbers of patients with low BP are 31733 
and the numbers of missing values are 434. It is 
depicted as histogram, which shown in Figure 5. 

 
Figure 5. Total count for the distribution node. 

  (4) 

  (5) 

  (6) 
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Figure 4. Classification tree in Medical database for BP

5.2.1. First distribution  

All the attribute in node has travelled in SexIF (  
&5&35&49& ≤≤>== SportsWeightAgeF

CTHENDrinkSleep )3&8 ≤≤ (count the class 
value in BP) condition for class distribution and travel 
path is 1-3-7-14-28-56-112 (referred Figure 4 
Classification tree). Out of One Lakh patients, the 
numbers of patients with high BP are106, the numbers 
of patients with normal BP are 106 and the numbers of 
patients with low BP are160. It is depicted as 
histogram, which shown in Figure 6. 

 
Figure 6. First distribution of the node 

5.2.2.  Second distribution  

The all attribute in node has travelled in FSexIF ==(  
8&5&35&49& >>>> SleepSportsWeightAge

CTHENDrink )3& ≤  (count the class value in BP) 
condition for class distribution and travel path is 1-3-7-
15-30-60 (referred Figure 4 Classification tree).  

Out of One Lakh patients, the numbers of patients 
with high BP are400, the numbers of patients with 
normal BP are294 and the numbers of patients with 
low BP are130. It is depicted as histogram, which 
shown in Figure 7. 

 
Figure 7. Second distribution of the node 

5.2.3. Third distribution   

The all attribute in node has travelled in MSexIF ==(  
8&5&35&49& ≤>>≤ SleepSportsWeightAge

 CTHENDrink )3& ≤ (count the class value in BP) 
condition for class distribution and travel path is 1-2-4-
9-18-36-72 (referred Figure 4 Classification tree). Out 
of One Lakh patients, the numbers of patients with 
high BP are88, the numbers of patients with normal BP 
are 104 and the numbers of patients with low BP 
are80. It is depicted as histogram which shown in 
Figure 8. 

 
Figure 8. Thired distrubution of the node 

Both Algorithms (quick sort and radix sort) are a 
large set of datasets which have been generated to test 
the precision minimum processing time by CPU and 
GPU computing. Figure 4 demonstrates the 
classification tree of the medical database which 
measuring the node count of the values. The 
classification testes were accepted with different 
amounts of data provided to the program extending 
from 10,000 to 1,00,000 and classification is 
completed. It is perceived that with the rise in the 
number of records, the estimate of accuracy in 
upgraded. Table 6 illustrates the estimate rules 
obtained from the database[ 6, 20].  
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Table 5. Processing time of SLIQ with MMDBM algorithms. By comparing the results, given in Tables 3 and 4 with 
Table 5 and in the Figure 3 and Figure 9, we can 
conclude that GPU computes faster than CPU. Using 
GPU Quick sort algorithm, we can get a greater 
performance for all computational problems. This 
report is limited to one particular classification 
algorithm MMDBM, but it can be generalized to all 
other algorithms also, which is shown in Figure 9. 
 

 

 

Table 6. Predicted Rules for Medical database in BP 

N1 sex=M  Node goto N2 else N3 N23 Sport<=4 Node goto N46 else N47 N45 drink<=4 Node goto N90 else N91 
N2 Age<=35  Node goto N4 else N5 N24 Sport<=4 Node goto N48 else N49 N46 drink<=4 Node goto N92 else N93 
N3 Age<=35  Node goto N6 else N7 N25 Sport<=4 Node goto N50 else N51 N47 drink<=4 Node goto N94 else N95 
N4 Weight<=48 Node goto N8 else N9 N26 Sport<=4 Node goto N52 else N53 N48 drink<=4 Node goto N96 else N97 
N5 Weight<=48 Node goto N10 else N11 N27 Sport<=4 Node goto N54 else N55 N49 drink<=4 Node goto N98 else N99 
N6 Weight<=48 Node goto N12 else N13 N28 Sport<=4 Node goto N56 else N57 N50 drink<=4 Node goto N100 else N101 
N7 Weight<=48 Node goto N14 else N15 N29 Sport<=4 Node goto N58 else N59 N51 drink<=4 Node goto N102 else N103 
N8 Sport<=4 Node goto N16 else N17 N30 Sport<=4 Node goto N60 else N61 N52 drink<=4 Node goto N104 else N105 
N9 Sport<=4 Node goto N18 else N19 N31 Sport<=4 Node goto N62 else N63 N53 drink<=4 Node goto N106 else N107 

N10 Sport<=4 Node goto N20 else N21 N32 drink<=4 Node goto N64 else N65 N54 drink<=4 Node goto N108 else N109 
N11 Sport<=4 Node goto N22 else N23 N33 drink<=4 Node goto N66 else N67 N55 drink<=4 Node goto N110 else N111 
N12 Sport<=4 Node goto N24 else N25 N34 drink<=4 Node goto N68 else N69 N56 drink<=4 Node goto N112 else N113 
N13 Sport<=4 Node goto N26 else N27 N35 drink<=4 Node goto N70 else N71 N57 drink<=4 Node goto N114 else N115 
N14 Sport<=4 Node goto N28else N29 N36 drink<=4 Node goto N72 else N73 N58 drink<=4 Node goto N116 else N117 
N15 Sport<=4 Node goto N30 else N31 N37 drink<=4 Node goto N74else N75 N59 drink<=4 Node goto N118 else N119 
N16 Sport<=4 Node goto N32 else N33 N38 drink<=4 Node goto N76 else N77 N60 drink<=4 Node goto N120 else N121 
N17 Sport<=4 Node goto N34 else N35 N39 drink<=4 Node goto N78 else N79 N61 drink<=4 Node goto N122 else N123 
N18 Sport<=4 Node goto N36 else N37 N40 drink<=4 Node goto N80 else N81 N62 drink<=4 Node goto N124 else N125 
N19 Sport<=4 Node goto N38 else N39 N41 drink<=4 Node goto N82 else N83 N63 drink<=4 Node goto N126 else N127 
N20 Sport<=4 Node goto N40 else N41 N42 drink<=4 Node goto N84 else N85 N64 Terminated 100% with H 
N21 Sport<=4 Node goto N42 else N43 N43 drink<=4 Node goto N86 else N87 N65 Terminated 100% with L 
N22 Sport<=4 Node goto N44 else N45 N44 drink<=4 Node goto N88 else N89 N66 Terminated 100% with H 

 

 
Figure 9. Scalability of SLIQ with MMDBM algorithms 

CUDA is not a new program, but Extension of C 
programming language. CUDA code must be compiled 
using  nvcc (nvidia cuda c compiler) Compiler. It 
works on modern nvidia cards (Quadro, GeForce, 
Tesla). We have used "Geforce GT525M" card for this 
research.  
 
This test was carried out on Microsoft windows 7 
together with CUDA version 5.0. The hardware 
platform consists of a Intel core i5-245M CPU 2.50 
GHz and 6 GB RAM. Table 7 summarizes GPU 
characteristic used in experiments. The NVIDIA 
GT525M card used in GPU is with 4095M. 
 
 

    Table 7. Characteristic of Geforce GT525M card 

Property Value 

CUDA Core 
Graphics clock 
Process clock 
Memory clock 

Memory Interface 
Total available graphics 

Dedicated video memory 
Shared system memory 

96 
475 MHz 
950 MHz 
900 MHz 

128- it 
4095 MB 
2048 MB 

DDR3 
2047 MB 

6. Conclusion 
Classification is one of the major tasks in data mining. 
A new classifier called MMDBM has been 
programmed in CPU computing (Java) with quick sort 
and radix sort algorithms and has been tested using 
Medical database and also same two algorithms have 
been programmed in GPU computing. The algorithm 
can handle huge amount of datasets with large amount 
of Attributes. GPUs quick sort and radix sort algorithm 
provides exceptional scalability with the Medical data 
sets that has been taken for analysis and testing.  The 
main Results have been taken into consideration and 
verified for accuracy and the program code is provided 
for CPU and GPU computing. We have discussed an 

Algorith
m Names 
 

Processing 
time  / Sec 
10000 

Processing 
time / Sec 
30000 

Processing 
time / Sec 
40000 

Processing 
time / Sec 
50000 

Processing 
time / Sec 
100000 

SLIQ 6.21 17.6 20.5 26.8 42.5 
MMDBM 
Quick 
sort 0.432 1.069 1.076 1.467 2.106 
MMDBM 
Merge 
sort 0.483 1.069 1.134 1.482 2.558 
MMDBM 
Radix 
Sort  5.992 11.487 12.967 13.967 14.987 

 

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on



 

efficient parallel quick sort and radix sort algorithms in 
GPU and results from the Comparison of 
computational acceleration ratio (speed-up) and 
efficiency of processing time of CPU and GPU 
computing in MMDBM Classifier. The main results 
are used to compare the classifier with an existing 
CPU- quick sort and radix sort for the MMDBM 
classifier and GPU- quick sort and radix sort 
algorithms provide rapid and exact results with 
minimum execution time and supports real time 
applications. 
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