

A MMDBM Classifier with CPU and CUDA GPU
computing in various sorting procedures

 Sivakumar Selvarasu1, Ganesan Periyanagounder 1, and Sundar Subbiah 2

1Department of Mathematics, Anna University, India
2Department of Mathematics, Indian Institute of Technology, India

Abstract: A decision tree classifier called Mixed Mode Database Miner (MMDBM) which is used to classify large number of
datasets with large number of attributes is implemented with different types of sorting techniques (quick sort and radix sort) in
both Central Processing Unit computing (CPU) and General-Purpose computing on Graphics Processing Unit (GPGPU)
computing and the results are discussed. This classifier is suitable for handling large number of both numerical and
categorical attributes. The MMDBM classifier has been implemented in CUDA GPUs and the code is provided. We used the
parallelized algorithms of the two sorting techniques on GPU using Compute Unified Device Architecture (CUDA) parallel
programming platform developed by NVIDIA Corporation. In this paper, we have discussed an efficient parallel (quick sort
and radix sort) sorting procedures on GPGPU computing and compared the results of GPU to the CPU computing. The main
result of MMDBM is used to compare the classifier with an existing CPU computing results and GPU computing results. The
GPU sorting algorithms provides quick and exact results with less handling time and offers sufficient support in real time
applications.

Keywords: Classification, Data Mining, CUDA, GPUs, Decision tree, Quick sort, Radix sort.

Received July 29, 2014; accepted April 12, 2015

1. Introduction
Data mining is a process to extract unknown predictive
information from bulky data sets. The data mining
tools are used to expect the future trends and
performances. They are also used as computerised
decision support system. Data mining is also used to
discover unknown arrangements in huge data sets [7,
19]. In classification, we are given a set of example
records or the input data, called the training data set,
with each record containing a number of attributes or
features. An attribute can be either a numerical
attribute or a categorical attribute. If the value of an
attribute belongs to an ordered domain, the attribute is
called a numerical attribute (e.g., age, weight, sports,
sleep and drink). A categorical attribute, on the other
hand, has values from an unordered domain (e.g., sex,
Blood Pressure (BP)). One of the categorical attributes
is nominated as the classification attribute; its values
are called class labels. The class label shows the class
to which each record belongs. The objective of
classification is to analyze the input data and to
develop an exact explanation or model for each class
using the features present in the data. Once such a
model is raised, future records, which are not in the
training set, can be classified using the model. The
objective of classification is to use the training dataset
to build a model of the class label such that it can be
used to classify new data whose class labels are
unknown [7]. The decision tree learning algorithm is a
very well-known learning model in classification.

Many studies are a source of motivation on improving
the performance of decision tree [1, 6, 7, 18].
However, those algorithms are based on a distributed
system. The cost of those devices is very high.

The abbreviation for Compute Unified Device
Architecture (CUDA) is a parallel computing design
developed by NVIDIA Enterprise [4, 11]. Associated
to traditional GPGPU methods, CUDA has many
advantages, such as distributed reads, common
memory, quicker downloads and read backs to or after
the GPU, and full support for integer and bitwise tasks.
These features create CUDA an efficient parallel
computing architecture, which can easily drain the
calculating capacity of recent GPUs. A full
introduction to programming with CUDA can be found
in NVIDIA Corporation, 2008 [3, 17].

The general-purpose computing on graphics
processing units GPGPU has subsequently developed
the extremely parallelization and powerful computing
capability of float point. Some documents display the
computing power of GPUs which can now infinitely
outstrip CPU [8, 12, 16]. More and more non-graphic
applications which required quantities of computation
are employed on GPU. Subsequently GPGPU
developed a tendency, NVIDIA affords platform to
GPGPU which is called Compute Unified Device
Architecture. Various applications and researches of
machine learning use CUDA as their GPGPU
platform.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

In this paper, we conversed an effective parallel all
sorting algorithm on GPGPU computing and linked the
results of GPU to the CPU computing. A case study of
MMDBM is used to compare the classifier with an
existing CPU computing results and GPU computing
results. The GPU sorting algorithms affords quick and
exact results with minimum processing period and
provides a good support in real time applications.

2. Related works
We present background to our research work.
Particularly, we describe the data classification and a
generally used solution for Supervised Learning in
Quest (SLIQ) and Mixed Mode Database Miner
(MMDBM) classifier algorithm for decision tree
learning and also we compare to CPU computing and
GPU computing .

2.1. Decision tree classification and Algorithm

The classification of an unidentified input vector is
done by travelling the tree from the root node to a
terminal node. A record enters the tree at the root node.
At the root node, a test is applied to determine which
child node the record will come across subsequently.
This method is repeated until the record reach the
destination at a terminal node. All the records are
ending up at a given terminal node of the tree are
classified in the same method [1, 6, 9, 14].
Algorithm 1: Decision Tree algorithm

MakeTree (Training Data T)
 Partition (T);
BuildTree(Data set S)
 If (all records in S are in same class)
 return;
 for each attribute A
 Use best split found to partition S1 into S2;
 Partition (S1);
 Partition (S2);

2.2. Splitting points
A splitting point is used to evaluate the "goodness" of
the different splits for an attribute. We use the gini
index, initially proposed in [5, 7, 18, 20], based on our
knowledge with SLIQ and Scalable PaRallelizable
INndution of decision Trees (SPRINT). If a data set S
contains n classes,)(Sgini is defined as

∑−= 21)(jpsgini

where jp is the relative frequency of class .Sinj
If a split divides S into two subsets ,21 SandS the
index divided data)(Sginisplit is given by

)()()(2
2

1
1 sgini

n
nsgini

n
nSginisplit += .

The benefit of this index is that it requires computation
requires only at the distribution stage of the class
values in each of the partitions.

To discover the best split point for a node, we
search each of the node's attribute lists and calculate
split based on that attribute. The attribute containing
the split point with the lowest value for the gini index
is then used to split the node. We used two types of
attributes (i) Numerical attribute is a binary split of the
form ,vA ≤ where v is a real number, is used for
numeric attributes (e.g. age, weight, sports, drinks).
(ii) Categorical attributes If)(AS is the set of possible
values of a categorical attribute A (e.g. BP, sex).

3. CUDA Architecture
After implementing the MMDBM Classifier with the
help of GPU, we compared different types of sorting
procedure about CPU computing, GPU computing and
CUDA.We start NVIDIA GeForce GT 525M with
Fermi based GPU architecture [12, 13]. The NVIDIA
GeForce GT 525M is a relatively fast mid-range laptop
graphics card and the inheritor to the GeForce GT
425M. It is based on the GF108 core as measure of the
Fermi architecture. Consequently, it supports DirectX
11 and OpenGL 4.0. Likened to the GT 425M, core
clock rates of the GT 525M have been increased by
about 7 percent.

3.1. GF108 architecture
The GF108 core of the GT 525M is connected to the
GF100 core makes in the GeFore GTX 480M and
offers 96 shaders and a 128 Bit memory bus for DDR3
VRAM. Except for the memory controllers, the GF108
can basically be measured a halved GF106. Hence, the
architecture is not directly equivalent to the old GT215
(e.g., GeForce GTS 350M) or GT216 (e.g., GeForce
GT 330M) cores. Unlike the GF100, the smaller
GF104, GF106, and GF108 cores were not only
summarized, but also considerably adjusted. In
dissimilarity to the GF100, which was measured for
qualified applications, these final chips target the
consumer market. They feature more shaders (3x16
instead of 2x16), more texture units (8 instead of 4)
and more Special Function Unit (SFU) per Streaming
Multi-processor (SM). As there are still only 2 warp
schedulers (versus 3 shader groups), Nvidia now
uses superscalar execution in order to utilize the higher
amount of shaders per SM more efficiently. In theory,
the performance per core should be greatly improved
over previous generations [10, 11, 12, 13].

CUDA is a general purpose parallel computing
architecture containing a new parallel programming
model and an instruction set architectures [17]. CUDA
is an extension of the C language. A CUDA program
mostly contains of CPU code and at least one kernel,
i.e. void returning function to be implemented by the

 (1)

 (2)

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

http://www.notebookcheck.net/NVIDIA-Geforce-GT-425M.34152.0.html
http://www.notebookcheck.net/NVIDIA-Geforce-GT-425M.34152.0.html
http://www.notebookcheck.net/NVIDIA-Geforce-GT-425M.34152.0.html
http://en.wikipedia.org/wiki/Superscalar

GPU. The key words __global__ qualifier to the kernel
function which is called by CPU, we executed the
function on our GPU. The __device__ keyword lets us
mark functions as callable from threads executing on
the device by GPU. The __host__ keyword is for
function can only be called by CPU. Both __host__
and __device__ keyword is for function as qualifiers
can be combined. Note that the function __global__
and __device__ functions have access to these
automatically defined variables [10, 11]. A variable is
given by dim3 gridDim- Dimensions of the grid in
blocks (at most 2D), dim3 blockDim -Dimensions of
the block in threads, dim3 blockIdx -Block index
within the grid, dim3 threadIdx- Thread index within
the block with the keyword __ shared__ indicates that
it will be stored in the shared memory of SM. The
number of blocks in a grid and threads in a block
should be declared by using dim3 announce, while
CUDA kernel. Refer Figure 1.

Figure 1. CUDA memory mode.

The variable dim3 should be incorporated as a
parameter as follows:
dim3gridDim(i,j,k);
dim3blockDim(p,q,r);
kernel function <<<gridDim,blockDim>>> (a,b,c);
Wherei, j and k are the number of blocks in x, y and z
directions in grid. p, q and r are the number of threads
in x, y and z directions in a block. a, b and c are the
parameters of the kernel. The CUDA function calls
differ from C function call only by the part
<<<gridDim, blockDim>>>. This kernel is executed
on GPU and called from CPU [13]. This kernel
function should be declared with the Keyword
__global__. The CUDA API essentially comprises
functions for memory manipulation in VRAM:
cudaMalloc to allocate memory, cudaFree to free it and
cudaMemcpy to copy data between RAM and VRAM
and vice-versa. We will end this section by explaining
how a CUDA program is compiled. Compiling is done
in several levels. In the first level, the code dedicated
to CPU is extracted from the file and passed to the
standard compiler. In the next level, the code dedicated

to the GPU is converted into an intermediate language
PTX which is like an assembler. Finally, the last level
translates this intermediate language into commands
that are specific to the GPU and encapsulates them in
binary form which is executable [2, 16, 17].
Algorithm 2: MMDBM algorithm

Input: A is the attributes containing n attributes
}.....,,{ 21 naaaA = in parallel

Output: Distribution of the node count and construction
 of the decision tree.

1. Initialize threads in GPU.
2. Data value were generate randomly in database.
3. Transfer the data from GPU device to CPU host

(cudaMemcpy), dispatch the value in arrays. (Refer Figure 1
and 2).

4. Copy to GPU device and quick sort the random data from
data base inside the device GPU.

5. Copy to CPU host and get the midpoint value of each and
every attribute. (Refer Figure 1 and 2).

6. ia is the attribute name and iv is the midpoint value of

each attribute, 0=C is the Class value and 0=M is
the Missing value.

 NToIFor 1= // N is the Number of the attribute
 nodes
 Scan the attribute of all the records
 ii vaIF ≤ is true goto left child node and travel

 up to N number of the Node

CTHENvx

ANDANDvxANDvxIF

nn)(
.......)()(2211

≤
≤≤

 Count the class value, if the same data exists
 then update the appropriate class count value.
 ;1+= CC
 else
 ii vaIF ≤ is false goto right child node and

travel up to N number of the Node
 Count the class value, if the same data exists
 then update the appropriate class count value.
 ;1+= CC
 else
 Count the missing value and update the class

count value.
 ;1+= MM
 End If
 End If
 End For
7. Transfer the data from CPU host to GPU device, classify the

data, and Compute the node count and class count arrays.
(Refer Figure 1 and 2)

8. Copy the result to CPU host, generate the distribution of the
node count and construct of the decision tree (cudaMemcpy
GPU device to CPU host).

4. Design for MMDBM Classifier on CPU
 Computing and GPU Computing
The classification proceeds in four different phases:
Attribute selection, Implementation of algorithm CPU

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

and GPU computing, Split point detection and
Acceleration Ratio.

4.1. Attribute selection
The first phase is the attribute selection. This is done
by accessing the randomly generated database and
detecting the attribute values and the type of every
attribute. Once an attribute is detected, its information
is stored in a list called “Attribu”, which shown in
Table 1.

Table 1. Attribute selection
Attribu

Categorical {Boolean}
Name{String}

Initialize{Name, Data type}

Then sorting of the random data from the database
inside the GPU device takes place. For every
numerical attribute, this is done and the result is stored
in an another array structure in the host. Once all the
data is sorted, the split point can be found by accessing
the middle element of the sorted array and it is stored
in a variable called Mid* where * represents the name
of every attribute, which shown in Table 2.

Table 2. Sorting Attributes
Sort Attributes (GPU- Radix and Quicksort)

Value{ Integer }
Index { Integer }

Once pre-sorting is complete, the arrays containing
the corresponding attribute values are created. This
array has been loaded in to memory for classification.
The leaf entry of each class list is initialized to '0', the
root node of the tree.

4.2. Implementation of Algorithm CPU and
GPU Computing

Once attribute selection is complete implementation of
the algorithm starts. For each attribute, the
corresponding attribute array is encumbered and the
data is passed to the node pointed to by the leaf in the
corresponding class list entry. Quick sort algorithm
code samples have been provided for CPU and GPU
computing.
Algorithm 3: CPU Code for Implementation of Quick sort
algorithm

public static void quicksort(double[] a)
{ shuffle(a);
 quicksort(a, 0, a.length - 1); }
public static void quicksort(double[] a, int left, int right)
{ if (right <= left) return;
 int i = partition(a, left,
 right);
 quicksort(a, left, i-1);

 quicksort(a, i+1, right);
}
private static int partition(double[] a, int left, int right)
{ int i = left - 1, int j = right;
while (true) {
while (less(a[++i], a[right]))
while (less(a[right], a[--j]))
 if (j == left) break;
 if (i >= j) break;
 exch(a, i, j);
}exch(a, i, right);
 return i;
} private static boolean less(double x, double y)
 { comparisons++;
 return (x < y);
 }
private static void exch(double[] a, int i, int j)
{ exchanges++;
 double swap = a[i];
 a[i] = a[j]; a[j] = swap;
}
private static void shuffle(double[] a)
{ int N = a.length;
 for (int i = 0; i < N; i++) {
 intr = i+(int)Math.random()*(N-i));
 exch(a, i, r);
} }

4.2.1. Algorithm 3: GPU Code for Implementation
of Quick sort Algorithm

Algorithm 4: GPU Code for Implementation of Quick sort
algorithm

__global__static void quicksort (int*values)
{
 int pivot, L, R;
 intidx = threadIdx.x + blockIdx.x
 * blockDim.x;
 int start[MAX_LEVELS], int end[MAX_LEVELS];
 start[idx] = idx;
 end[idx] = SO - 1;
 while (idx>= 0) {
 L = start[idx];R = end[idx];
 if (L < R) {
 pivot = values[L];
 while (L < R){
 while (values[R] >=pivot && L< R)
 R--;
 if(L < R)
 values[L++] = values[R];
 while (values[L] <pivot && L < R)
 L++;
 if (L < R)
 values[R--] = values[L];
}values[L] = pivot;
start[idx + 1] = L + 1;
end[idx + 1] = end[idx];
end[idx++] = L;
if (end[idx] - start[idx] > end[idx -1]- start[idx - 1])
{ swap start[idx] and start[idx-1]
 inttmp = start[idx];
 start[idx] = start[idx - 1];
 start[idx - 1] = tmp;
 tmp = end[idx];
 end[idx] = end[idx - 1], end[idx - 1] = tmp;
} }

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

else idx--;
}}

4.3. Split point detection
In our algorithm, we discover the mid-point by sorting
the array and sorting the middle element which is
sorted in array. After the midpoint is calculated, the
arrays are accepted to the GPU classification function
along with the midpoint which classifies the records.
The GPU code for finding the mid-points is given
below.
Algorithm 5: CPU Code for Split point detection of Quick sort
algorithm

quicksort(arr);
for (int i = 0; i <dringVal; i++)
{ if (i == count || i==nextVal)
{ age=(int) arr[i];
 result = result+age;
}
} midAge= result/2;, return midAge;
}
quicksort(arr);
for (int i = 0; i <dringVal; i++)
{ if (i == count || i==nextVal)
{ weight=(int) arr[i];
 result = result+ weight;
} midWeight = result/2;
} return mid weight;
}

Algorithm 6: GPU Code for Split point detection of Quick sort
algorithm

quick_sort <<< MT / cThreadsPerBlock,MT/c
ThreadsPerBlock, N >>> (d_values);
cudaMemcpy(sag,d_values,size,cudaMemcpyDeviceToHost) ;
printf("\n\nMidPoint of the AGE is:\t");
MA=sag[SO/2];//Mid-point of the Age
printf("%d\n",MA);

quick_sort<<< MT / cThreadsPerBlock,
MT/cThreadsPerBlock,N >>> (r_values);
cudaMemcpy(swt,r_values,size,cudaMemcpyDeviceToHost) ;
printf("MidPointoftheWEIGHT is\t");
MW=swt[SO/2];//Midpoint of the Weight
printf("%d\n",MW);

quick_sort<<< MT / cThreadsPerBlock,
MT/cThreadsPerBlock,N >>> (a_values);
cudaMemcpy(sslp,a_values,size,cudaMemcpyDeviceToHost) ;
printf("MidPointofthe SLEEP is\t");
MSLP=sslp[SO/2];Midpoint of the Sleep
printf("%d\n",MSLP);

quick_sort<<< MT / cThreadsPerBlock,
MT/cThreadsPerBlock,N >>> (s_values);
cudaMemcpy(sdr,s_values,size,cudaMemcpyDeviceToHost) ;
printf("MidPoint ofthe DRINK is:");
MDR=sdr[SO/2];/Midpoint of the Drinks
printf("%d\n",MDR);

quick_sort<<< MT/cThreadsPerBlock, MT /
cThreadsPerBlock, N >>> (v_values);
cudaMemcpy(ssp,v_values,size,cudaMemcpyDeviceToHost) ;

printf("MidPointofthe SPROTS is\t");
MSP=ssp[SO/2];Mid-point of the Sports
printf("%d\n",MSP);

After getting the midpoint values and scanning the
attributes of the all the records from connected data
sets, we classify the node using

)(.....)()(2211 nn vxANDANDvxANDvxIF ≤≤≤
CTHEN (class value) rule [1, 6, 7, 20]. IF this rule is

true goto left child node and travel up to N number of
nodes and finally count the class value, if the same
data exists then the count value and update the
appropriate class count. IF condition is false goto right
child node and travel up to N number of nodes and
finally count the class value, if the same data exists
then the count value and update the appropriate class
count and else update the missing count. Finally
distribution of the node counts are evaluated based on
the Predicted Rules (Figure 9) and the histogram of the
classified nodes are calculated with construction of the
decision tree (Figure 4). The design of MMDBM
algorithm is presented in Figure 2.

Figure 2. Design for GPU MMDM Classifier.

4.4. Acceleration Ratio for GPU
GPU Performance: To test the acceleration
performance, an acceleration ratio (speed-up) γ is
defined as equation 3.

GPU

CPU
t
t

=γ

where the total processing time on the CPU, ,CPUt
comprises only the time of main loop executed while
the total processing time on the GPU, ,GPUt includes
additional time of transferring data between Host and
Device in the interest of fairness. γ first rises as the
number of threads increases. There are two reasons for
the changes in γ. First, if the number of threads is less,
the time spent on data transferring between Host and
Device takes up a considerable proportion of the total
processing time of the GPU. As the number of threads
increases, the proportion decreases rapidly. Second,
only after all blocks in a kernel executed the next
kernel can be launched in the GPU. The time
consumed on kernel launching can be roughly
considered as a fixed cost. Using more blocks means a

 (3)

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

reduction in the percentage of kernel launching time
[15].

TimetionClassificaTimeSorting
ValuesrandomtheGenerateTimeCPU

+
+=

HosttoDeviceand
DevicetoHostfromtransferDataTimeGPU =

TimencomputatioGPU
TimencomputatioCPURatioonAccelerati /=

We calculated CPU, GPU and Acceleration ratio time
with all the records sorting time is 0.00, because
number thread has been created.

Table 3. Acceleration Ratio time for Quick sort

Quick sort
GPUs
Times

Records
Sec /

20000

Records
Sec /

40000

Records
Sec /

60000

Records
Sec/

80000

Records
Sec

/ 100000
random
Values 0.100 0.210 0.300 0.4000 0.5100

Sorting
Time 0.000 0.000 0.000 0.000 0.010

Classificati
on Time 0.510 1.010 1.530 2.0300 2.580

CPU Time 0.610 1.230 1.840 2.4500 3.100
GPU Time 0.510 1.010 1.540 2.030 2.590
Acceleratio

n Ratio 1.196 1.217 1.194 1.2068 1.1969

Table 4. Acceleration Ratio time for Radix sort

Radix sort
GPUs Times

Records
Sec /

20000

Records
Sec / 40000

Records
Sec /

60000

Records
Sec

/ 80000

Records
Sec

/ 100000
Random
Values 0.090 0.210 0.320 0.4100 0.5100

Sorting time 0.000 0.000 0.000 0.000 0.010
Classificatio

n Time 0.510 1.010 1.530 2.0400 2.590

CPU Time 0.610 1.220 1.850 2.4600 3.110
GPU Time 0.510 1.010 1.530 2.040 2.5900

Acceleration
Ratio 1.196 1.207 1.209 1.2058 1.200

Comparison of acceleration ratio time for CPU
andGPU Quick sort with Radix sort algorithm, which
shown in Figure 3.

Figure 3. Scalability of the CPU and GPU processing time.

5. Main Result
We have tested the efficiency of our classification
algorithm and have been implemented in different
types of sorting algorithms (quick sort and radix sort)
and compared the results of CPU computing with GPU
computing. We now consider Medical database for BP

where data mining techniques are applied. Test has
been carried out to estimate the perfection of
classification and the classification handling time. The
medical database for Blood pressure where both the
algorithms quick sort and radix sort are given the task
to predict risk of the person for having high BP, low
BP, normal BP based on seven different types of
attributes.

5.1. Medical database for BP
The medical database contains data from reviews
conducted among patients. The database holds records
of the following Attributes.

1. Sex: Categorical [M/F];
2. Age: representing the age of the person Numeric

[years];
3. Weight: The weight of the person; Numeric [Kilo

grams];
4. Sports: The extent of exercise a person, Numeric

[1-10]
5. Sleep: The number of hours a person sleeps on an

average: numeric [0, 24];
6. Drink: The extent of drinking of a person; Numeric

[1-5];
7. BP: Categorical [HP, LP, NP], this is class values;

As explained in the algorithm of MMDBM
algorithm, the data that satisfy the condition and the
data that does not satisfy the condition,
correspondingly the missing data have been recorded.
Based on that, a histogram is developed for distribution
of the nodes. Since decision tree is a binary tree, the
number of nodes in the tree is 2n -1, where n is the
number of attributes. In our case, the number of
attribute is 7 so the number of nodes is 127. As it is not
possible to show all the distribution of the node, the
histogram of total count for all nodes and three
distributions are listed below

5.2. Histogram of all the nodes
All the attribute node value is taken as (sex, age,
weight, sleep, sports, drink and BP). Out of One Lakh
patients, the numbers of patients with high BP are
36160, the numbers of patients with normal BP are
31673, the numbers of patients with low BP are 31733
and the numbers of missing values are 434. It is
depicted as histogram, which shown in Figure 5.

Figure 5. Total count for the distribution node.

 (4)

 (5)

 (6)

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Figure 4. Classification tree in Medical database for BP

5.2.1. First distribution

All the attribute in node has travelled in SexIF (
&5&35&49& ≤≤>== SportsWeightAgeF

CTHENDrinkSleep)3&8 ≤≤ (count the class
value in BP) condition for class distribution and travel
path is 1-3-7-14-28-56-112 (referred Figure 4
Classification tree). Out of One Lakh patients, the
numbers of patients with high BP are106, the numbers
of patients with normal BP are 106 and the numbers of
patients with low BP are160. It is depicted as
histogram, which shown in Figure 6.

Figure 6. First distribution of the node

5.2.2. Second distribution

The all attribute in node has travelled in FSexIF ==(
8&5&35&49& >>>> SleepSportsWeightAge

CTHENDrink)3& ≤ (count the class value in BP)
condition for class distribution and travel path is 1-3-7-
15-30-60 (referred Figure 4 Classification tree).

Out of One Lakh patients, the numbers of patients
with high BP are400, the numbers of patients with
normal BP are294 and the numbers of patients with
low BP are130. It is depicted as histogram, which
shown in Figure 7.

Figure 7. Second distribution of the node

5.2.3. Third distribution

The all attribute in node has travelled in MSexIF ==(
8&5&35&49& ≤>>≤ SleepSportsWeightAge

 CTHENDrink)3& ≤ (count the class value in BP)
condition for class distribution and travel path is 1-2-4-
9-18-36-72 (referred Figure 4 Classification tree). Out
of One Lakh patients, the numbers of patients with
high BP are88, the numbers of patients with normal BP
are 104 and the numbers of patients with low BP
are80. It is depicted as histogram which shown in
Figure 8.

Figure 8. Thired distrubution of the node

Both Algorithms (quick sort and radix sort) are a
large set of datasets which have been generated to test
the precision minimum processing time by CPU and
GPU computing. Figure 4 demonstrates the
classification tree of the medical database which
measuring the node count of the values. The
classification testes were accepted with different
amounts of data provided to the program extending
from 10,000 to 1,00,000 and classification is
completed. It is perceived that with the rise in the
number of records, the estimate of accuracy in
upgraded. Table 6 illustrates the estimate rules
obtained from the database[6, 20].

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

Table 5. Processing time of SLIQ with MMDBM algorithms. By comparing the results, given in Tables 3 and 4 with
Table 5 and in the Figure 3 and Figure 9, we can
conclude that GPU computes faster than CPU. Using
GPU Quick sort algorithm, we can get a greater
performance for all computational problems. This
report is limited to one particular classification
algorithm MMDBM, but it can be generalized to all
other algorithms also, which is shown in Figure 9.

Table 6. Predicted Rules for Medical database in BP

N1 sex=M Node goto N2 else N3 N23 Sport<=4 Node goto N46 else N47 N45 drink<=4 Node goto N90 else N91
N2 Age<=35 Node goto N4 else N5 N24 Sport<=4 Node goto N48 else N49 N46 drink<=4 Node goto N92 else N93
N3 Age<=35 Node goto N6 else N7 N25 Sport<=4 Node goto N50 else N51 N47 drink<=4 Node goto N94 else N95
N4 Weight<=48 Node goto N8 else N9 N26 Sport<=4 Node goto N52 else N53 N48 drink<=4 Node goto N96 else N97
N5 Weight<=48 Node goto N10 else N11 N27 Sport<=4 Node goto N54 else N55 N49 drink<=4 Node goto N98 else N99
N6 Weight<=48 Node goto N12 else N13 N28 Sport<=4 Node goto N56 else N57 N50 drink<=4 Node goto N100 else N101
N7 Weight<=48 Node goto N14 else N15 N29 Sport<=4 Node goto N58 else N59 N51 drink<=4 Node goto N102 else N103
N8 Sport<=4 Node goto N16 else N17 N30 Sport<=4 Node goto N60 else N61 N52 drink<=4 Node goto N104 else N105
N9 Sport<=4 Node goto N18 else N19 N31 Sport<=4 Node goto N62 else N63 N53 drink<=4 Node goto N106 else N107

N10 Sport<=4 Node goto N20 else N21 N32 drink<=4 Node goto N64 else N65 N54 drink<=4 Node goto N108 else N109
N11 Sport<=4 Node goto N22 else N23 N33 drink<=4 Node goto N66 else N67 N55 drink<=4 Node goto N110 else N111
N12 Sport<=4 Node goto N24 else N25 N34 drink<=4 Node goto N68 else N69 N56 drink<=4 Node goto N112 else N113
N13 Sport<=4 Node goto N26 else N27 N35 drink<=4 Node goto N70 else N71 N57 drink<=4 Node goto N114 else N115
N14 Sport<=4 Node goto N28else N29 N36 drink<=4 Node goto N72 else N73 N58 drink<=4 Node goto N116 else N117
N15 Sport<=4 Node goto N30 else N31 N37 drink<=4 Node goto N74else N75 N59 drink<=4 Node goto N118 else N119
N16 Sport<=4 Node goto N32 else N33 N38 drink<=4 Node goto N76 else N77 N60 drink<=4 Node goto N120 else N121
N17 Sport<=4 Node goto N34 else N35 N39 drink<=4 Node goto N78 else N79 N61 drink<=4 Node goto N122 else N123
N18 Sport<=4 Node goto N36 else N37 N40 drink<=4 Node goto N80 else N81 N62 drink<=4 Node goto N124 else N125
N19 Sport<=4 Node goto N38 else N39 N41 drink<=4 Node goto N82 else N83 N63 drink<=4 Node goto N126 else N127
N20 Sport<=4 Node goto N40 else N41 N42 drink<=4 Node goto N84 else N85 N64 Terminated 100% with H
N21 Sport<=4 Node goto N42 else N43 N43 drink<=4 Node goto N86 else N87 N65 Terminated 100% with L
N22 Sport<=4 Node goto N44 else N45 N44 drink<=4 Node goto N88 else N89 N66 Terminated 100% with H

Figure 9. Scalability of SLIQ with MMDBM algorithms

CUDA is not a new program, but Extension of C
programming language. CUDA code must be compiled
using nvcc (nvidia cuda c compiler) Compiler. It
works on modern nvidia cards (Quadro, GeForce,
Tesla). We have used "Geforce GT525M" card for this
research.

This test was carried out on Microsoft windows 7
together with CUDA version 5.0. The hardware
platform consists of a Intel core i5-245M CPU 2.50
GHz and 6 GB RAM. Table 7 summarizes GPU
characteristic used in experiments. The NVIDIA
GT525M card used in GPU is with 4095M.

 Table 7. Characteristic of Geforce GT525M card

Property Value

CUDA Core
Graphics clock
Process clock
Memory clock

Memory Interface
Total available graphics

Dedicated video memory
Shared system memory

96
475 MHz
950 MHz
900 MHz

128- it
4095 MB
2048 MB

DDR3
2047 MB

6. Conclusion
Classification is one of the major tasks in data mining.
A new classifier called MMDBM has been
programmed in CPU computing (Java) with quick sort
and radix sort algorithms and has been tested using
Medical database and also same two algorithms have
been programmed in GPU computing. The algorithm
can handle huge amount of datasets with large amount
of Attributes. GPUs quick sort and radix sort algorithm
provides exceptional scalability with the Medical data
sets that has been taken for analysis and testing. The
main Results have been taken into consideration and
verified for accuracy and the program code is provided
for CPU and GPU computing. We have discussed an

Algorith
m Names

Processing
time / Sec
10000

Processing
time / Sec
30000

Processing
time / Sec
40000

Processing
time / Sec
50000

Processing
time / Sec
100000

SLIQ 6.21 17.6 20.5 26.8 42.5
MMDBM
Quick
sort 0.432 1.069 1.076 1.467 2.106
MMDBM
Merge
sort 0.483 1.069 1.134 1.482 2.558
MMDBM
Radix
Sort 5.992 11.487 12.967 13.967 14.987

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

efficient parallel quick sort and radix sort algorithms in
GPU and results from the Comparison of
computational acceleration ratio (speed-up) and
efficiency of processing time of CPU and GPU
computing in MMDBM Classifier. The main results
are used to compare the classifier with an existing
CPU- quick sort and radix sort for the MMDBM
classifier and GPU- quick sort and radix sort
algorithms provide rapid and exact results with
minimum execution time and supports real time
applications.

References
[1] AI-hegami A., “Pruning Based Interestingness of

Mined Classification Patterns,” International
Arab Journal of Information Technology, Vol. 6,
No. 4, pp. 336-343, 2009.

[2] Alnihoud J., and Mansi R., “An Enhancement of
Major Sorting Algorithms,” International Arab
Journal of Information Technology, Vol. 7, No.
1, pp. 55-62, 2010.

[3] Cederman D., and Tsigas P., “GPU-Quicksort: A
Practical Quicksort Algorithm for Graphics
Processors,” ACM Journal of Experimental
Algorithmics, Vol. 14, No. 4, 2009.

[4] Chiu Chun-Chieh., Luo Guo-Heng., and
Yuan Shyan-Ming., “ A decision tree using
CUDA GPUs,” in Proceedings of the 13th
International Conference on Information
Integration and Web-based Applications and
Services, pp. 399-402, 2011.

[5] Chandra B., Paul Varghese P., “Moving towards
efficient decision tree construction,” Information
Sciences, 179, 1059–1069, 2009.

[6] Ganesan P., Sivakumar S., and Sundar S., “A
Comparative Study on MMDBM Classifier
Incorporating Various Sorting Procedure,”
Indian Journal of Science and Technology, Vol
8(9), pp.868–874, 2015.

[7] Mehta M., Agarwal R., and Rissanen J., “SLIQ:
A Fast Scalable Classifier for Data Mining,” Int.
Conference on Extending Database
Technology(EDBT), Avignon, France, 1996.

[8] Munshi A., “OpenCL: Parallel Computing on the
GPU and CPU,” in the 35st international
conferenceon computer graphics and interactive
techniques, California, USA, 2008.

[9] Nasridinov A., Lee Y., and Park Young-Ho.,
“Decision tree construction on GPU: ubiquitous
parallel computing approach,” Computing, 96,
pp.403-413, 2014.

[10] Nguyen H., GPU Gems 3, Addison-Wesley
Professional, 2007.

[11] Nickolls J., Buck I., and Garland M., “Scalable
Parallel Programming with CUDA,” ACM
Queue, Vol. 6, No. 2, pp. 40-53, 2008.

[12] NVIDIA Corporation., CUDA Best Practices
Guide, 2010.

[13] NVIDIA Corporation., CUDA C Programming
Guide, February 2014.

[14] Ömer AKGÖEK., “A rule induction algorithm
for knowledge discovery and classification,”
Turkish Journal of Electrical Engineering and
Computer Science, 21, pp.1223-1241, 2013.

[15] Panchatcharam M., Sundar S., Vetrivel V., Axel
Klar., and Tiwari S., “GPU computing for
meshfree particle method,” International Journal
of Numerical Analysis and Modeling, Series B,
Vol. 4, pp. 394-412, 2013.

[16] Pospichal P., Jaros J., and Schwarz J., “Parallel
genetic algorithm on the CUDA architecture,”
Application of Evolutionary Computation, pp.
442-451, 2010.

[17] Sanders J., and Kandrot E., CUDA by example :
An introduction to general-purpose GPU
programming, Addison-Wesley, 2011.

[18] Shafer J., Aggrawal R., and Mehta M., “SPRINT:
A Scalable Parallel Classifier for Data Mining,”
in Proceedings of 22nd VLDB Conference, San
Antonio, pp. 962-969, 1996.

[19] Sundar S., Srikanth D., and Shanmugam M.S.,
“A new predictive classifier for improved
performance in data mining: object oriented
design and implementation,” in Proceedings of
the International Conference on Industrial
Mathematics, IIT Bombay, Narosa, pp. 491-514,
2006.

[20] Telbany M., Warda M., and Borahy M., “Mining
the Classification Rules for Egyptian Rice
Diseases,” International Arab Journal of
Information Technology, Vol. 3, No. 4, 2006.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

http://dl.acm.org/author_page.cfm?id=81493646523&coll=DL&dl=GUIDE&CFID=467534288&CFTOKEN=22206228
http://dl.acm.org/author_page.cfm?id=81492642495&coll=DL&dl=GUIDE&CFID=467534288&CFTOKEN=22206228
http://dl.acm.org/author_page.cfm?id=81492652276&coll=DL&dl=GUIDE&CFID=467534288&CFTOKEN=22206228
http://dl.acm.org/citation.cfm?id=2095536.2095615&coll=DL&dl=GUIDE&CFID=467534288&CFTOKEN=22206228
http://dl.acm.org/citation.cfm?id=2095536.2095615&coll=DL&dl=GUIDE&CFID=467534288&CFTOKEN=22206228
http://dl.acm.org/citation.cfm?id=1407436&coll=DL&dl=GUIDE&CFID=407634978&CFTOKEN=43557919

Sivakumar Selvarasu obtained his
Msc, Computer science from Periyar
E.V.R College and M.Phil from
St.Joseph's College of Bharathidasan
University, India, Now he is doing
Ph.D in Department of Mathematics,
College of Engineering Guindy

Campus, Anna University, Chennai, India. His
research program focuses on Data mining and areas of
interest are parallel computing (GPU), Classification
and analysis, Image processing and CUDA
Programming.

Ganesan Periyanagounder is
working as a Professor of Emeritus
in the Department of Mathematics,
College of Engineering Guindy
Campus, Anna University, Chennai,
India. He received his Ph.D degree
from Indian Institute of Technology,

Mumbai, India. He has more than 30 years of
experience in academic and research. His areas of
interest include Computational Heat Transfer,
Theoretical computer science and Object Oriented
programming. He has more than 82 publications in
Journals and Conferences.

Sundar Subbiah is working as a
Professor in the Department of
Mathematics, Indian Institute of
Technology, Madras, Chennai,
India. He received his Ph.D degree
from Indian Institute of Technology,
Chennai, India. He has 26 years of

experience in academic and research. His areas of
interest include Numerics for PDEs, Mathematical
Modeling & Numerical Simulation, GPU Computing
and Data mining. He has guided over 12 Ph.D students
and 75 M.Tech / MSc students. He has more than 80
publications in Journals and conducted 11 International
Conferences and Workshops.

IA
JIT

 Firs
t

Onli
ne

 Pub
lic

ati
on

	Figure 2. Design for GPU MMDM Classifier.
	Cederman D., and Tsigas P., “GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors,” ACM Journal of Experimental Algorithmics, Vol. 14, No. 4, 2009.
	Panchatcharam M., Sundar S., Vetrivel V., Axel Klar., and Tiwari S., “GPU computing for meshfree particle method,” International Journal of Numerical Analysis and Modeling, Series B, Vol. 4, pp. 394-412, 2013.
	Sanders J., and Kandrot E., CUDA by example : An introduction to general-purpose GPU programming, Addison-Wesley, 2011.

