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ABSTRACT 

The goal of this work is determining the periodicity which the preventive maintenance will execute for 

minimizing the operation cost. This type of preventive change is very used in practice by industrial 

manufacturing. In this study, we choose the replacement model based on age: the age of each part is known and 

the part is changed as soon as its age reaches the T0 value. The mathematical model used is based on the Weibull 

law with Gamma =0. The results obtained are discussed according to the values of the parameters of the Weibull 

law Beta and Eta and of the cost of preventive maintenance and the cost failure, for which the minimal cost has 

been determined in each case. 

Keywords: Optimal Periodicity, Preventive Maintenance, Ratio Costs, Failure, Weibull Law, Replacement 
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NOMENCLATURE 

Symbols: 

fC  
Cost of system failure, DA 

pC  Cost of system preventive replacement, DA 

rC
 

Cost ratios, p fC C   

( )C T  
Total cost per unit time, DA/h 

CM  Corrective maintenance 

( )f t  
Failure density of the system, ' ( )R t  

( )F t  
Unreliability of the system er time t , 

1 ( )R t  ;  

( )R t  Reliability of the system over time t  

MTBF Mean time between failure 

PM Preventive maintenance 

t  Time, h 

T  Replacement time, h 

0T  Periodicity optimal of replacement, h 

Greek letters:  

  Weibull distribution shape parameter 

  Fraction of time, 0T  , h 

  Weibull distribution location parameter, h 

  Weibull distribution scale parameter, h 

( t )
 

failure rate;  

  Variable,  t


  

( )y   
Function of cost ratio  

 

 

1. INTRODUCTION 

The complexity of the phenomena of failures leads us to seek means of improving the strategies and the 

policies of maintenance to make it possible the equipment to adequately fulfill the functions for which it was 
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conceived. The most important problem in the mathematical methods of maintenance is to conceive maintenance 

planned with two options of maintenance: preventive replacement and corrective replacement. For these reasons, 

an important area of reliability theory is the study of various maintenance policies that seek the way to reduce 

operating costs and the risk of a catastrophic failure. So, Al-Najjar [1] showed that maintenance expenses vary 

depending on the type of industry; figures typically encountered are in the order of 15 40 %  of production 

costs. Therefore, it is necessary to pay more attention to this important subject area. Furthermore, timely 

preventive maintenance (or replacement) is also beneficial to support normal and continuous system operation.  

Therefore, it becomes desirable to determine an optimal replacement policy for the system. Barlow and Proschan 

[2] were proposed an age-replacement policy, where an operating unit is replaced at time of failure, or at age T, 

whichever comes first. Nosoohi and Hejazi [5] have presented a novel multi-objective model for preventive 

replacement of a part over a planning horizon. The proposed model considers different objectives and practical 

issues, such as corrective replacement and its consequences, residual lifetime objective, and somehow 

productivity index.  

Halim and Tang [6] have extensively studied the replacement problems of deteriorating systems. 

Typically, the time between failures is characterized by lifetime distribution in which parameters are estimated 

from historical data. Jung and Park [7] have developed the optimal periodic preventive maintenance policies 

following the expiration of warranty. They have considered two types of warranty policies to discuss such 

optimum maintenance policies: renewing warranty and non-renewing warranty. From the user’s perspective, the 

product is maintained free of charge or with prorated cost on failure during the warranty period.  

Chien and Chen [8] have presented a spare ordering policy for preventive replacement with age-

dependent minimal repair and salvage value consideration. The spare unit for replacement is available only by 

order and the lead-time for delivering the spare due to regular or expedited ordering follows general 

distributions. Barlow and Hunter [9] have proposed two mathematical models for the determination of the policy 

of optimal replacement minimizing the cost operation of the production system. These models are called Block 

Replacement Models and Age Replacement Models. The main property for the block replacement is that it is 

easier to administer in general, since the preventive replacement time is programmed to the in advanced and we 

do not need the watch of the system age. In the age replacement model, as it is well recognized, if the unit 

doesn’t fail until a prespecified time, then it is replaced by a new one preventively; otherwise, it is replaced at the 

failure time. This model plays a central role in all replacement models, since this has been proved by Bergman 

[10] if the replacement by a new unit is the only maintenance option. 

Our objective is to determine the most appropriate period, from an economic point of view, to make 

replacements of mechanical parts. We take in consideration all the parameters that involved, so that, this 

operation can be profitable. We propose an analytical and numerical method for solving the resulting differential 

equation and we give some numerical examples. This work aims at studying models of replacements based on 

the age: the age of each part is known and the part is changed as soon as its age reaches the T0 value. 

2. MATHEMATICAL MODEL 

This study consists in making a preventive replacement when the equipment reached the 0T
 
age is the 

period of preventive replacement selected (figure 1). The duration of the 0T  period was given in order to carry 

out a preventive replacement a little before the moment or we estimate that the equipment is likely to break 

down. That makes it possible to minimize the costs. However if a failure occurs, the faulty equipment is replaced 

by nine. The generation of the moments of failures is made by a random function. One of the functions often 
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used is the Weibull law distribution. The latter is interesting taking into account its flexibility and the great 

number of laws which it can simply cover by varying parameters (normal law, exponential law, etc). 

 

 

 

 

 

FIGURE 1. Replacement when the spare part age 0T  is reached. 

 

The differences compared to the block replacement model case [10] are the following: 

- The number of parts to be changed is reduced because we aren’t likely to change a part which has just been 

failing and replaced. 

- It is necessary to know the age of each part, which requires a special organization. 

- The preventive exchanges are more expensive because they relate only to one part each time. 

The value 0T
 
which corresponds to the periodicity of preventive maintenance is that which minimizes 

C(T )  given by the following expression: 

 
0

0 0

0

0

1
0

f P

T

C R(T ) C .R(T )
C(T ) ;T

R( t )dt

 
 


                                                                                                  (1) 

Where C(T )  the average total cost by part and time unit.  

The problem is, of course, to derive the optimal block replacement time 0T  that minimizes ( )C T . 

                                                                          
                    0'C (T )  

 
   

0
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0

0
T

f P f f Pf (T ) R( t )dt C C R(T ) C R(T ) C C
                                           (2) 

 
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1
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f (T ) R( t )dt R(T )

C C R(T )





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(4) 

We put: P f rC C C ; then we obtain: 
0

0
0

1

1

T

r

( t ) R( t )dt R(T )
C

 
                                                               (5) 

We consider the Weibull law with three parameters:  ,   and   which aptly describe the behavior of 

the material studied. Then, in the case of Weibull law with 0  : this means that the origin of time is taken 

equal at zero, and the equipment was operated at t = 0. It’s the most common case in practice. So we have:  

 
( )

t
R T e




  
                                                                                                                                             (6) 

And equation (5) becomes: 

1

0

1

1

t t
t

r

t
e dt e

C

 


 

 

   
    
   

 
  

  


                                                                      

(7)

 
We put: 

1

0

1

1

t t
t

r

t
y( t ) e dt e

C

 


 

 

   
    
   

 
   

 
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(8)

                     

 

S1 

R R f R R 0 f 

T0 T0 T0 S1: system 1 

R: replacement 

f: failure  

T0: spare part age 
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  
22

0
1

t
t

'y ( t ) t e dt



    

 
     

                                                                                                     

(9) 

2. ANALYTICAL SOLUTION 

The analytical study of this equation shows: 

- For 0 1  : 0 0'y ( t ) ; t    and 0 1y( t )  . The equation (8) doesn’t have a solution because  0 1rC ,

. Moreover, this case has no practical interest, since the material is in youth period. 

- For 1  : y(t)= 1 . Equation (8) is equivalent to 0rC  . This preventive maintenance doesn’t have interest. 

- For 1  : 0 0'y ( t ) ; t   . Equation (8) has a single solution for 0 1rC  . 

Let us check that the solution of the equation corresponds to a minimum at the cost. Then, we study the 

limit of: limC(t) when t 0  and limC(t) when t  .

                                                                                   

 

0t
limC( t )


 
                                                                                                                                       

(10) 

 1 1

f

t

C
lim C( t )

 



                                                                                                                          (11) 

In this case, average cost C( t ) has the form which is represented on figure 2. Thus, in the case of a material of 

wear (β>1), this type of preventive maintenance has an interest  0 1rC ,  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Curve of in ( )mC t the case of 1  . 

3. NUMERICAL SOLUTION 

By observing the condition of 0<Cr<1 and with β>1, we varied the costs ratio from 0.25 to 0.75, i.e. Cr = 

0.25; 0.5 and 0.75, corresponding to Cf= 40000 and Cp=10000; 20000 and 30000, respectively. 

The observation of figure 3 representing the average total cost per unit of time and part C according to the 

time of preventive replacement T if η=2000 and Cr=0.25 for various values of the parameter of form β watch that 

around the T0 optimum the cost seems to vary very little. In this case, we note the presence of a minimal value of 

C corresponding to the period most adapted to carry out the operation of  MP. This cost is appreciably depending 

on the value of the form parameter β. It varies from 5.64 for β=6.9 to 14.66 for β=2. Figure 4 represents the 

variation of the average total cost per unit of time and part C according to time if η=2000 and Cr=0.5 for various 

values of the parameter of form β. For β =2, we note that the period of MP starts beyond T0=947 where Cm is 

t T0 

fC

1
1
 

  
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C(t)

 

0C(T )  
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minimal (equal to 22) and it will constitute to be it as from this moment until T0=1890 where Cm is minimal 

(equal to 21). Whereas the optimal periodicity corresponding to the minimal value of C (Cm=20.62) is equal to 

T0=1459. While, for the other values of β, the value of the minimal cost Cm corresponding to the period of MP 

varies from 11.09 for β=6.9 to 18.02 for β= 2.5, and the period of optimal replacement correspondent varies from 

1076 for β=6.9 to 1208 for β=2.5. In a similar way, it is noted that Cm and T0 proportionally vary the ones 

compared to the others according to the values of β. For example, in the case of β =3, Cm = 15.97 and T0=1125. 

Whereas for in the case of β =6, Cm = 11.48 and T0=1071. 
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FIGURE 3. Variation of C according to time for 

various values of  : 2000  , 0.25rC  . 
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FIGURE 4. Variation of C according to time for 

various values of
 
 : 2000  , 0.5rC  . 

According to figure 5, which represents the variation of the average total cost per unit of time and part C 

according to time if η=2000 and Cr=0.75 for various values of the parameter of form β, we note a increase 

proportional of Cm and T0 for all the values taken by β. This obviously little is explained by increased Cf, which 

implies more action of corrective maintenance what this reflects on the increase in the optimal periodicity 

replacement T0 in preventive. Thus, for β=2, we note that the period of MP starts beyond T0≥2500 where Cm is 

minimal (equal to 22.61) and it will constitute to be it as from this moment. While, for the other values of β, the 

value of the minimal cost Cm corresponding to the period of MP varies from 16.43 for β=6.9 to 22.25 for β= 2.5, 

and the period of optimal replacement correspondent varies from 1203 for β=6.9 to 11852 for β=2.5. In a similar 

way, it is noted that Cm and T0 proportionally vary the ones compared to the others according to the values of β. 

For example, in the case of β =3.5, Cm = 19.75 and T0=1399. Whereas for in the case of β =6, Cm = 16.86 and 

T0=1221. 
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Figure 5. Variation of C according to time for various 

values of  : 2000  , 0.75rC  . 
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Figure 6. Variation of C according to time for various 

values of  : 5  , 0.75rC  . 

 

Since the values taken by the scale parameter , we must expect that T0 evolves in a way proportional 

with . Thus, figure 6 represents the variation of the total cost average C according to time in the case of β=5, 

Cr=0.75 and for various values of the parameter of scale . Noting us that C decreases with the increase in the 

values of , whereas the optimal period of T0 replacement increases. Thus, for =2000; Cm=17.57 and T0= 1254, 

while for  =5000; Cm=7,02 and T0=3135. Knowing that the scale parameter  represents an approximate value 

of MTBF, this evolution of C is completely logical. Indeed, for a type of spre part having a relatively weak 

MTBF, its duration of exploitation is also small and Cm is relatively high. Whereas for a spare part which has a 

relatively high MTBF, its duration of exploitation is large and C is relatively weaker. 

 

5. CONCLUSION 

 

Determining the optimal periodicity for the preventive replacement might be obtained by the 

replacement model based on age. The standard is to calculate the average total cost per time unit and per item, to 

get the minimum period corresponding to this minimum as an optimal time to perform the preventive 

maintenance. This cost comprises the cost of preventive maintenance and the cost of biased probability for the 

failure of corrective maintenance. An analytical study that has been carried out in the case of a Weibull 

distribution and the resulting differential equation has been solved under certain mathematical conditions. After 

that, this equation has been numerically solved for the different parameters of this problem which are the cost 

ratio of maintenance, the shape parameter and the scale parameter. The results were analyzed and discussed. 

Their applications to real cases can provide to maintenance service a key element in choosing the most suitable 

time to perform preventive maintenance at minimum cost. 
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